Abstract

Spectrum splitting represents a valid alternative to multi-junction solar cells for broadband light-to-electricity conversion. While this concept has existed for decades, its adoption at the industrial scale is still stifled by high manufacturing costs and inability to scale to large areas. Here we report the experimental validation of a novel design that could allow the widespread adoption of spectrum splitting as a low-cost approach to high efficiency photovoltaic conversion. Our system consists of a prismatic lens that can be manufactured using the same methods employed for conventional CPV optic production, and two inexpensive CuInGaSe2 (CIGS) solar cells having different composition and, thus, band gaps. We demonstrate a large improvement in cell efficiency under the splitter and show how this can lead to substantial increases in system output at competitive cost using existing technologies.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single element spectral splitting solar concentrator for multiple cells CPV system

Marco Stefancich, Ahmed Zayan, Matteo Chiesa, Stefano Rampino, Dario Roncati, Lionel Kimerling, and Jurgen Michel
Opt. Express 20(8) 9004-9018 (2012)

Enhancing photovoltaic output power by 3-band spectrum-splitting and concentration using a diffractive micro-optic

Nabil Mohammad, Peng Wang, Daniel J. Friedman, and Rajesh Menon
Opt. Express 22(S6) A1519-A1525 (2014)

High-efficiency thin and compact concentrator photovoltaics with micro-solar cells directly attached to a lens array

Nobuhiko Hayashi, Daijiro Inoue, Mitsuhiro Matsumoto, Akio Matsushita, Hiroshi Higuchi, Youichirou Aya, and Tohru Nakagawa
Opt. Express 23(11) A594-A603 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Imenes and D. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
    [Crossref]
  2. A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
    [Crossref]
  3. H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III–V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
    [Crossref]
  4. M. A. Green, M. J. Keevers, I. Thomas, J. B. Lasich, K. Emery, and R. R. King, “40% efficient sunlight to electricity conversion,” Prog. Photovolt. Res. Appl. 23(6), 685–691 (2015).
    [Crossref]
  5. J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
    [Crossref]
  6. B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
    [Crossref]
  7. R. K. Kostuk, J. Castillo, J. M. Russo, and G. Rosenberg, “Spectral-shifting and holographic planar concentrators for use with photovoltaic solar cells,” Proc. SPIE 6649, 66490I (2007).
    [Crossref]
  8. D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8469, 846807 (2012).
    [Crossref]
  9. M. D. Escarra, S. Darbe, E. C. Warmann, and H. Atwater, “Spectrum-splitting photovoltaics: Holographic spectrum splitting in eight-junction, ultra-high efficiency module,” in IEEE 39th Photovoltaic Specialists Conference (PVSC) (2013), pp. 1852–1855.
    [Crossref]
  10. G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
    [Crossref] [PubMed]
  11. P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi‐bandgap high‐efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl. (2014), http://onlinelibrary.wiley.com/doi/10.1002/pip.2516/full .
  12. C. Maragliano, M. Chiesa, and M. Stefancich, “Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system,” J. Opt. 17(10), 105901 (2015).
    [Crossref]
  13. D. C. Miller and S. R. Kurtz, “Durability of Fresnel lenses: a review specific to the concentrating photovoltaic application,” Sol. Energy Mater. Sol. Cells 95(8), 2037–2068 (2011).
    [Crossref]
  14. http://pvinsights.com/index.php
  15. H. Luque, Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, 2003)
  16. M. Contreras, L. M. Mansfield, B. Egaas, J. Li, M. Romero, R. Noufi, E. Rudiger-Voigt, and W. Mannstadt, “Improved energy conversion efficiency in wide bandgap Cu (In, Ga) Se 2 solar cells,” in 37th IEEE Photovoltaic Specialists Conference (PVSC) (2011), pp. 000026–000031.
    [Crossref]
  17. S. Ishizuka, A. Yamada, P. J. Fons, H. Shibata, and S. Niki, “Structural tuning of wide-gap chalcopyrite CuGaSe2 thin films and highly efficient solar cells: differences from narrow-gap Cu(In,Ga)Se2,” Prog. Photovolt. Res. Appl. 22, 821–829 (2014).
  18. M. Steichen, M. Thomassey, S. Siebentritt, and P. J. Dale, “Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells,” Phys. Chem. Chem. Phys. 13(10), 4292–4302 (2011).
    [Crossref] [PubMed]
  19. R. Herberholz, V. Nadenau, U. Rühle, C. Köble, H. Schock, and B. Dimmler, “Prospects of wide-gap chalcopyrites for thin film photovoltaic modules,” Sol. Energy Mater. Sol. Cells 49(1-4), 227–237 (1997).
    [Crossref]
  20. S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition,” Appl. Phys. Lett. 101(13), 132107 (2012).
    [Crossref]
  21. S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, F. Mezzadri, L. Nasi, L. Seravalli, F. Pattini, G. Trevisi, M. Motapothula, T. Venkatesan, and E. Gilioli, “Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique,” Sol. Energy Mater. Sol. Cells 133, 82–86 (2015).
    [Crossref]
  22. J. M. Russo, D. Zhang, M. Gordon, S. Vorndran, Y. Wu, and R. K. Kostuk, “Spectrum splitting metrics and effect of filter characteristics on photovoltaic system performance,” Opt. Express 22(S2Suppl 2), A528–A541 (2014).
    [Crossref] [PubMed]
  23. H. Baig, K. C. Heasman, and T. K. Mallick, “Non-uniform illumination in concentrating solar cells,” Renew. Sustain. Energy Rev. 16(8), 5890–5909 (2012).
    [Crossref]
  24. A. W. Horowitz, M. Woodhouse, G. Smestad, and H. Lee, A Bottom-up Cost Analysis of a High Concentration PV Module, in Proceedings of the 11th International Conference on Concentrator Photovoltaic Systems, CPV-11 (AIP, 2015), Vol. 1679, p. 100001
  25. D. Feldman, “Photovoltaic (PV) pricing trends: historical, recent, and near-term projections,” Technical Report, USDOE Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Program (2014).
  26. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
    [Crossref]
  27. P. Benítez, J. C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernández, “High performance Fresnel-based photovoltaic concentrator,” Opt. Express 18(S1), A25–A40 (2010).
    [Crossref]
  28. R. Margolis, C. Coggeshall, and J. Zuboy, “SunShot vision study,” US Dept. of Energy, (2012).

