Abstract

In this work, we numerically investigate the electromagnetic resonances on two-dimensional tandem grating structures. The base of a tandem grating consists of an opaque Au substrate, a SiO2 spacer, and a Au grating (concave type); that is, a well-known fishnet structure forming Au/SiO2/Au stack. A convex-type Au grating (i.e., topmost grating) is then attached on top of the base fishnet structure with or without additional SiO2 spacer, resulting in two types of tandem grating structures. In order to calculate the spectral reflectance and local magnetic field distribution, the finite-difference time-domain method is employed. When the topmost Au grating is directly added onto the base fishnet structure, the surface plasmon and magnetic polariton in the base structure are branched out due to the geometric asymmetry with respect to the SiO2 spacer. If additional SiO2 spacer is added between the topmost Au grating and the base fishnet structure, new magnetic resonance modes appear due to coupling between two vertically aligned Au/SiO2/Au stacks. With the understanding of multiple electromagnetic resonance modes on the proposed tandem grating structures, we successfully design a broadband absorber made of Au and SiO2 in the visible spectrum.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Perfect selective metamaterial solar absorbers

Hao Wang and Liping Wang
Opt. Express 21(S6) A1078-A1093 (2013)

Dual broadband infrared absorptance enhanced by magnetic polaritons using graphene-covered compound metal gratings

Nghia Nguyen-Huu, Jaromir Pistora, and Michael Cada
Opt. Express 27(21) 30182-30190 (2019)

References

  • View by:
  • |
  • |
  • |

  1. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
    [Crossref]
  2. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).
  3. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [Crossref] [PubMed]
  4. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  5. B. J. Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer. 136, 072702 (2014).
    [Crossref]
  6. H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
    [Crossref]
  7. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
    [Crossref]
  8. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
    [PubMed]
  9. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  10. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
    [Crossref]
  11. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  12. A. K. Sarychev, G. Shvets, and V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
    [Crossref]
  13. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref] [PubMed]
  14. U. Huebner, E. Pshenay-Severin, R. Alaee, C. Menzel, M. Ziegler, C. Rockstuhl, F. Lederer, T. Pertsch, H.-G. Meyer, and J. Popp, “Exploiting extreme coupling to realize a metamaterial perfect absorber,” Microelectron. Eng. 111, 110–113 (2013).
    [Crossref]
  15. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
    [Crossref]
  16. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
    [Crossref]
  17. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
    [Crossref] [PubMed]
  18. F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46, 195103 (2013).
    [Crossref]
  19. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37, 1038–1040 (2012).
    [Crossref] [PubMed]
  20. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
    [Crossref]
  21. D. T. Viet, N. T. Hien, P. V. Tuong, N. Q Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
    [Crossref]
  22. G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin film,” Nanoscale 5, 9957–9962 (2013).
    [Crossref] [PubMed]
  23. X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
    [Crossref]
  24. Y.-L. Liao and Y. Zhao, “Ultrabroadband absorber using a deep metallic grating with narrow slits,” Opt. Commun. 334, 328–331 (2015).
    [Crossref]
  25. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
    [Crossref] [PubMed]
  26. Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
    [Crossref]
  27. D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
    [Crossref] [PubMed]
  28. M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, “Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption,” Opt. Express 22, 12678–12690 (2014).
    [Crossref] [PubMed]
  29. N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. 49, 9838–9852 (2010).
    [Crossref]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  31. Z. M. Zhang, K. Park, and B. J. Lee, “Surface and magnetic polaritons on two-dimensional nanoslab-aligned multilayer structure,” Opt. Express 19, 16375–16389 (2011).
    [Crossref] [PubMed]
  32. B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).
    [Crossref]
  33. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  34. M. Iwanaga, “In-plane plasmonic modes of negative group velocity in perforated waveguides,” Opt. Lett. 36, 2504–2506 (2011).
    [Crossref] [PubMed]
  35. M. M. Jakovljević, G. Isić, B. Dastmalchi, I. Bergmair, K. Hingerl, and R. Gajić, “Polarization-dependent optical excitation of gap plasmon polaritons through rectangular hole arrays,” Appl. Phys. Lett. 106, 143106 (2015)
    [Crossref]
  36. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,”” Phys. Rev. B 76, 073101 (2007).
    [Crossref]
  37. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
    [Crossref]

2015 (3)

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Y.-L. Liao and Y. Zhao, “Ultrabroadband absorber using a deep metallic grating with narrow slits,” Opt. Commun. 334, 328–331 (2015).
[Crossref]

