Abstract

In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels– where the cells can flow one-by-one –, allowing single cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm of the each cell. Experiments are performed on red blood cells (RBCs), peripheral blood lymphocytes (PBLs) and myelogenous leukemia tumor cells (K562).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Assessment of the flow velocity of blood cells in a microfluidic device using joint spectral and time domain optical coherence tomography

Danuta M. Bukowska, Ladislav Derzsi, Szymon Tamborski, Maciej Szkulmowski, Piotr Garstecki, and Maciej Wojtkowski
Opt. Express 21(20) 24025-24038 (2013)

Microfluidics integration of aperiodic plasmonic arrays for spatial-spectral optical detection

Sylvanus Y. Lee, Gary F. Walsh, and Luca Dal Negro
Opt. Express 21(4) 4945-4957 (2013)

Mechanochemistry of single red blood cells monitored using Raman tweezers

Saurabh Raj, Mónica Marro, Michal Wojdyla, and Dmitri Petrov
Biomed. Opt. Express 3(4) 753-763 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
    [Crossref] [PubMed]
  2. G. Simone and G. Perozziello, “UV/Vis visible optical waveguides fabricated using organic-inorganic nanocomposite layers,” J. Nanosci. Nanotechnol. 11(3), 2057–2063 (2011).
    [Crossref] [PubMed]
  3. F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, and E. Di Fabrizio, “Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context,” Nanoscale 2(10), 2230–2236 (2010).
    [Crossref] [PubMed]
  4. A. A. Yu, T. Savas, S. Cabrini, E. Difabrizio, H. I. Smith, and F. Stellacci, “High resolution printing of DNA feature on poly(methyl methacrylate) substrates using supramolecular nano-stamping,” J. Am. Chem. Soc. 127(48), 16774–16775 (2005).
    [Crossref] [PubMed]
  5. Y. Zhang, S. Park, S. Yang, and T. H. Wang, “An all-in-one microfluidic device for parallel DNA extraction and gene analysis,” Biomed. Microdevices 12(6), 1043–1049 (2010).
    [Crossref] [PubMed]
  6. G. Keramas, G. Perozziello, O. Geschke, and C. B. V. Christensen, “Development of a multiplex microarray microsystem,” Lab Chip 4(2), 152–158 (2004).
    [Crossref] [PubMed]
  7. K. Liu and Z. H. Fan, “Thermoplastic microfluidic devices and their applications in protein and DNA analysis,” Analyst (Lond.) 136(7), 1288–1297 (2011).
    [Crossref] [PubMed]
  8. J. Wu, X. Z. Wu, T. Huang, and J. Pawliszyn, Analysis of Proteins by CE, CIEF, and Microfluidic Devices with Whole-Column-Imaging Detection, M. A. Strege, A. L. Lagu, eds. (Humana Press, 2004).
  9. G. Perozziello, P. Candeloro, F. Gentile, M. L. Coluccio, M. Tallerico, A. De Grazia, A. Nicastri, A. M. Perri, E. Parrotta, F. Pardeo, R. Catalano, G. Cuda, and E. Di Fabrizio, “A microfluidic dialysis device for complex biological mixture SERS analysis,” Microelectron. Eng. 144, 37–41 (2015).
    [Crossref]
  10. H. C. Tekin, C. Scherz, and M. A. M. Gijs, “Microfluidic device for analysis of protein biomarkers using magnetic bead surface coverage detection,” in Proceedings of the 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS, 2011).
  11. G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M. L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H. D. Espinosa, G. Cuda, and E. Di Fabrizio, “Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers,” RSC Advances 4(98), 55590–55598 (2014).
    [Crossref]
  12. G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M. L. Coluccio, E. Carbone, and E. Di Fabrizio, “Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition,” Small 8(18), 2886–2894 (2012).
    [Crossref] [PubMed]
  13. G. Simone and G. Perozziello, “Ca2+ Mediates the Adhesion of Breast Cancer Cells in Self-Assembled Multifunctional Microfluidic Chip prepared with Carbohydrate Beads,” Micro Nanosyst. 2(4), 261–268 (2010).
    [Crossref]
  14. G. Simone, G. Perozziello, E. Battista, F. De Angelis, P. Candeloro, F. Gentile, N. Malara, A. Manz, E. Carbone, P. Netti, and E. Di Fabrizio, “Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system,” Microelectron. Eng. 98, 668–671 (2012).
    [Crossref]
  15. G. Perozziello, G. Simone, N. Malara, R. La Rocca, R. Tallerico, R. Catalano, F. Pardeo, P. Candeloro, G. Cuda, E. Carbone, and E. Di Fabrizio, “Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations,” Electrophoresis 34(13), 1845–1851 (2013).
    [Crossref] [PubMed]
  16. G. Perozziello, R. Catalano, M. Francardi, E. Rondanina, F. Pardeo, F. De Angelis, N. Malara, P. Candeloro, G. Morrone, and E. Di Fabrizio, “A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells,” Microelectron. Eng. 111, 314–319 (2013).
    [Crossref]
  17. Y. Zheng, J. Nguyen, C. Wang, and Y. Sun, “Electrical measurement of red blood cell deformability on a microfluidic device,” Lab Chip 13(16), 3275–3283 (2013).
    [Crossref] [PubMed]
  18. J. M. Kwan, Q. Guo, D. L. Kyluik-Price, H. Ma, and M. D. Scott, “Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells,” Am. J. Hematol. 88(8), 682–689 (2013).
    [Crossref] [PubMed]
  19. V. Faustino, D. Pinho, T. Yaginuma, R. C. Calhelha, I. C. Ferreira, and R. Lima, “Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells,” Biochip J. 8(1), 42–47 (2014).
    [Crossref]
  20. F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. De Cuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices,” Microelectron. Eng. 87(5), 798–801 (2010).
    [Crossref]
  21. F. De Angelis, M. Malerba, M. Patrini, E. Miele, G. Das, A. Toma, R. P. Zaccaria, and E. Di Fabrizio, “3D hollow nanostructures as building blocks for multifunctional plasmonics,” Nano Lett. 13(8), 3553–3558 (2013).
    [Crossref] [PubMed]
  22. H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
    [Crossref] [PubMed]
  23. T. Ichimura, L. D. Chiu, K. Fujita, S. Kawata, T. M. Watanabe, T. Yanagida, and H. Fujita, “Visualizing cell state transition using Raman spectroscopy,” PLoS One 9(1), e84478 (2014).
    [Crossref] [PubMed]
  24. H. M. Shapiro, Practical Flow Cytometry (John Wiley & Sons Inc, 2005).
  25. M. G. Ormerod and D. Novo, “Flow cytometry: a basic introduction”, MG Ormerod, (2008).
  26. M. J. Pelletier, “Quantitative analysis using Raman spectrometry,” Appl. Spectrosc. 57(1), 20–42 (2003).
    [Crossref] [PubMed]
  27. E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
    [Crossref] [PubMed]
  28. P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels, “In vitro and in vivo Raman spectroscopy of human skin,” Biospectroscopy 4(5), S31–S39 (1998).
    [Crossref] [PubMed]
  29. N. Colthup, Introduction to Infrared and Raman Spectroscopy (Amsterdam: Elsevier, 2012).
  30. D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. D. Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78, 125–131 (2005).
    [Crossref]
  31. M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few-Molecule Surface-Enhanced Raman Scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
    [Crossref] [PubMed]
  32. F. De Angelis, C. Liberale, M. L. Coluccio, G. Cojoc, and E. Di Fabrizio, “Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies,” Nanoscale 3(7), 2689–2696 (2011).
    [Crossref] [PubMed]
  33. M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
    [Crossref] [PubMed]
  34. M. L. Coluccio, F. Gentile, M. Francardi, G. Perozziello, N. Malara, P. Candeloro, and E. Di Fabrizio, “Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications,” Sensors (Basel) 14(4), 6056–6083 (2014).
    [Crossref] [PubMed]
  35. L. Lu, X. L. Xu, W. T. Liang, and H. F. Lu, “Raman analysis of CdSe/CdS core-shell quantum dots with different CdS shell thickness,” J. Phys. Condens. Matter 19(40), 406221 (2007).
    [Crossref] [PubMed]
  36. S. V. Zhukovsky, T. Ozel, E. Mutlugun, N. Gaponik, A. Eychmüller, A. V. Lavrinenko, H. V. Demir, and S. V. Gaponenko, “Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites,” Opt. Express 22(15), 18290–18298 (2014).
    [Crossref] [PubMed]
  37. A. Balandin, K. L. Wang, N. Kouklin, and S. Bandyopadhyay, “Raman spectroscopy of electrochemically self-assembled CdS quantum dots,” Appl. Phys. Lett. 76(2), 137–139 (2000).
    [Crossref]
  38. G. Perozziello, F. Bundgaard, and O. Geschke, “Fluidic interconnections for microfluidic systems: a new integrated fluidic interconnection allowing plug ‘n’play functionality,” Sens. Actuators B Chem. 130(2), 947–953 (2008).
    [Crossref]
  39. W. D. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction (John Wiley & Sons Inc., 2007).
  40. B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
    [Crossref] [PubMed]
  41. A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
    [Crossref] [PubMed]
  42. R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
    [Crossref] [PubMed]
  43. Y. H. Ong, M. Lim, and Q. Liu, “Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells,” Opt. Express 20(20), 22158–22171 (2012).
    [Crossref] [PubMed]