2015 (4)

M. A. Green, M. J. Keevers, I. Thomas, J. B. Lasich, K. Emery, and R. R. King, “40% efficient sunlight to electricity conversion,” Prog. Photovolt. Res. Appl. 23(6), 685–691 (2015).
[Crossref]

C. Maragliano, M. Chiesa, and M. Stefancich, “Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system,” J. Opt. 17(10), 105901 (2015).
[Crossref]

S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, F. Mezzadri, L. Nasi, L. Seravalli, F. Pattini, G. Trevisi, M. Motapothula, T. Venkatesan, and E. Gilioli, “Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique,” Sol. Energy Mater. Sol. Cells 133, 82–86 (2015).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

2014 (2)

J. M. Russo, D. Zhang, M. Gordon, S. Vorndran, Y. Wu, and R. K. Kostuk, “Spectrum splitting metrics and effect of filter characteristics on photovoltaic system performance,” Opt. Express 22(S2Suppl 2), A528–A541 (2014).
[Crossref] [PubMed]

S. Ishizuka, A. Yamada, P. J. Fons, H. Shibata, and S. Niki, “Structural tuning of wide-gap chalcopyrite CuGaSe2 thin films and highly efficient solar cells: differences from narrow-gap Cu(In,Ga)Se2,” Prog. Photovolt. Res. Appl. 22, 821–829 (2014).

2013 (2)

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[Crossref]

2012 (3)

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8469, 846807 (2012).
[Crossref]

S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition,” Appl. Phys. Lett. 101(13), 132107 (2012).
[Crossref]

H. Baig, K. C. Heasman, and T. K. Mallick, “Non-uniform illumination in concentrating solar cells,” Renew. Sustain. Energy Rev. 16(8), 5890–5909 (2012).
[Crossref]

2011 (4)

M. Steichen, M. Thomassey, S. Siebentritt, and P. J. Dale, “Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells,” Phys. Chem. Chem. Phys. 13(10), 4292–4302 (2011).
[Crossref] [PubMed]

D. C. Miller and S. R. Kurtz, “Durability of Fresnel lenses: a review specific to the concentrating photovoltaic application,” Sol. Energy Mater. Sol. Cells 95(8), 2037–2068 (2011).
[Crossref]

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

2010 (1)

2009 (1)

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III–V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[Crossref]

2007 (1)

R. K. Kostuk, J. Castillo, J. M. Russo, and G. Rosenberg, “Spectral-shifting and holographic planar concentrators for use with photovoltaic solar cells,” Proc. SPIE 6649, 66490I (2007).
[Crossref]

2004 (1)

A. Imenes and D. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
[Crossref]

1997 (1)

R. Herberholz, V. Nadenau, U. Rühle, C. Köble, H. Schock, and B. Dimmler, “Prospects of wide-gap chalcopyrites for thin film photovoltaic modules,” Sol. Energy Mater. Sol. Cells 49(1-4), 227–237 (1997).
[Crossref]

Armani, N.

S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition,” Appl. Phys. Lett. 101(13), 132107 (2012).
[Crossref]

Ashmead, J. W.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Atwater, H.