M. M. Jakovljević, G. Isić, B. Dastmalchi, I. Bergmair, K. Hingerl, and R. Gajić, “Polarization-dependent optical excitation of gap plasmon polaritons through rectangular hole arrays,” Appl. Phys. Lett. 106, 143106 (2015)
[Crossref]

2014 (5)

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, “Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption,” Opt. Express 22, 12678–12690 (2014).
[Crossref] [PubMed]

B. J. Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer. 136, 072702 (2014).
[Crossref]

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
[Crossref]

2013 (6)

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46, 195103 (2013).
[Crossref]

G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin film,” Nanoscale 5, 9957–9962 (2013).
[Crossref] [PubMed]

U. Huebner, E. Pshenay-Severin, R. Alaee, C. Menzel, M. Ziegler, C. Rockstuhl, F. Lederer, T. Pertsch, H.-G. Meyer, and J. Popp, “Exploiting extreme coupling to realize a metamaterial perfect absorber,” Microelectron. Eng. 111, 110–113 (2013).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
[PubMed]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
[Crossref]

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
[Crossref]

2012 (4)

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37, 1038–1040 (2012).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

2011 (4)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

M. Iwanaga, “In-plane plasmonic modes of negative group velocity in perforated waveguides,” Opt. Lett. 36, 2504–2506 (2011).
[Crossref] [PubMed]

Z. M. Zhang, K. Park, and B. J. Lee, “Surface and magnetic polaritons on two-dimensional nanoslab-aligned multilayer structure,” Opt. Express 19, 16375–16389 (2011).
[Crossref] [PubMed]

2010 (2)

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. 49, 9838–9852 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

2008 (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).
[Crossref]

2007 (3)

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,”” Phys. Rev. B 76, 073101 (2007).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

2006 (2)

A. K. Sarychev, G. Shvets, and V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
[Crossref]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[Crossref]

Alaee, R.

U. Huebner, E. Pshenay-Severin, R. Alaee, C. Menzel, M. Ziegler, C. Rockstuhl, F. Lederer, T. Pertsch, H.-G. Meyer, and J. Popp, “Exploiting extreme coupling to realize a metamaterial perfect absorber,” Microelectron. Eng. 111, 110–113 (2013).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Averitt, R. D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Azad, A. K.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

Bergmair, I.

M. M. Jakovljević, G. Isić, B. Dastmalchi, I. Bergmair, K. Hingerl, and R. Gajić, “Polarization-dependent optical excitation of gap plasmon polaritons through rectangular hole arrays,” Appl. Phys. Lett. 106, 143106 (2015)
[Crossref]

Bingham, C. M.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Bouchon, P.

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Brongersma, M. L.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[Crossref]

Cai, W.

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

Chen, H.-T.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

Chen, S.

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
[Crossref]

Chen, Y.-B.

B. J. Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer. 136, 072702 (2014).
[Crossref]

Cheng, H.

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
[Crossref]

Chiu, F.-C.

B. J. Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer. 136, 072702 (2014).
[Crossref]

Chowdhury, D. R.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Dastmalchi, B.

M. M. Jakovljević, G. Isić, B. Dastmalchi, I. Bergmair, K. Hingerl, and R. Gajić, “Polarization-dependent optical excitation of gap plasmon polaritons through rectangular hole arrays,” Appl. Phys. Lett. 106, 143106 (2015)
[Crossref]

Deparis, O.

Duan, X.

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
[Crossref]

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Eghlidi, H.

G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin film,” Nanoscale 5, 9957–9962 (2013).
[Crossref] [PubMed]

Fan, K.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Fan, S.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
[PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[Crossref]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Fu, Y.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
[Crossref]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Gajic, R.

M. M. Jakovljević, G. Isić, B. Dastmalchi, I. Bergmair, K. Hingerl, and R. Gajić, “Polarization-dependent optical excitation of gap plasmon polaritons through rectangular hole arrays,” Appl. Phys. Lett. 106, 143106 (2015)
[Crossref]

Gan, Q.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Genov, D. A.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,”” Phys. Rev. B 76, 073101 (2007).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. 49, 9838–9852 (2010).
[Crossref]

Haïdar, R.

Han, S.

B. J. Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer. 136, 072702 (2014).
[Crossref]

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Henrard, L.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Hien, N. T.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Hingerl, K.

M. M. Jakovljević, G. Isić, B. Dastmalchi, I. Bergmair, K. Hingerl, and R. Gajić, “Polarization-dependent optical excitation of gap plasmon polaritons through rectangular hole arrays,” Appl. Phys. Lett. 106, 143106 (2015)
[Crossref]

Hu, F.