2015 (2)

G. Perozziello, P. Candeloro, F. Gentile, M. L. Coluccio, M. Tallerico, A. De Grazia, A. Nicastri, A. M. Perri, E. Parrotta, F. Pardeo, R. Catalano, G. Cuda, and E. Di Fabrizio, “A microfluidic dialysis device for complex biological mixture SERS analysis,” Microelectron. Eng. 144, 37–41 (2015).
[Crossref]

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

2014 (6)

M. L. Coluccio, F. Gentile, M. Francardi, G. Perozziello, N. Malara, P. Candeloro, and E. Di Fabrizio, “Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications,” Sensors (Basel) 14(4), 6056–6083 (2014).
[Crossref] [PubMed]

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few-Molecule Surface-Enhanced Raman Scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

T. Ichimura, L. D. Chiu, K. Fujita, S. Kawata, T. M. Watanabe, T. Yanagida, and H. Fujita, “Visualizing cell state transition using Raman spectroscopy,” PLoS One 9(1), e84478 (2014).
[Crossref] [PubMed]

G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M. L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H. D. Espinosa, G. Cuda, and E. Di Fabrizio, “Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers,” RSC Advances 4(98), 55590–55598 (2014).
[Crossref]

V. Faustino, D. Pinho, T. Yaginuma, R. C. Calhelha, I. C. Ferreira, and R. Lima, “Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells,” Biochip J. 8(1), 42–47 (2014).
[Crossref]

S. V. Zhukovsky, T. Ozel, E. Mutlugun, N. Gaponik, A. Eychmüller, A. V. Lavrinenko, H. V. Demir, and S. V. Gaponenko, “Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites,” Opt. Express 22(15), 18290–18298 (2014).
[Crossref] [PubMed]

2013 (6)

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

G. Perozziello, G. Simone, N. Malara, R. La Rocca, R. Tallerico, R. Catalano, F. Pardeo, P. Candeloro, G. Cuda, E. Carbone, and E. Di Fabrizio, “Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations,” Electrophoresis 34(13), 1845–1851 (2013).
[Crossref] [PubMed]

G. Perozziello, R. Catalano, M. Francardi, E. Rondanina, F. Pardeo, F. De Angelis, N. Malara, P. Candeloro, G. Morrone, and E. Di Fabrizio, “A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells,” Microelectron. Eng. 111, 314–319 (2013).
[Crossref]

Y. Zheng, J. Nguyen, C. Wang, and Y. Sun, “Electrical measurement of red blood cell deformability on a microfluidic device,” Lab Chip 13(16), 3275–3283 (2013).
[Crossref] [PubMed]

J. M. Kwan, Q. Guo, D. L. Kyluik-Price, H. Ma, and M. D. Scott, “Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells,” Am. J. Hematol. 88(8), 682–689 (2013).
[Crossref] [PubMed]

F. De Angelis, M. Malerba, M. Patrini, E. Miele, G. Das, A. Toma, R. P. Zaccaria, and E. Di Fabrizio, “3D hollow nanostructures as building blocks for multifunctional plasmonics,” Nano Lett. 13(8), 3553–3558 (2013).
[Crossref] [PubMed]

2012 (3)

G. Simone, G. Perozziello, E. Battista, F. De Angelis, P. Candeloro, F. Gentile, N. Malara, A. Manz, E. Carbone, P. Netti, and E. Di Fabrizio, “Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system,” Microelectron. Eng. 98, 668–671 (2012).
[Crossref]

G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M. L. Coluccio, E. Carbone, and E. Di Fabrizio, “Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition,” Small 8(18), 2886–2894 (2012).
[Crossref] [PubMed]

Y. H. Ong, M. Lim, and Q. Liu, “Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells,” Opt. Express 20(20), 22158–22171 (2012).
[Crossref] [PubMed]

2011 (4)

G. Simone and G. Perozziello, “UV/Vis visible optical waveguides fabricated using organic-inorganic nanocomposite layers,” J. Nanosci. Nanotechnol. 11(3), 2057–2063 (2011).
[Crossref] [PubMed]