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8469, 846807 (2012).
[Crossref]

Baig, H.

H. Baig, K. C. Heasman, and T. K. Mallick, “Non-uniform illumination in concentrating solar cells,” Renew. Sustain. Energy Rev. 16(8), 5890–5909 (2012).
[Crossref]

Barnett, A. M.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Benick, J.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Benítez, P.

Bett, A. W.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Bissoli, F.

S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition,” Appl. Phys. Lett. 101(13), 132107 (2012).
[Crossref]

Boisvert, J.

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III–V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[Crossref]

Bronzoni, M.

S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, F. Mezzadri, L. Nasi, L. Seravalli, F. Pattini, G. Trevisi, M. Motapothula, T. Venkatesan, and E. Gilioli, “Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique,” Sol. Energy Mater. Sol. Cells 133, 82–86 (2015).
[Crossref]

S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition,” Appl. Phys. Lett. 101(13), 132107 (2012).
[Crossref]

Buelow, R.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Buljan, M.

Calestani, D.

S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition,” Appl. Phys. Lett. 101(13), 132107 (2012).
[Crossref]

Calicchio, M.

S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition,” Appl. Phys. Lett. 101(13), 132107 (2012).
[Crossref]

Castillo, J.

R. K. Kostuk, J. Castillo, J. M. Russo, and G. Rosenberg, “Spectral-shifting and holographic planar concentrators for use with photovoltaic solar cells,” Proc. SPIE 6649, 66490I (2007).
[Crossref]

Chaves, J.

Chiesa, M.

C. Maragliano, M. Chiesa, and M. Stefancich, “Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system,” J. Opt. 17(10), 105901 (2015).
[Crossref]

Christensen, E. L.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Colace, L.

S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, F. Mezzadri, L. Nasi, L. Seravalli, F. Pattini, G. Trevisi, M. Motapothula, T. Venkatesan, and E. Gilioli, “Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique,” Sol. Energy Mater. Sol. Cells 133, 82–86 (2015).
[Crossref]

Cotal, H.

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III–V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[Crossref]

Cvetkovic, A.

Dale, P. J.

M. Steichen, M. Thomassey, S. Siebentritt, and P. J. Dale, “Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells,” Phys. Chem. Chem. Phys. 13(10), 4292–4302 (2011).
[Crossref] [PubMed]

Delmonte, N.

S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition,” Appl. Phys. Lett. 101(13), 132107 (2012).
[Crossref]

Dimmler, B.

R. Herberholz, V. Nadenau, U. Rühle, C. Köble, H. Schock, and B. Dimmler, “Prospects of wide-gap chalcopyrites for thin film photovoltaic modules,” Sol. Energy Mater. Sol. Cells 49(1-4), 227–237 (1997).
[Crossref]

Dimroth, F.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Dominguez-Caballero, J. A.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi‐bandgap high‐efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl. (2014), http://onlinelibrary.wiley.com/doi/10.1002/pip.2516/full .

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

M. A. Green, M. J. Keevers, I. Thomas, J. B. Lasich, K. Emery, and R. R. King, “40% efficient sunlight to electricity conversion,” Prog. Photovolt. Res. Appl. 23(6), 685–691 (2015).
[Crossref]

Emery, K. A.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Escarra, M.

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8469, 846807 (2012).
[Crossref]

Fetzer, C.

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III–V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[Crossref]

Fons, P. J.

S. Ishizuka, A. Yamada, P. J. Fons, H. Shibata, and S. Niki, “Structural tuning of wide-gap chalcopyrite CuGaSe2 thin films and highly efficient solar cells: differences from narrow-gap Cu(In,Ga)Se2,” Prog. Photovolt. Res. Appl. 22, 821–829 (2014).

Friedman, D. J.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi‐bandgap high‐efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl. (2014), http://onlinelibrary.wiley.com/doi/10.1002/pip.2516/full .

Frigeri, P.

S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, F. Mezzadri, L. Nasi, L. Seravalli, F. Pattini, G. Trevisi, M. Motapothula, T. Venkatesan, and E. Gilioli, “Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique,” Sol. Energy Mater. Sol. Cells 133, 82–86 (2015).
[Crossref]

Gandy, T.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Gilioli, E.

S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, F. Mezzadri, L. Nasi, L. Seravalli, F. Pattini, G. Trevisi, M. Motapothula, T. Venkatesan, and E. Gilioli, “Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique,” Sol. Energy Mater. Sol. Cells 133, 82–86 (2015).
[Crossref]

S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition,” Appl. Phys. Lett. 101(13), 132107 (2012).
[Crossref]

Glunz, S. W.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Goldschmidt, J. C.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Gombia, E.