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46, 195103 (2013).
[Crossref]

Hu, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Huang, L.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

Huebner, U.

U. Huebner, E. Pshenay-Severin, R. Alaee, C. Menzel, M. Ziegler, C. Rockstuhl, F. Lederer, T. Pertsch, H.-G. Meyer, and J. Popp, “Exploiting extreme coupling to realize a metamaterial perfect absorber,” Microelectron. Eng. 111, 110–113 (2013).
[Crossref]

Isic, G.

M. M. Jakovljević, G. Isić, B. Dastmalchi, I. Bergmair, K. Hingerl, and R. Gajić, “Polarization-dependent optical excitation of gap plasmon polaritons through rectangular hole arrays,” Appl. Phys. Lett. 106, 143106 (2015)
[Crossref]

Iwanaga, M.

Jakovljevic, M. M.

M. M. Jakovljević, G. Isić, B. Dastmalchi, I. Bergmair, K. Hingerl, and R. Gajić, “Polarization-dependent optical excitation of gap plasmon polaritons through rectangular hole arrays,” Appl. Phys. Lett. 106, 143106 (2015)
[Crossref]

Ji, D.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Koechlin, C.

Lam, V. D.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Lard, M.

Le, L. N.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Lederer, F.

U. Huebner, E. Pshenay-Severin, R. Alaee, C. Menzel, M. Ziegler, C. Rockstuhl, F. Lederer, T. Pertsch, H.-G. Meyer, and J. Popp, “Exploiting extreme coupling to realize a metamaterial perfect absorber,” Microelectron. Eng. 111, 110–113 (2013).
[Crossref]

Lee, B. J.

B. J. Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer. 136, 072702 (2014).
[Crossref]

Z. M. Zhang, K. Park, and B. J. Lee, “Surface and magnetic polaritons on two-dimensional nanoslab-aligned multilayer structure,” Opt. Express 19, 16375–16389 (2011).
[Crossref] [PubMed]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).
[Crossref]

Lee, H. J.

B. J. Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer. 136, 072702 (2014).
[Crossref]

Lee, Y. P.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Li, Z.

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
[Crossref]

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46, 195103 (2013).
[Crossref]

Liang, Q.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
[Crossref]

Liao, Y.-L.

Y.-L. Liao and Y. Zhao, “Ultrabroadband absorber using a deep metallic grating with narrow slits,” Opt. Commun. 334, 328–331 (2015).
[Crossref]

Liu, H.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,”” Phys. Rev. B 76, 073101 (2007).
[Crossref]

Liu, K.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Liu, N.

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. 49, 9838–9852 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Liu, W.

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Liu, Y. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,”” Phys. Rev. B 76, 073101 (2007).
[Crossref]

Liu, Z. W.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,”” Phys. Rev. B 76, 073101 (2007).
[Crossref]

Lobet, M.

Lu, Z.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
[Crossref]

Luo, S.-N.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Menzel, C.

U. Huebner, E. Pshenay-Severin, R. Alaee, C. Menzel, M. Ziegler, C. Rockstuhl, F. Lederer, T. Pertsch, H.-G. Meyer, and J. Popp, “Exploiting extreme coupling to realize a metamaterial perfect absorber,” Microelectron. Eng. 111, 110–113 (2013).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Meyer, H.-G.

U. Huebner, E. Pshenay-Severin, R. Alaee, C. Menzel, M. Ziegler, C. Rockstuhl, F. Lederer, T. Pertsch, H.-G. Meyer, and J. Popp, “Exploiting extreme coupling to realize a metamaterial perfect absorber,” Microelectron. Eng. 111, 110–113 (2013).
[Crossref]

Minh, N. Q

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Mitchell, A.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Pan, X.

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46, 195103 (2013).
[Crossref]

Pardo, F.

Park, K.

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Pelouard, J.-L.

Pertsch, T.

U. Huebner, E. Pshenay-Severin, R. Alaee, C. Menzel, M. Ziegler, C. Rockstuhl, F. Lederer, T. Pertsch, H.-G. Meyer, and J. Popp, “Exploiting extreme coupling to realize a metamaterial perfect absorber,” Microelectron. Eng. 111, 110–113 (2013).
[Crossref]

Phelan, P.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Popp, J.

U. Huebner, E. Pshenay-Severin, R. Alaee, C. Menzel, M. Ziegler, C. Rockstuhl, F. Lederer, T. Pertsch, H.-G. Meyer, and J. Popp, “Exploiting extreme coupling to realize a metamaterial perfect absorber,” Microelectron. Eng. 111, 110–113 (2013).
[Crossref]

Poulikakos, D.