K. Liu and Z. H. Fan, “Thermoplastic microfluidic devices and their applications in protein and DNA analysis,” Analyst (Lond.) 136(7), 1288–1297 (2011).
[Crossref] [PubMed]

H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
[Crossref] [PubMed]

F. De Angelis, C. Liberale, M. L. Coluccio, G. Cojoc, and E. Di Fabrizio, “Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies,” Nanoscale 3(7), 2689–2696 (2011).
[Crossref] [PubMed]

2010 (5)

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. De Cuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices,” Microelectron. Eng. 87(5), 798–801 (2010).
[Crossref]

F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, and E. Di Fabrizio, “Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context,” Nanoscale 2(10), 2230–2236 (2010).
[Crossref] [PubMed]

Y. Zhang, S. Park, S. Yang, and T. H. Wang, “An all-in-one microfluidic device for parallel DNA extraction and gene analysis,” Biomed. Microdevices 12(6), 1043–1049 (2010).
[Crossref] [PubMed]

G. Simone and G. Perozziello, “Ca2+ Mediates the Adhesion of Breast Cancer Cells in Self-Assembled Multifunctional Microfluidic Chip prepared with Carbohydrate Beads,” Micro Nanosyst. 2(4), 261–268 (2010).
[Crossref]

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

2008 (1)

G. Perozziello, F. Bundgaard, and O. Geschke, “Fluidic interconnections for microfluidic systems: a new integrated fluidic interconnection allowing plug ‘n’play functionality,” Sens. Actuators B Chem. 130(2), 947–953 (2008).
[Crossref]

2007 (2)

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

L. Lu, X. L. Xu, W. T. Liang, and H. F. Lu, “Raman analysis of CdSe/CdS core-shell quantum dots with different CdS shell thickness,” J. Phys. Condens. Matter 19(40), 406221 (2007).
[Crossref] [PubMed]

2006 (1)

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

2005 (2)

A. A. Yu, T. Savas, S. Cabrini, E. Difabrizio, H. I. Smith, and F. Stellacci, “High resolution printing of DNA feature on poly(methyl methacrylate) substrates using supramolecular nano-stamping,” J. Am. Chem. Soc. 127(48), 16774–16775 (2005).
[Crossref] [PubMed]

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. D. Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78, 125–131 (2005).
[Crossref]

2004 (1)

G. Keramas, G. Perozziello, O. Geschke, and C. B. V. Christensen, “Development of a multiplex microarray microsystem,” Lab Chip 4(2), 152–158 (2004).
[Crossref] [PubMed]

2003 (1)

M. J. Pelletier, “Quantitative analysis using Raman spectrometry,” Appl. Spectrosc. 57(1), 20–42 (2003).
[Crossref] [PubMed]

2000 (2)

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

A. Balandin, K. L. Wang, N. Kouklin, and S. Bandyopadhyay, “Raman spectroscopy of electrochemically self-assembled CdS quantum dots,” Appl. Phys. Lett. 76(2), 137–139 (2000).
[Crossref]

1998 (1)

P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels, “In vitro and in vivo Raman spectroscopy of human skin,” Biospectroscopy 4(5), S31–S39 (1998).
[Crossref] [PubMed]

Accardo, A.

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. De Cuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices,” Microelectron. Eng. 87(5), 798–801 (2010).
[Crossref]

Adamo, A.

G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M. L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H. D. Espinosa, G. Cuda, and E. Di Fabrizio, “Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers,” RSC Advances 4(98), 55590–55598 (2014).
[Crossref]

Alrasheed, S.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Anichini, A.

G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M. L. Coluccio, E. Carbone, and E. Di Fabrizio, “Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition,” Small 8(18), 2886–2894 (2012).
[Crossref] [PubMed]

Balandin, A.

A. Balandin, K. L. Wang, N. Kouklin, and S. Bandyopadhyay, “Raman spectroscopy of electrochemically self-assembled CdS quantum dots,” Appl. Phys. Lett. 76(2), 137–139 (2000).
[Crossref]

Bandyopadhyay, S.

A. Balandin, K. L. Wang, N. Kouklin, and S. Bandyopadhyay, “Raman spectroscopy of electrochemically self-assembled CdS quantum dots,” Appl. Phys. Lett. 76(2), 137–139 (2000).
[Crossref]

Bankapur, A.

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

Battista, E.

G. Simone, G. Perozziello, E. Battista, F. De Angelis, P. Candeloro, F. Gentile, N. Malara, A. Manz, E. Carbone, P. Netti, and E. Di Fabrizio, “Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system,” Microelectron. Eng. 98, 668–671 (2012).
[Crossref]

Bruining, H. A.

P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels, “In vitro and in vivo Raman spectroscopy of human skin,” Biospectroscopy 4(5), S31–S39 (1998).
[Crossref] [PubMed]

Bundgaard, F.

G. Perozziello, F. Bundgaard, and O. Geschke, “Fluidic interconnections for microfluidic systems: a new integrated fluidic interconnection allowing plug ‘n’play functionality,” Sens. Actuators B Chem. 130(2), 947–953 (2008).
[Crossref]

Businaro, L.

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. D. Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78, 125–131 (2005).
[Crossref]

Cabrini, S.

A. A. Yu, T. Savas, S. Cabrini, E. Difabrizio, H. I. Smith, and F. Stellacci, “High resolution printing of DNA feature on poly(methyl methacrylate) substrates using supramolecular nano-stamping,” J. Am. Chem. Soc. 127(48), 16774–16775 (2005).
[Crossref] [PubMed]

Calhelha, R. C.

V. Faustino, D. Pinho, T. Yaginuma, R. C. Calhelha, I. C. Ferreira, and R. Lima, “Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells,” Biochip J. 8(1), 42–47 (2014).
[Crossref]

Candeloro, P.