S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, F. Mezzadri, L. Nasi, L. Seravalli, F. Pattini, G. Trevisi, M. Motapothula, T. Venkatesan, and E. Gilioli, “Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique,” Sol. Energy Mater. Sol. Cells 133, 82–86 (2015).
[Crossref]

S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition,” Appl. Phys. Lett. 101(13), 132107 (2012).
[Crossref]

Gordon, M.

J. M. Russo, D. Zhang, M. Gordon, S. Vorndran, Y. Wu, and R. K. Kostuk, “Spectrum splitting metrics and effect of filter characteristics on photovoltaic system performance,” Opt. Express 22(S2Suppl 2), A528–A541 (2014).
[Crossref] [PubMed]

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8469, 846807 (2012).
[Crossref]

Gray, A. L.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Gray, J. L.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Green, M. A.

M. A. Green, M. J. Keevers, I. Thomas, J. B. Lasich, K. Emery, and R. R. King, “40% efficient sunlight to electricity conversion,” Prog. Photovolt. Res. Appl. 23(6), 685–691 (2015).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Haas, A. W.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Heasman, K. C.

H. Baig, K. C. Heasman, and T. K. Mallick, “Non-uniform illumination in concentrating solar cells,” Renew. Sustain. Energy Rev. 16(8), 5890–5909 (2012).
[Crossref]

Hebert, P.

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III–V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[Crossref]

Herberholz, R.

R. Herberholz, V. Nadenau, U. Rühle, C. Köble, H. Schock, and B. Dimmler, “Prospects of wide-gap chalcopyrites for thin film photovoltaic modules,” Sol. Energy Mater. Sol. Cells 49(1-4), 227–237 (1997).
[Crossref]

Hernández, M.

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Imenes, A.

A. Imenes and D. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
[Crossref]

Ishizuka, S.

S. Ishizuka, A. Yamada, P. J. Fons, H. Shibata, and S. Niki, “Structural tuning of wide-gap chalcopyrite CuGaSe2 thin films and highly efficient solar cells: differences from narrow-gap Cu(In,Ga)Se2,” Prog. Photovolt. Res. Appl. 22, 821–829 (2014).

Karam, N.

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III–V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[Crossref]

Keevers, M. J.

M. A. Green, M. J. Keevers, I. Thomas, J. B. Lasich, K. Emery, and R. R. King, “40% efficient sunlight to electricity conversion,” Prog. Photovolt. Res. Appl. 23(6), 685–691 (2015).
[Crossref]

Kim, G.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

King, R.

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III–V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[Crossref]

King, R. R.

M. A. Green, M. J. Keevers, I. Thomas, J. B. Lasich, K. Emery, and R. R. King, “40% efficient sunlight to electricity conversion,” Prog. Photovolt. Res. Appl. 23(6), 685–691 (2015).
[Crossref]

Kinsey, G.

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III–V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[Crossref]

Köble, C.

R. Herberholz, V. Nadenau, U. Rühle, C. Köble, H. Schock, and B. Dimmler, “Prospects of wide-gap chalcopyrites for thin film photovoltaic modules,” Sol. Energy Mater. Sol. Cells 49(1-4), 227–237 (1997).
[Crossref]

Kostuk, R. K.

J. M. Russo, D. Zhang, M. Gordon, S. Vorndran, Y. Wu, and R. K. Kostuk, “Spectrum splitting metrics and effect of filter characteristics on photovoltaic system performance,” Opt. Express 22(S2Suppl 2), A528–A541 (2014).
[Crossref] [PubMed]

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8469, 846807 (2012).
[Crossref]

R. K. Kostuk, J. Castillo, J. M. Russo, and G. Rosenberg, “Spectral-shifting and holographic planar concentrators for use with photovoltaic solar cells,” Proc. SPIE 6649, 66490I (2007).
[Crossref]

Kurtz, S. R.

D. C. Miller and S. R. Kurtz, “Durability of Fresnel lenses: a review specific to the concentrating photovoltaic application,” Sol. Energy Mater. Sol. Cells 95(8), 2037–2068 (2011).
[Crossref]

Lasich, J. B.

M. A. Green, M. J. Keevers, I. Thomas, J. B. Lasich, K. Emery, and R. R. King, “40% efficient sunlight to electricity conversion,” Prog. Photovolt. Res. Appl. 23(6), 685–691 (2015).
[Crossref]

Lee, H.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

Mallick, T. K.

H. Baig, K. C. Heasman, and T. K. Mallick, “Non-uniform illumination in concentrating solar cells,” Renew. Sustain. Energy Rev. 16(8), 5890–5909 (2012).
[Crossref]

Maragliano, C.