G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin film,” Nanoscale 5, 9957–9962 (2013).
[Crossref] [PubMed]

Pshenay-Severin, E.

U. Huebner, E. Pshenay-Severin, R. Alaee, C. Menzel, M. Ziegler, C. Rockstuhl, F. Lederer, T. Pertsch, H.-G. Meyer, and J. Popp, “Exploiting extreme coupling to realize a metamaterial perfect absorber,” Microelectron. Eng. 111, 110–113 (2013).
[Crossref]

Quan, B.

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46, 195103 (2013).
[Crossref]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Raman, A.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
[PubMed]

Ramani, S.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

Reiten, M. T.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

Ren, Z.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Rephaeli, E.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
[PubMed]

Rockstuhl, C.

U. Huebner, E. Pshenay-Severin, R. Alaee, C. Menzel, M. Ziegler, C. Rockstuhl, F. Lederer, T. Pertsch, H.-G. Meyer, and J. Popp, “Exploiting extreme coupling to realize a metamaterial perfect absorber,” Microelectron. Eng. 111, 110–113 (2013).
[Crossref]

Rosengarten, G.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Sarrazin, M.

Sarychev, A. K.

A. K. Sarychev, G. Shvets, and V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
[Crossref]

Shalaev, V.

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

A. K. Sarychev, G. Shvets, and V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
[Crossref]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Shvets, G.

A. K. Sarychev, G. Shvets, and V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
[Crossref]

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Sivan, V. P.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Song, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,”” Phys. Rev. B 76, 073101 (2007).
[Crossref]

Sun, Q.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
[Crossref]

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Tagliabue, G.

G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin film,” Nanoscale 5, 9957–9962 (2013).
[Crossref] [PubMed]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Taylor, A. J.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

Tian, J.

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
[Crossref]

Trang, P. T.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Tuong, P. V.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Veronis, G.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[Crossref]

Viet, D. T.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Wang, H.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
[Crossref]

Wang, L.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
[Crossref]

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46, 195103 (2013).
[Crossref]

Wang, T.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
[Crossref]

Wang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,”” Phys. Rev. B 76, 073101 (2007).
[Crossref]

Wu, Z.

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46, 195103 (2013).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Xu, X.

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46, 195103 (2013).
[Crossref]

Yu, W.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
[Crossref]

Yu, Z.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[Crossref]

Zeng, X.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Zhang, N.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Zhang, X.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,”” Phys. Rev. B 76, 073101 (2007).
[Crossref]

Zhang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

Zhang, Z. M.

Z. M. Zhang, K. Park, and B. J. Lee, “Surface and magnetic polaritons on two-dimensional nanoslab-aligned multilayer structure,” Opt. Express 19, 16375–16389 (2011).
[Crossref] [PubMed]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).
[Crossref]

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

Zhao, Y.

Y.-L. Liao and Y. Zhao, “Ultrabroadband absorber using a deep metallic grating with narrow slits,” Opt. Commun. 334, 328–331 (2015).
[Crossref]

Zhu, S. N.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,”” Phys. Rev. B 76, 073101 (2007).
[Crossref]

Ziegler, M.

U. Huebner, E. Pshenay-Severin, R. Alaee, C. Menzel, M. Ziegler, C. Rockstuhl, F. Lederer, T. Pertsch, H.-G. Meyer, and J. Popp, “Exploiting extreme coupling to realize a metamaterial perfect absorber,” Microelectron. Eng. 111, 110–113 (2013).
[Crossref]

Adv. Opt. Mater. (1)

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater. 1, 43–49 (2013).
[Crossref]

Angew. Chem. Int. Ed. (1)

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. 49, 9838–9852 (2010).
[Crossref]

Appl. Phys. Lett. (3)

M. M. Jakovljević, G. Isić, B. Dastmalchi, I. Bergmair, K. Hingerl, and R. Gajić, “Polarization-dependent optical excitation of gap plasmon polaritons through rectangular hole arrays,” Appl. Phys. Lett. 106, 143106 (2015)
[Crossref]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[Crossref]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[Crossref]

J. Heat Transfer. (1)

B. J. Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer. 136, 072702 (2014).
[Crossref]

J. Opt. (1)

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
[Crossref]

J. Phys. D: Appl. Phys. (1)

F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 46, 195103 (2013).
[Crossref]

Microelectron. Eng. (1)