G. Perozziello, P. Candeloro, F. Gentile, M. L. Coluccio, M. Tallerico, A. De Grazia, A. Nicastri, A. M. Perri, E. Parrotta, F. Pardeo, R. Catalano, G. Cuda, and E. Di Fabrizio, “A microfluidic dialysis device for complex biological mixture SERS analysis,” Microelectron. Eng. 144, 37–41 (2015).
[Crossref]

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

M. L. Coluccio, F. Gentile, M. Francardi, G. Perozziello, N. Malara, P. Candeloro, and E. Di Fabrizio, “Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications,” Sensors (Basel) 14(4), 6056–6083 (2014).
[Crossref] [PubMed]

G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M. L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H. D. Espinosa, G. Cuda, and E. Di Fabrizio, “Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers,” RSC Advances 4(98), 55590–55598 (2014).
[Crossref]

G. Perozziello, G. Simone, N. Malara, R. La Rocca, R. Tallerico, R. Catalano, F. Pardeo, P. Candeloro, G. Cuda, E. Carbone, and E. Di Fabrizio, “Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations,” Electrophoresis 34(13), 1845–1851 (2013).
[Crossref] [PubMed]

G. Perozziello, R. Catalano, M. Francardi, E. Rondanina, F. Pardeo, F. De Angelis, N. Malara, P. Candeloro, G. Morrone, and E. Di Fabrizio, “A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells,” Microelectron. Eng. 111, 314–319 (2013).
[Crossref]

G. Simone, G. Perozziello, E. Battista, F. De Angelis, P. Candeloro, F. Gentile, N. Malara, A. Manz, E. Carbone, P. Netti, and E. Di Fabrizio, “Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system,” Microelectron. Eng. 98, 668–671 (2012).
[Crossref]

G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M. L. Coluccio, E. Carbone, and E. Di Fabrizio, “Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition,” Small 8(18), 2886–2894 (2012).
[Crossref] [PubMed]

F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, and E. Di Fabrizio, “Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context,” Nanoscale 2(10), 2230–2236 (2010).
[Crossref] [PubMed]

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. De Cuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices,” Microelectron. Eng. 87(5), 798–801 (2010).
[Crossref]

Carbone, E.

G. Perozziello, G. Simone, N. Malara, R. La Rocca, R. Tallerico, R. Catalano, F. Pardeo, P. Candeloro, G. Cuda, E. Carbone, and E. Di Fabrizio, “Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations,” Electrophoresis 34(13), 1845–1851 (2013).
[Crossref] [PubMed]

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

G. Simone, G. Perozziello, E. Battista, F. De Angelis, P. Candeloro, F. Gentile, N. Malara, A. Manz, E. Carbone, P. Netti, and E. Di Fabrizio, “Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system,” Microelectron. Eng. 98, 668–671 (2012).
[Crossref]

G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M. L. Coluccio, E. Carbone, and E. Di Fabrizio, “Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition,” Small 8(18), 2886–2894 (2012).
[Crossref] [PubMed]

Caspers, P.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

Caspers, P. J.

P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels, “In vitro and in vivo Raman spectroscopy of human skin,” Biospectroscopy 4(5), S31–S39 (1998).
[Crossref] [PubMed]

Catalano, R.

G. Perozziello, P. Candeloro, F. Gentile, M. L. Coluccio, M. Tallerico, A. De Grazia, A. Nicastri, A. M. Perri, E. Parrotta, F. Pardeo, R. Catalano, G. Cuda, and E. Di Fabrizio, “A microfluidic dialysis device for complex biological mixture SERS analysis,” Microelectron. Eng. 144, 37–41 (2015).
[Crossref]

G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M. L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H. D. Espinosa, G. Cuda, and E. Di Fabrizio, “Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers,” RSC Advances 4(98), 55590–55598 (2014).
[Crossref]

G. Perozziello, G. Simone, N. Malara, R. La Rocca, R. Tallerico, R. Catalano, F. Pardeo, P. Candeloro, G. Cuda, E. Carbone, and E. Di Fabrizio, “Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations,” Electrophoresis 34(13), 1845–1851 (2013).
[Crossref] [PubMed]

G. Perozziello, R. Catalano, M. Francardi, E. Rondanina, F. Pardeo, F. De Angelis, N. Malara, P. Candeloro, G. Morrone, and E. Di Fabrizio, “A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells,” Microelectron. Eng. 111, 314–319 (2013).
[Crossref]

Chidangil, S.

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

Chirumamilla, M.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few-Molecule Surface-Enhanced Raman Scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Chiu, L. D.

T. Ichimura, L. D. Chiu, K. Fujita, S. Kawata, T. M. Watanabe, T. Yanagida, and H. Fujita, “Visualizing cell state transition using Raman spectroscopy,” PLoS One 9(1), e84478 (2014).
[Crossref] [PubMed]

Christensen, C. B. V.

G. Keramas, G. Perozziello, O. Geschke, and C. B. V. Christensen, “Development of a multiplex microarray microsystem,” Lab Chip 4(2), 152–158 (2004).
[Crossref] [PubMed]

Cojoc, D.

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. D. Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78, 125–131 (2005).
[Crossref]

Cojoc, G.

G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M. L. Coluccio, E. Carbone, and E. Di Fabrizio, “Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition,” Small 8(18), 2886–2894 (2012).
[Crossref] [PubMed]

F. De Angelis, C. Liberale, M. L. Coluccio, G. Cojoc, and E. Di Fabrizio, “Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies,” Nanoscale 3(7), 2689–2696 (2011).
[Crossref] [PubMed]

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. De Cuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices,” Microelectron. Eng. 87(5), 798–801 (2010).
[Crossref]

Coluccio, M. L.

G. Perozziello, P. Candeloro, F. Gentile, M. L. Coluccio, M. Tallerico, A. De Grazia, A. Nicastri, A. M. Perri, E. Parrotta, F. Pardeo, R. Catalano, G. Cuda, and E. Di Fabrizio, “A microfluidic dialysis device for complex biological mixture SERS analysis,” Microelectron. Eng. 144, 37–41 (2015).
[Crossref]

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

M. L. Coluccio, F. Gentile, M. Francardi, G. Perozziello, N. Malara, P. Candeloro, and E. Di Fabrizio, “Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications,” Sensors (Basel) 14(4), 6056–6083 (2014).
[Crossref] [PubMed]

G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M. L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H. D. Espinosa, G. Cuda, and E. Di Fabrizio, “Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers,” RSC Advances 4(98), 55590–55598 (2014).
[Crossref]

G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M. L. Coluccio, E. Carbone, and E. Di Fabrizio, “Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition,” Small 8(18), 2886–2894 (2012).
[Crossref] [PubMed]

F. De Angelis, C. Liberale, M. L. Coluccio, G. Cojoc, and E. Di Fabrizio, “Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies,” Nanoscale 3(7), 2689–2696 (2011).
[Crossref] [PubMed]

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. De Cuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices,” Microelectron. Eng. 87(5), 798–801 (2010).
[Crossref]

Cuda, G.