S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, F. Mezzadri, L. Nasi, L. Seravalli, F. Pattini, G. Trevisi, M. Motapothula, T. Venkatesan, and E. Gilioli, “Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique,” Sol. Energy Mater. Sol. Cells 133, 82–86 (2015).
[Crossref]

C. Maragliano, M. Chiesa, and M. Stefancich, “Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system,” J. Opt. 17(10), 105901 (2015).
[Crossref]

Mazzer, M.

S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition,” Appl. Phys. Lett. 101(13), 132107 (2012).
[Crossref]

McCambridge, J. D.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

McCollum, T. A.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Menon, R.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi‐bandgap high‐efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl. (2014), http://onlinelibrary.wiley.com/doi/10.1002/pip.2516/full .

Mezzadri, F.

S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, F. Mezzadri, L. Nasi, L. Seravalli, F. Pattini, G. Trevisi, M. Motapothula, T. Venkatesan, and E. Gilioli, “Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique,” Sol. Energy Mater. Sol. Cells 133, 82–86 (2015).
[Crossref]

Miller, D. C.

D. C. Miller and S. R. Kurtz, “Durability of Fresnel lenses: a review specific to the concentrating photovoltaic application,” Sol. Energy Mater. Sol. Cells 95(8), 2037–2068 (2011).
[Crossref]

Mills, D.

A. Imenes and D. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
[Crossref]

Miñano, J. C.

Mitchell, B.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Mohedano, R.

Mojiri, A.

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[Crossref]

Moore, D. T.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Mosca, R.

S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition,” Appl. Phys. Lett. 101(13), 132107 (2012).
[Crossref]

Motapothula, M.

S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, F. Mezzadri, L. Nasi, L. Seravalli, F. Pattini, G. Trevisi, M. Motapothula, T. Venkatesan, and E. Gilioli, “Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique,” Sol. Energy Mater. Sol. Cells 133, 82–86 (2015).
[Crossref]

Nadenau, V.

R. Herberholz, V. Nadenau, U. Rühle, C. Köble, H. Schock, and B. Dimmler, “Prospects of wide-gap chalcopyrites for thin film photovoltaic modules,” Sol. Energy Mater. Sol. Cells 49(1-4), 227–237 (1997).
[Crossref]

Nasi, L.

S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, F. Mezzadri, L. Nasi, L. Seravalli, F. Pattini, G. Trevisi, M. Motapothula, T. Venkatesan, and E. Gilioli, “Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique,” Sol. Energy Mater. Sol. Cells 133, 82–86 (2015).
[Crossref]

S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition,” Appl. Phys. Lett. 101(13), 132107 (2012).
[Crossref]

Niki, S.

S. Ishizuka, A. Yamada, P. J. Fons, H. Shibata, and S. Niki, “Structural tuning of wide-gap chalcopyrite CuGaSe2 thin films and highly efficient solar cells: differences from narrow-gap Cu(In,Ga)Se2,” Prog. Photovolt. Res. Appl. 22, 821–829 (2014).

Pattini, F.

S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, F. Mezzadri, L. Nasi, L. Seravalli, F. Pattini, G. Trevisi, M. Motapothula, T. Venkatesan, and E. Gilioli, “Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique,” Sol. Energy Mater. Sol. Cells 133, 82–86 (2015).
[Crossref]

S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition,” Appl. Phys. Lett. 101(13), 132107 (2012).
[Crossref]

Peharz, G.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Peters, M.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Rampino, S.

S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, F. Mezzadri, L. Nasi, L. Seravalli, F. Pattini, G. Trevisi, M. Motapothula, T. Venkatesan, and E. Gilioli, “Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique,” Sol. Energy Mater. Sol. Cells 133, 82–86 (2015).
[Crossref]

S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition,” Appl. Phys. Lett. 101(13), 132107 (2012).
[Crossref]

Rosenberg, G.

R. K. Kostuk, J. Castillo, J. M. Russo, and G. Rosenberg, “Spectral-shifting and holographic planar concentrators for use with photovoltaic solar cells,” Proc. SPIE 6649, 66490I (2007).
[Crossref]

Rosengarten, G.

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[Crossref]

Rühle, U.

R. Herberholz, V. Nadenau, U. Rühle, C. Köble, H. Schock, and B. Dimmler, “Prospects of wide-gap chalcopyrites for thin film photovoltaic modules,” Sol. Energy Mater. Sol. Cells 49(1-4), 227–237 (1997).
[Crossref]

Russo, J. M.

J. M. Russo, D. Zhang, M. Gordon, S. Vorndran, Y. Wu, and R. K. Kostuk, “Spectrum splitting metrics and effect of filter characteristics on photovoltaic system performance,” Opt. Express 22(S2Suppl 2), A528–A541 (2014).
[Crossref] [PubMed]

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8469, 846807 (2012).
[Crossref]

R. K. Kostuk, J. Castillo, J. M. Russo, and G. Rosenberg, “Spectral-shifting and holographic planar concentrators for use with photovoltaic solar cells,” Proc. SPIE 6649, 66490I (2007).
[Crossref]

Schmidt, G. R.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Schock, H.