U. Huebner, E. Pshenay-Severin, R. Alaee, C. Menzel, M. Ziegler, C. Rockstuhl, F. Lederer, T. Pertsch, H.-G. Meyer, and J. Popp, “Exploiting extreme coupling to realize a metamaterial perfect absorber,” Microelectron. Eng. 111, 110–113 (2013).
[Crossref]

Nano Lett. (4)

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2012).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
[PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Nanoscale (1)

G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin film,” Nanoscale 5, 9957–9962 (2013).
[Crossref] [PubMed]

Nanoscale Microscale Thermophys. Eng. (1)

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).
[Crossref]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

Opt. Commun. (2)

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Y.-L. Liao and Y. Zhao, “Ultrabroadband absorber using a deep metallic grating with narrow slits,” Opt. Commun. 334, 328–331 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (2)

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,”” Phys. Rev. B 76, 073101 (2007).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(R) (2008).
[Crossref]

Phys. Rev. E (1)

A. K. Sarychev, G. Shvets, and V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E 73, 036609 (2006).
[Crossref]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Sci. Rep. (1)

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2014).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Other (5)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of one unit cell of the considered tandem grating structures: (a) base fishnet structure; (b) Tandem grating 1 (TG1); and (c) Tandem grating 2 (TG2).
Fig. 2
Fig. 2 Normal reflectance spectra of (a) fishnet structure; (b) TG1; and (c) TG2 for TM polarization. Geometric parameters are Λ = 1000 nm, dbs = 40 nm, dbg = 40 nm, and wbg = 400 nm for the base fishnet structure, wtg = 600 nm and dtg = 30 nm for TG1 and TG2 only, and dus = 30 nm for TG2 only.
Fig. 3
Fig. 3 Resonance modes associated with the fishnet structure: (a) time-averaged square of the magnetic field at ν = 6180 cm−1 when MP1 mode is excited. The horizontal plane where the field distribution is plotted is depicted as an inset. The green lines indicate the position of metallic ridge in the base concave grating above the base spacer; (b) resonance condition of MP1 mode predicted by the LC-circuit model; (c) time-averaged square of the magnetic field at ν = 4660 cm−1 when the coupled SPP is excited; and (d) SPP dispersion relation of the symmetric mode.
Fig. 4
Fig. 4 Resonance modes on TG1: (a) time-averaged square of magnetic field of coupled SPP normalized to that of incidence wave at ν = 4390 cm−1; (b) time-averaged square of magnetic field of coupled SPP normalized to that of incidence wave at ν = 4560 cm−1; (c) time-averaged square of magnetic field of MP1 normalized to that of incidence wave at ν = 5920 cm−1; and (d) time-averaged square of magnetic field of MP1 normalized to that of incidence wave at ν = 6280 cm−1. The horizontal plane where the field distribution is plotted is depicted as an inset. The green lines indicate positions of the base grating (solid line) and the topmost grating (dashed line).
Fig. 5
Fig. 5 Additional magnetic polariton in TG1: (a) time-averaged square of magnetic field at ν = 3670 cm−1 normalized to that of incidence wave and (b) effect of the thickness of base spacer on the resonance modes in TG1.
Fig. 6
Fig. 6 Hybridization of the magnetic polariton on TG2. The Magnetic field distribution (a) for the anti-symmetric mode at ν = 3280 cm−1 and (b) for the symmetric mode at ν = 3510 cm−1. The time-averaged square of magnetic field (c) for the anti-symmetric mode at ν = 3280 cm−1 and (d) for the symmetric mode at ν = 3510 cm−1. The inset shows the plane where the field distribution is plotted.
Fig. 7
Fig. 7 Magnetic polariton associated with the upper Au/SiO2/Au stack of TG2: (a) time-averaged square of magnetic field at ν = 2920 cm−1. The inset shows the plane where the field distribution is plotted; and (b) resonance condition predicted by the LC-circuit model.
Fig. 8
Fig. 8 Spectral absorptance of the designed broadband absorber: (a) for different polarization angles at normal incidence; and (b) for different incidence angles. The geometric parameters of the broadband absorber are Λ = 450 nm, dbs = 30 nm, dbg = 30 nm, wbg = 250 nm, dus = 50 nm, dtg = 30 nm, and wtg = 200 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Z total = L m + L e 1 ω 2 C g ( L m + L e ) 2 ω 2 C m + ( L m + L e ) ,
k z , bs ε SiO 2 + coth ( i k z , bs d bs 2 ) k z , Au ε Au = 0

Metrics