G. Perozziello, P. Candeloro, F. Gentile, M. L. Coluccio, M. Tallerico, A. De Grazia, A. Nicastri, A. M. Perri, E. Parrotta, F. Pardeo, R. Catalano, G. Cuda, and E. Di Fabrizio, “A microfluidic dialysis device for complex biological mixture SERS analysis,” Microelectron. Eng. 144, 37–41 (2015).
[Crossref]

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M. L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H. D. Espinosa, G. Cuda, and E. Di Fabrizio, “Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers,” RSC Advances 4(98), 55590–55598 (2014).
[Crossref]

G. Perozziello, G. Simone, N. Malara, R. La Rocca, R. Tallerico, R. Catalano, F. Pardeo, P. Candeloro, G. Cuda, E. Carbone, and E. Di Fabrizio, “Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations,” Electrophoresis 34(13), 1845–1851 (2013).
[Crossref] [PubMed]

Das, G.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few-Molecule Surface-Enhanced Raman Scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

F. De Angelis, M. Malerba, M. Patrini, E. Miele, G. Das, A. Toma, R. P. Zaccaria, and E. Di Fabrizio, “3D hollow nanostructures as building blocks for multifunctional plasmonics,” Nano Lett. 13(8), 3553–3558 (2013).
[Crossref] [PubMed]

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. De Cuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices,” Microelectron. Eng. 87(5), 798–801 (2010).
[Crossref]

F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, and E. Di Fabrizio, “Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context,” Nanoscale 2(10), 2230–2236 (2010).
[Crossref] [PubMed]

Dasari, R. R.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

De Angelis, F.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few-Molecule Surface-Enhanced Raman Scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

F. De Angelis, M. Malerba, M. Patrini, E. Miele, G. Das, A. Toma, R. P. Zaccaria, and E. Di Fabrizio, “3D hollow nanostructures as building blocks for multifunctional plasmonics,” Nano Lett. 13(8), 3553–3558 (2013).
[Crossref] [PubMed]

G. Perozziello, R. Catalano, M. Francardi, E. Rondanina, F. Pardeo, F. De Angelis, N. Malara, P. Candeloro, G. Morrone, and E. Di Fabrizio, “A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells,” Microelectron. Eng. 111, 314–319 (2013).
[Crossref]

G. Simone, G. Perozziello, E. Battista, F. De Angelis, P. Candeloro, F. Gentile, N. Malara, A. Manz, E. Carbone, P. Netti, and E. Di Fabrizio, “Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system,” Microelectron. Eng. 98, 668–671 (2012).
[Crossref]

F. De Angelis, C. Liberale, M. L. Coluccio, G. Cojoc, and E. Di Fabrizio, “Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies,” Nanoscale 3(7), 2689–2696 (2011).
[Crossref] [PubMed]

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. De Cuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices,” Microelectron. Eng. 87(5), 798–801 (2010).
[Crossref]

F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, and E. Di Fabrizio, “Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context,” Nanoscale 2(10), 2230–2236 (2010).
[Crossref] [PubMed]

De Cuzzi, P.

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. De Cuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices,” Microelectron. Eng. 87(5), 798–801 (2010).
[Crossref]

De Grazia, A.

G. Perozziello, P. Candeloro, F. Gentile, M. L. Coluccio, M. Tallerico, A. De Grazia, A. Nicastri, A. M. Perri, E. Parrotta, F. Pardeo, R. Catalano, G. Cuda, and E. Di Fabrizio, “A microfluidic dialysis device for complex biological mixture SERS analysis,” Microelectron. Eng. 144, 37–41 (2015).
[Crossref]

de Laurentiis, A.

F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, and E. Di Fabrizio, “Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context,” Nanoscale 2(10), 2230–2236 (2010).
[Crossref] [PubMed]

Demir, H. V.

Di Fabrizio, E.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

G. Perozziello, P. Candeloro, F. Gentile, M. L. Coluccio, M. Tallerico, A. De Grazia, A. Nicastri, A. M. Perri, E. Parrotta, F. Pardeo, R. Catalano, G. Cuda, and E. Di Fabrizio, “A microfluidic dialysis device for complex biological mixture SERS analysis,” Microelectron. Eng. 144, 37–41 (2015).
[Crossref]

G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M. L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H. D. Espinosa, G. Cuda, and E. Di Fabrizio, “Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers,” RSC Advances 4(98), 55590–55598 (2014).
[Crossref]

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few-Molecule Surface-Enhanced Raman Scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

M. L. Coluccio, F. Gentile, M. Francardi, G. Perozziello, N. Malara, P. Candeloro, and E. Di Fabrizio, “Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications,” Sensors (Basel) 14(4), 6056–6083 (2014).
[Crossref] [PubMed]

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

F. De Angelis, M. Malerba, M. Patrini, E. Miele, G. Das, A. Toma, R. P. Zaccaria, and E. Di Fabrizio, “3D hollow nanostructures as building blocks for multifunctional plasmonics,” Nano Lett. 13(8), 3553–3558 (2013).
[Crossref] [PubMed]

G. Perozziello, R. Catalano, M. Francardi, E. Rondanina, F. Pardeo, F. De Angelis, N. Malara, P. Candeloro, G. Morrone, and E. Di Fabrizio, “A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells,” Microelectron. Eng. 111, 314–319 (2013).
[Crossref]

G. Perozziello, G. Simone, N. Malara, R. La Rocca, R. Tallerico, R. Catalano, F. Pardeo, P. Candeloro, G. Cuda, E. Carbone, and E. Di Fabrizio, “Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations,” Electrophoresis 34(13), 1845–1851 (2013).
[Crossref] [PubMed]

G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M. L. Coluccio, E. Carbone, and E. Di Fabrizio, “Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition,” Small 8(18), 2886–2894 (2012).
[Crossref] [PubMed]

G. Simone, G. Perozziello, E. Battista, F. De Angelis, P. Candeloro, F. Gentile, N. Malara, A. Manz, E. Carbone, P. Netti, and E. Di Fabrizio, “Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system,” Microelectron. Eng. 98, 668–671 (2012).
[Crossref]

F. De Angelis, C. Liberale, M. L. Coluccio, G. Cojoc, and E. Di Fabrizio, “Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies,” Nanoscale 3(7), 2689–2696 (2011).
[Crossref] [PubMed]

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. De Cuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices,” Microelectron. Eng. 87(5), 798–801 (2010).
[Crossref]

F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, and E. Di Fabrizio, “Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context,” Nanoscale 2(10), 2230–2236 (2010).
[Crossref] [PubMed]

Di Franco, S.

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

Dieli, F.

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

Difabrizio, E.

A. A. Yu, T. Savas, S. Cabrini, E. Difabrizio, H. I. Smith, and F. Stellacci, “High resolution printing of DNA feature on poly(methyl methacrylate) substrates using supramolecular nano-stamping,” J. Am. Chem. Soc. 127(48), 16774–16775 (2005).
[Crossref] [PubMed]

Espinosa, H. D.

G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M. L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H. D. Espinosa, G. Cuda, and E. Di Fabrizio, “Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers,” RSC Advances 4(98), 55590–55598 (2014).
[Crossref]

Eychmüller, A.