R. Herberholz, V. Nadenau, U. Rühle, C. Köble, H. Schock, and B. Dimmler, “Prospects of wide-gap chalcopyrites for thin film photovoltaic modules,” Sol. Energy Mater. Sol. Cells 49(1-4), 227–237 (1997).
[Crossref]

Schwartz, R. J.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Seravalli, L.

S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, F. Mezzadri, L. Nasi, L. Seravalli, F. Pattini, G. Trevisi, M. Motapothula, T. Venkatesan, and E. Gilioli, “Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique,” Sol. Energy Mater. Sol. Cells 133, 82–86 (2015).
[Crossref]

Shibata, H.

S. Ishizuka, A. Yamada, P. J. Fons, H. Shibata, and S. Niki, “Structural tuning of wide-gap chalcopyrite CuGaSe2 thin films and highly efficient solar cells: differences from narrow-gap Cu(In,Ga)Se2,” Prog. Photovolt. Res. Appl. 22, 821–829 (2014).

Siebentritt, S.

M. Steichen, M. Thomassey, S. Siebentritt, and P. J. Dale, “Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells,” Phys. Chem. Chem. Phys. 13(10), 4292–4302 (2011).
[Crossref] [PubMed]

Siefer, G.

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

Stefancich, M.

C. Maragliano, M. Chiesa, and M. Stefancich, “Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system,” J. Opt. 17(10), 105901 (2015).
[Crossref]

Steichen, M.

M. Steichen, M. Thomassey, S. Siebentritt, and P. J. Dale, “Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells,” Phys. Chem. Chem. Phys. 13(10), 4292–4302 (2011).
[Crossref] [PubMed]

Steiner, M. A.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Takacs, L.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Taylor, R.

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[Crossref]

Thomas, I.

M. A. Green, M. J. Keevers, I. Thomas, J. B. Lasich, K. Emery, and R. R. King, “40% efficient sunlight to electricity conversion,” Prog. Photovolt. Res. Appl. 23(6), 685–691 (2015).
[Crossref]

Thomassey, M.

M. Steichen, M. Thomassey, S. Siebentritt, and P. J. Dale, “Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells,” Phys. Chem. Chem. Phys. 13(10), 4292–4302 (2011).
[Crossref] [PubMed]

Thomsen, E.

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[Crossref]

Trevisi, G.

S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, F. Mezzadri, L. Nasi, L. Seravalli, F. Pattini, G. Trevisi, M. Motapothula, T. Venkatesan, and E. Gilioli, “Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique,” Sol. Energy Mater. Sol. Cells 133, 82–86 (2015).
[Crossref]

Unger, B. L.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Van Meter, J.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Venkatesan, T.

S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, F. Mezzadri, L. Nasi, L. Seravalli, F. Pattini, G. Trevisi, M. Motapothula, T. Venkatesan, and E. Gilioli, “Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique,” Sol. Energy Mater. Sol. Cells 133, 82–86 (2015).
[Crossref]

Vorndran, S.

J. M. Russo, D. Zhang, M. Gordon, S. Vorndran, Y. Wu, and R. K. Kostuk, “Spectrum splitting metrics and effect of filter characteristics on photovoltaic system performance,” Opt. Express 22(S2Suppl 2), A528–A541 (2014).
[Crossref] [PubMed]

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8469, 846807 (2012).
[Crossref]

Wang, P.

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi‐bandgap high‐efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl. (2014), http://onlinelibrary.wiley.com/doi/10.1002/pip.2516/full .

Wanlass, M. W.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Wilcox, J. R.

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

Wu, Y.

Yamada, A.

S. Ishizuka, A. Yamada, P. J. Fons, H. Shibata, and S. Niki, “Structural tuning of wide-gap chalcopyrite CuGaSe2 thin films and highly efficient solar cells: differences from narrow-gap Cu(In,Ga)Se2,” Prog. Photovolt. Res. Appl. 22, 821–829 (2014).

Yoon, H.

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III–V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[Crossref]

Zamora, P.

Zappettini, A.

S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition,” Appl. Phys. Lett. 101(13), 132107 (2012).
[Crossref]

Zhang, D.

J. M. Russo, D. Zhang, M. Gordon, S. Vorndran, Y. Wu, and R. K. Kostuk, “Spectrum splitting metrics and effect of filter characteristics on photovoltaic system performance,” Opt. Express 22(S2Suppl 2), A528–A541 (2014).
[Crossref] [PubMed]

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8469, 846807 (2012).
[Crossref]

Appl. Phys. Lett. (1)

S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, “15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition,” Appl. Phys. Lett. 101(13), 132107 (2012).
[Crossref]

Energy Environ. Sci. (1)

H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, “III–V multijunction solar cells for concentrating photovoltaics,” Energy Environ. Sci. 2(2), 174–192 (2009).
[Crossref]

J. Opt. (1)

C. Maragliano, M. Chiesa, and M. Stefancich, “Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system,” J. Opt. 17(10), 105901 (2015).
[Crossref]

Opt. Express (2)

Phys. Chem. Chem. Phys. (1)

M. Steichen, M. Thomassey, S. Siebentritt, and P. J. Dale, “Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells,” Phys. Chem. Chem. Phys. 13(10), 4292–4302 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

Proc. SPIE (2)

R. K. Kostuk, J. Castillo, J. M. Russo, and G. Rosenberg, “Spectral-shifting and holographic planar concentrators for use with photovoltaic solar cells,” Proc. SPIE 6649, 66490I (2007).
[Crossref]

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8469, 846807 (2012).
[Crossref]

Prog. Photovolt. Res. Appl. (5)

M. A. Green, M. J. Keevers, I. Thomas, J. B. Lasich, K. Emery, and R. R. King, “40% efficient sunlight to electricity conversion,” Prog. Photovolt. Res. Appl. 23(6), 685–691 (2015).
[Crossref]

J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, T. A. McCollum, J. W. Ashmead, G. R. Schmidt, A. W. Haas, J. R. Wilcox, J. Van Meter, J. L. Gray, D. T. Moore, A. M. Barnett, and R. J. Schwartz, “Compact spectrum splitting photovoltaic module with high efficiency,” Prog. Photovolt. Res. Appl. 19(3), 352–360 (2011).
[Crossref]

B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

S. Ishizuka, A. Yamada, P. J. Fons, H. Shibata, and S. Niki, “Structural tuning of wide-gap chalcopyrite CuGaSe2 thin films and highly efficient solar cells: differences from narrow-gap Cu(In,Ga)Se2,” Prog. Photovolt. Res. Appl. 22, 821–829 (2014).

Renew. Sustain. Energy Rev. (2)

H. Baig, K. C. Heasman, and T. K. Mallick, “Non-uniform illumination in concentrating solar cells,” Renew. Sustain. Energy Rev. 16(8), 5890–5909 (2012).
[Crossref]

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renew. Sustain. Energy Rev. 28, 654–663 (2013).
[Crossref]

Sol. Energy Mater. Sol. Cells (4)

A. Imenes and D. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84(1-4), 19–69 (2004).
[Crossref]

R. Herberholz, V. Nadenau, U. Rühle, C. Köble, H. Schock, and B. Dimmler, “Prospects of wide-gap chalcopyrites for thin film photovoltaic modules,” Sol. Energy Mater. Sol. Cells 49(1-4), 227–237 (1997).
[Crossref]

D. C. Miller and S. R. Kurtz, “Durability of Fresnel lenses: a review specific to the concentrating photovoltaic application,” Sol. Energy Mater. Sol. Cells 95(8), 2037–2068 (2011).
[Crossref]

S. Rampino, M. Bronzoni, L. Colace, P. Frigeri, E. Gombia, C. Maragliano, F. Mezzadri, L. Nasi, L. Seravalli, F. Pattini, G. Trevisi, M. Motapothula, T. Venkatesan, and E. Gilioli, “Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique,” Sol. Energy Mater. Sol. Cells 133, 82–86 (2015).
[Crossref]

Other (8)

A. W. Horowitz, M. Woodhouse, G. Smestad, and H. Lee, A Bottom-up Cost Analysis of a High Concentration PV Module, in Proceedings of the 11th International Conference on Concentrator Photovoltaic Systems, CPV-11 (AIP, 2015), Vol. 1679, p. 100001

D. Feldman, “Photovoltaic (PV) pricing trends: historical, recent, and near-term projections,” Technical Report, USDOE Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Program (2014).

R. Margolis, C. Coggeshall, and J. Zuboy, “SunShot vision study,” US Dept. of Energy, (2012).

http://pvinsights.com/index.php

H. Luque, Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, 2003)

M. Contreras, L. M. Mansfield, B. Egaas, J. Li, M. Romero, R. Noufi, E. Rudiger-Voigt, and W. Mannstadt, “Improved energy conversion efficiency in wide bandgap Cu (In, Ga) Se 2 solar cells,” in 37th IEEE Photovoltaic Specialists Conference (PVSC) (2011), pp. 000026–000031.
[Crossref]

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi‐bandgap high‐efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl. (2014), http://onlinelibrary.wiley.com/doi/10.1002/pip.2516/full .