Fabrizio, E. D.

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. D. Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78, 125–131 (2005).
[Crossref]

Falcone, C.

F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, and E. Di Fabrizio, “Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context,” Nanoscale 2(10), 2230–2236 (2010).
[Crossref] [PubMed]

Fan, Z. H.

K. Liu and Z. H. Fan, “Thermoplastic microfluidic devices and their applications in protein and DNA analysis,” Analyst (Lond.) 136(7), 1288–1297 (2011).
[Crossref] [PubMed]

Faustino, V.

V. Faustino, D. Pinho, T. Yaginuma, R. C. Calhelha, I. C. Ferreira, and R. Lima, “Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells,” Biochip J. 8(1), 42–47 (2014).
[Crossref]

Feld, M. S.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

Ferrari, E.

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. D. Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78, 125–131 (2005).
[Crossref]

Ferreira, I. C.

V. Faustino, D. Pinho, T. Yaginuma, R. C. Calhelha, I. C. Ferreira, and R. Lima, “Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells,” Biochip J. 8(1), 42–47 (2014).
[Crossref]

Fitzmaurice, M.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

Francardi, M.

M. L. Coluccio, F. Gentile, M. Francardi, G. Perozziello, N. Malara, P. Candeloro, and E. Di Fabrizio, “Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications,” Sensors (Basel) 14(4), 6056–6083 (2014).
[Crossref] [PubMed]

G. Perozziello, R. Catalano, M. Francardi, E. Rondanina, F. Pardeo, F. De Angelis, N. Malara, P. Candeloro, G. Morrone, and E. Di Fabrizio, “A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells,” Microelectron. Eng. 111, 314–319 (2013).
[Crossref]

Fratalocchi, A.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Fujita, H.

T. Ichimura, L. D. Chiu, K. Fujita, S. Kawata, T. M. Watanabe, T. Yanagida, and H. Fujita, “Visualizing cell state transition using Raman spectroscopy,” PLoS One 9(1), e84478 (2014).
[Crossref] [PubMed]

Fujita, K.

T. Ichimura, L. D. Chiu, K. Fujita, S. Kawata, T. M. Watanabe, T. Yanagida, and H. Fujita, “Visualizing cell state transition using Raman spectroscopy,” PLoS One 9(1), e84478 (2014).
[Crossref] [PubMed]

Gaponenko, S. V.

Gaponik, N.

Garbin, V.

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. D. Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78, 125–131 (2005).
[Crossref]

Garofalo, C.

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

Gentile, F.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

G. Perozziello, P. Candeloro, F. Gentile, M. L. Coluccio, M. Tallerico, A. De Grazia, A. Nicastri, A. M. Perri, E. Parrotta, F. Pardeo, R. Catalano, G. Cuda, and E. Di Fabrizio, “A microfluidic dialysis device for complex biological mixture SERS analysis,” Microelectron. Eng. 144, 37–41 (2015).
[Crossref]

G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M. L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H. D. Espinosa, G. Cuda, and E. Di Fabrizio, “Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers,” RSC Advances 4(98), 55590–55598 (2014).
[Crossref]

M. L. Coluccio, F. Gentile, M. Francardi, G. Perozziello, N. Malara, P. Candeloro, and E. Di Fabrizio, “Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications,” Sensors (Basel) 14(4), 6056–6083 (2014).
[Crossref] [PubMed]

G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M. L. Coluccio, E. Carbone, and E. Di Fabrizio, “Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition,” Small 8(18), 2886–2894 (2012).
[Crossref] [PubMed]

G. Simone, G. Perozziello, E. Battista, F. De Angelis, P. Candeloro, F. Gentile, N. Malara, A. Manz, E. Carbone, P. Netti, and E. Di Fabrizio, “Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system,” Microelectron. Eng. 98, 668–671 (2012).
[Crossref]

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. De Cuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices,” Microelectron. Eng. 87(5), 798–801 (2010).
[Crossref]

Geschke, O.

G. Perozziello, F. Bundgaard, and O. Geschke, “Fluidic interconnections for microfluidic systems: a new integrated fluidic interconnection allowing plug ‘n’play functionality,” Sens. Actuators B Chem. 130(2), 947–953 (2008).
[Crossref]

G. Keramas, G. Perozziello, O. Geschke, and C. B. V. Christensen, “Development of a multiplex microarray microsystem,” Lab Chip 4(2), 152–158 (2004).
[Crossref] [PubMed]

Gongora, J. S.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Gopalakrishnan, A.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few-Molecule Surface-Enhanced Raman Scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Guo, Q.

J. M. Kwan, Q. Guo, D. L. Kyluik-Price, H. Ma, and M. D. Scott, “Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells,” Am. J. Hematol. 88(8), 682–689 (2013).
[Crossref] [PubMed]

Hanlon, E. B.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

Iaccino, E.

F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, and E. Di Fabrizio, “Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context,” Nanoscale 2(10), 2230–2236 (2010).
[Crossref] [PubMed]

Ichimura, T.

T. Ichimura, L. D. Chiu, K. Fujita, S. Kawata, T. M. Watanabe, T. Yanagida, and H. Fujita, “Visualizing cell state transition using Raman spectroscopy,” PLoS One 9(1), e84478 (2014).
[Crossref] [PubMed]

Itzkan, I.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

Kärre, K.

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

Kawata, S.

T. Ichimura, L. D. Chiu, K. Fujita, S. Kawata, T. M. Watanabe, T. Yanagida, and H. Fujita, “Visualizing cell state transition using Raman spectroscopy,” PLoS One 9(1), e84478 (2014).
[Crossref] [PubMed]

Keramas, G.

G. Keramas, G. Perozziello, O. Geschke, and C. B. V. Christensen, “Development of a multiplex microarray microsystem,” Lab Chip 4(2), 152–158 (2004).
[Crossref] [PubMed]

Koo, T. W.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

Kouklin, N.

A. Balandin, K. L. Wang, N. Kouklin, and S. Bandyopadhyay, “Raman spectroscopy of electrochemically self-assembled CdS quantum dots,” Appl. Phys. Lett. 76(2), 137–139 (2000).
[Crossref]

Krahne, R.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few-Molecule Surface-Enhanced Raman Scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Kramer, J. R.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

Kwan, J. M.

J. M. Kwan, Q. Guo, D. L. Kyluik-Price, H. Ma, and M. D. Scott, “Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells,” Am. J. Hematol. 88(8), 682–689 (2013).
[Crossref] [PubMed]

Kyluik-Price, D. L.

J. M. Kwan, Q. Guo, D. L. Kyluik-Price, H. Ma, and M. D. Scott, “Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells,” Am. J. Hematol. 88(8), 682–689 (2013).
[Crossref] [PubMed]

La Rocca, R.