M. D. Escarra, S. Darbe, E. C. Warmann, and H. Atwater, “Spectrum-splitting photovoltaics: Holographic spectrum splitting in eight-junction, ultra-high efficiency module,” in IEEE 39th Photovoltaic Specialists Conference (PVSC) (2013), pp. 1852–1855.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Splitting by a single prism. The white beam is broken up into its constituent spectral colors, which are separated at the receiver plane. (b) Schematic of the y-z section of the spectral splitter concentrator. A set of prisms is arranged on a curved line to allow for light concentration while maintaining the color splitting. (c) Conceptual drawing of a single prism. Each prism is divided into an odd number of sections, the exit facets of which are tilted of a small angle around the y axis to superimpose the section-generated image on the one of the central portion. (d) Final design of the spectral splitter concentrator. The approximate area is 7x3 cm2, with an average thickness of ~ 2 mm. The magnification on the right of the figure shows the shape of a single prism. Markers (from left to right): 1 cm and 2 mm. (e) Calculation of the position of each wavelength on the receiver, referenced with respect to the lowest wavelength of the visible range (380 nm). A dispersion of the solar spectrum (380-1800 nm) over approximately 4.5 cm is showed, with most of the range occupied by visible light. (f) Calculated concentration factor for each wavelength of the spectral splitter concentrator. The curve follows the same trend of the spatial displacement: the device concentrates more the part of the spectrum that has the lower intensity. (g) Calculated concentration magnification ratio, normalized with respect to direct full spectrum (AM1.5D), plotted versus position on the receiver and versus wavelength. Values as high as 2.5 suns are obtained across the visible range, while factors in between 2 and 0.5 suns are predicted in the infrared range below 1350 nm.
Fig. 2
Fig. 2 (a) Pictures of the spectral splitter concentrator fabricated by injection molding, a low-cost technique used for commercial lenses. (b) Simulated two-dimensional map of the light intensity at the receiver surface for different wavelengths (480, 532, 650, 1000 and 1500 nm) together with a picture of the experimental light pattern obtained under solar light illumination. For the simulation, an intensity of 10 W/m2 was set at the source. (c) Flux intensity under real sunlight measured over the profile of the light pattern, normalized to the measured on-site DNI of 62,8 mW/cm2. (d) Spectra measured on three different spots, indicated in Fig. 2(b), along the y axis of the light pattern. Experimental results are compared with simulations (dashed lines). The black curve refers to the spectra of the direct sunlight.
Fig. 3
Fig. 3 (a) External quantum efficiency curves measured for the low and high band gap CIGS cells, having a band gap of 1.16 and 1.3 eV respectively. (b) Current density versus voltage curves of the two CIGS cells measured under full spectrum AM1.5 spectrum (100 mW/cm2).
Fig. 4
Fig. 4 (a) Schematic of the spectrum splitter concentrator system. The splitter concentrator is positioned at a distance of 36 cm from the receiver and the two cells are placed adjacently so that the high band gap cell is illuminated with high-energy photons and the low band gap cell with low energy-photons. (b) Experimental spectral conversion efficiency of the solar cells together with the spectra illuminating the two devices (blue for h-CIGS and red for l-CIGS). (c) Current and power density versus voltage curves of the two solar cells measured under full spectrum illumination (reference) and illuminated through the spectral splitter. Measurements were carried out under real sunlight illumination with a measured direct normal insolation of 62.8 mW/cm2.
Fig. 5
Fig. 5 SCE analysis of the two CIGS solar cells illuminated with our spectral splitter (a) and with an ideal filter (b).
Fig. 6
Fig. 6 (a) Power conversion efficiency of the spectral splitter concentrator system versus number of band gaps. The model used for the calculation accounts for the optical efficiency of the splitter and uses state of the art values of efficiency of CIGS cells. Band gap values are reported in the graph. The efficiency for 1 band gap is calculated without the splitter. (b) Average cost of PV technologies (CPV, splitter + CIGS and polyc-Si). Installation, electronics, operation & maintenance and other non-technology-specific related costs are assumed to be the same for the three photovoltaic options.

Tables (3)

Tables Icon

Table 1 Figures of merit of CIGS cells measured under AM 1.5 spectrum.

Tables Icon

Table 2 Electrical and optical power density measurements over the two CIGS cells under spectrally splitted illumination.

Tables Icon

Table 3 Requirements, efficiency and costs of photovoltaic conversion systems.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

y λ =Ztan( D λ )
η two_cells = 1 P opt hCIGS E hCIGS (λ)SC E hCIGS (λ)dλ+ 1 P opt lCIGS E lCIGS (λ)SC E lCIGS (λ)dλ
IoBB= η two_cells Max[ η hCIGS , η lCIGS ] 1
η ss = 1 N η k * = 1 N T k (λ) E AM1.5 (λ)SC E k (λ)dλ

Metrics