G. Perozziello, G. Simone, N. Malara, R. La Rocca, R. Tallerico, R. Catalano, F. Pardeo, P. Candeloro, G. Cuda, E. Carbone, and E. Di Fabrizio, “Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations,” Electrophoresis 34(13), 1845–1851 (2013).
[Crossref] [PubMed]

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M. L. Coluccio, E. Carbone, and E. Di Fabrizio, “Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition,” Small 8(18), 2886–2894 (2012).
[Crossref] [PubMed]

Lavrinenko, A. V.

Leoncini, M.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few-Molecule Surface-Enhanced Raman Scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Liang, W. T.

L. Lu, X. L. Xu, W. T. Liang, and H. F. Lu, “Raman analysis of CdSe/CdS core-shell quantum dots with different CdS shell thickness,” J. Phys. Condens. Matter 19(40), 406221 (2007).
[Crossref] [PubMed]

Liberale, C.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few-Molecule Surface-Enhanced Raman Scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M. L. Coluccio, E. Carbone, and E. Di Fabrizio, “Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition,” Small 8(18), 2886–2894 (2012).
[Crossref] [PubMed]

F. De Angelis, C. Liberale, M. L. Coluccio, G. Cojoc, and E. Di Fabrizio, “Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies,” Nanoscale 3(7), 2689–2696 (2011).
[Crossref] [PubMed]

F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, and E. Di Fabrizio, “Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context,” Nanoscale 2(10), 2230–2236 (2010).
[Crossref] [PubMed]

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. De Cuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices,” Microelectron. Eng. 87(5), 798–801 (2010).
[Crossref]

Lim, M.

Lima, R.

V. Faustino, D. Pinho, T. Yaginuma, R. C. Calhelha, I. C. Ferreira, and R. Lima, “Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells,” Biochip J. 8(1), 42–47 (2014).
[Crossref]

Limongi, T.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Liu, K.

K. Liu and Z. H. Fan, “Thermoplastic microfluidic devices and their applications in protein and DNA analysis,” Analyst (Lond.) 136(7), 1288–1297 (2011).
[Crossref] [PubMed]

Liu, Q.

Lu, H. F.

L. Lu, X. L. Xu, W. T. Liang, and H. F. Lu, “Raman analysis of CdSe/CdS core-shell quantum dots with different CdS shell thickness,” J. Phys. Condens. Matter 19(40), 406221 (2007).
[Crossref] [PubMed]

Lu, L.

L. Lu, X. L. Xu, W. T. Liang, and H. F. Lu, “Raman analysis of CdSe/CdS core-shell quantum dots with different CdS shell thickness,” J. Phys. Condens. Matter 19(40), 406221 (2007).
[Crossref] [PubMed]

Luberto, L.

F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, and E. Di Fabrizio, “Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context,” Nanoscale 2(10), 2230–2236 (2010).
[Crossref] [PubMed]

Lucassen, G. W.

P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels, “In vitro and in vivo Raman spectroscopy of human skin,” Biospectroscopy 4(5), S31–S39 (1998).
[Crossref] [PubMed]

Ma, H.

J. M. Kwan, Q. Guo, D. L. Kyluik-Price, H. Ma, and M. D. Scott, “Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells,” Am. J. Hematol. 88(8), 682–689 (2013).
[Crossref] [PubMed]

Maccalli, C.

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

Malara, N.

M. L. Coluccio, F. Gentile, M. Francardi, G. Perozziello, N. Malara, P. Candeloro, and E. Di Fabrizio, “Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications,” Sensors (Basel) 14(4), 6056–6083 (2014).
[Crossref] [PubMed]

G. Perozziello, G. Simone, N. Malara, R. La Rocca, R. Tallerico, R. Catalano, F. Pardeo, P. Candeloro, G. Cuda, E. Carbone, and E. Di Fabrizio, “Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations,” Electrophoresis 34(13), 1845–1851 (2013).
[Crossref] [PubMed]

G. Perozziello, R. Catalano, M. Francardi, E. Rondanina, F. Pardeo, F. De Angelis, N. Malara, P. Candeloro, G. Morrone, and E. Di Fabrizio, “A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells,” Microelectron. Eng. 111, 314–319 (2013).
[Crossref]

G. Simone, G. Perozziello, E. Battista, F. De Angelis, P. Candeloro, F. Gentile, N. Malara, A. Manz, E. Carbone, P. Netti, and E. Di Fabrizio, “Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system,” Microelectron. Eng. 98, 668–671 (2012).
[Crossref]

G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M. L. Coluccio, E. Carbone, and E. Di Fabrizio, “Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition,” Small 8(18), 2886–2894 (2012).
[Crossref] [PubMed]

Malerba, M.

F. De Angelis, M. Malerba, M. Patrini, E. Miele, G. Das, A. Toma, R. P. Zaccaria, and E. Di Fabrizio, “3D hollow nanostructures as building blocks for multifunctional plasmonics,” Nano Lett. 13(8), 3553–3558 (2013).
[Crossref] [PubMed]

Mandelboim, O.

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

Manoharan, R.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

Manz, A.

G. Simone, G. Perozziello, E. Battista, F. De Angelis, P. Candeloro, F. Gentile, N. Malara, A. Manz, E. Carbone, P. Netti, and E. Di Fabrizio, “Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system,” Microelectron. Eng. 98, 668–671 (2012).
[Crossref]

Mathur, D.

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

McNaughton, D.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

Mecarini, F.

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. De Cuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices,” Microelectron. Eng. 87(5), 798–801 (2010).
[Crossref]

F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, and E. Di Fabrizio, “Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context,” Nanoscale 2(10), 2230–2236 (2010).
[Crossref] [PubMed]

Miele, E.

F. De Angelis, M. Malerba, M. Patrini, E. Miele, G. Das, A. Toma, R. P. Zaccaria, and E. Di Fabrizio, “3D hollow nanostructures as building blocks for multifunctional plasmonics,” Nano Lett. 13(8), 3553–3558 (2013).
[Crossref] [PubMed]

Moretta, A.

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

Morrone, G.

G. Perozziello, R. Catalano, M. Francardi, E. Rondanina, F. Pardeo, F. De Angelis, N. Malara, P. Candeloro, G. Morrone, and E. Di Fabrizio, “A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells,” Microelectron. Eng. 111, 314–319 (2013).
[Crossref]

Motz, J. T.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

Mutlugun, E.

Netti, P.

G. Simone, G. Perozziello, E. Battista, F. De Angelis, P. Candeloro, F. Gentile, N. Malara, A. Manz, E. Carbone, P. Netti, and E. Di Fabrizio, “Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system,” Microelectron. Eng. 98, 668–671 (2012).
[Crossref]

Nguyen, J.

Y. Zheng, J. Nguyen, C. Wang, and Y. Sun, “Electrical measurement of red blood cell deformability on a microfluidic device,” Lab Chip 13(16), 3275–3283 (2013).
[Crossref] [PubMed]

Nicastri, A.

G. Perozziello, P. Candeloro, F. Gentile, M. L. Coluccio, M. Tallerico, A. De Grazia, A. Nicastri, A. M. Perri, E. Parrotta, F. Pardeo, R. Catalano, G. Cuda, and E. Di Fabrizio, “A microfluidic dialysis device for complex biological mixture SERS analysis,” Microelectron. Eng. 144, 37–41 (2015).
[Crossref]

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M. L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H. D. Espinosa, G. Cuda, and E. Di Fabrizio, “Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers,” RSC Advances 4(98), 55590–55598 (2014).
[Crossref]

Oliver, A. E.

H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
[Crossref] [PubMed]

Ong, Y. H.

Ozel, T.

Palmieri, C.

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, and E. Di Fabrizio, “Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context,” Nanoscale 2(10), 2230–2236 (2010).
[Crossref] [PubMed]

Pandiancherri, S.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

Pangigadde, P. N.

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

Pardeo, F.

G. Perozziello, P. Candeloro, F. Gentile, M. L. Coluccio, M. Tallerico, A. De Grazia, A. Nicastri, A. M. Perri, E. Parrotta, F. Pardeo, R. Catalano, G. Cuda, and E. Di Fabrizio, “A microfluidic dialysis device for complex biological mixture SERS analysis,” Microelectron. Eng. 144, 37–41 (2015).
[Crossref]

G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M. L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H. D. Espinosa, G. Cuda, and E. Di Fabrizio, “Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers,” RSC Advances 4(98), 55590–55598 (2014).
[Crossref]

G. Perozziello, R. Catalano, M. Francardi, E. Rondanina, F. Pardeo, F. De Angelis, N. Malara, P. Candeloro, G. Morrone, and E. Di Fabrizio, “A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells,” Microelectron. Eng. 111, 314–319 (2013).
[Crossref]

G. Perozziello, G. Simone, N. Malara, R. La Rocca, R. Tallerico, R. Catalano, F. Pardeo, P. Candeloro, G. Cuda, E. Carbone, and E. Di Fabrizio, “Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations,” Electrophoresis 34(13), 1845–1851 (2013).
[Crossref] [PubMed]

Parikh, A. N.

H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
[Crossref] [PubMed]

Park, S.

Y. Zhang, S. Park, S. Yang, and T. H. Wang, “An all-in-one microfluidic device for parallel DNA extraction and gene analysis,” Biomed. Microdevices 12(6), 1043–1049 (2010).
[Crossref] [PubMed]

Parmiani, G.

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

Parrotta, E.

G. Perozziello, P. Candeloro, F. Gentile, M. L. Coluccio, M. Tallerico, A. De Grazia, A. Nicastri, A. M. Perri, E. Parrotta, F. Pardeo, R. Catalano, G. Cuda, and E. Di Fabrizio, “A microfluidic dialysis device for complex biological mixture SERS analysis,” Microelectron. Eng. 144, 37–41 (2015).
[Crossref]

G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M. L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H. D. Espinosa, G. Cuda, and E. Di Fabrizio, “Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers,” RSC Advances 4(98), 55590–55598 (2014).
[Crossref]

Patrini, M.

F. De Angelis, M. Malerba, M. Patrini, E. Miele, G. Das, A. Toma, R. P. Zaccaria, and E. Di Fabrizio, “3D hollow nanostructures as building blocks for multifunctional plasmonics,” Nano Lett. 13(8), 3553–3558 (2013).
[Crossref] [PubMed]

Pelletier, M. J.

M. J. Pelletier, “Quantitative analysis using Raman spectrometry,” Appl. Spectrosc. 57(1), 20–42 (2003).
[Crossref] [PubMed]

Perozziello, G.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

G. Perozziello, P. Candeloro, F. Gentile, M. L. Coluccio, M. Tallerico, A. De Grazia, A. Nicastri, A. M. Perri, E. Parrotta, F. Pardeo, R. Catalano, G. Cuda, and E. Di Fabrizio, “A microfluidic dialysis device for complex biological mixture SERS analysis,” Microelectron. Eng. 144, 37–41 (2015).
[Crossref]

G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M. L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H. D. Espinosa, G. Cuda, and E. Di Fabrizio, “Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers,” RSC Advances 4(98), 55590–55598 (2014).
[Crossref]

M. L. Coluccio, F. Gentile, M. Francardi, G. Perozziello, N. Malara, P. Candeloro, and E. Di Fabrizio, “Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications,” Sensors (Basel) 14(4), 6056–6083 (2014).
[Crossref] [PubMed]

G. Perozziello, R. Catalano, M. Francardi, E. Rondanina, F. Pardeo, F. De Angelis, N. Malara, P. Candeloro, G. Morrone, and E. Di Fabrizio, “A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells,” Microelectron. Eng. 111, 314–319 (2013).
[Crossref]

G. Perozziello, G. Simone, N. Malara, R. La Rocca, R. Tallerico, R. Catalano, F. Pardeo, P. Candeloro, G. Cuda, E. Carbone, and E. Di Fabrizio, “Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations,” Electrophoresis 34(13), 1845–1851 (2013).
[Crossref] [PubMed]

G. Simone, G. Perozziello, E. Battista, F. De Angelis, P. Candeloro, F. Gentile, N. Malara, A. Manz, E. Carbone, P. Netti, and E. Di Fabrizio, “Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system,” Microelectron. Eng. 98, 668–671 (2012).
[Crossref]

G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M. L. Coluccio, E. Carbone, and E. Di Fabrizio, “Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition,” Small 8(18), 2886–2894 (2012).
[Crossref] [PubMed]

G. Simone and G. Perozziello, “UV/Vis visible optical waveguides fabricated using organic-inorganic nanocomposite layers,” J. Nanosci. Nanotechnol. 11(3), 2057–2063 (2011).
[Crossref] [PubMed]

G. Simone and G. Perozziello, “Ca2+ Mediates the Adhesion of Breast Cancer Cells in Self-Assembled Multifunctional Microfluidic Chip prepared with Carbohydrate Beads,” Micro Nanosyst. 2(4), 261–268 (2010).
[Crossref]

G. Perozziello, F. Bundgaard, and O. Geschke, “Fluidic interconnections for microfluidic systems: a new integrated fluidic interconnection allowing plug ‘n’play functionality,” Sens. Actuators B Chem. 130(2), 947–953 (2008).
[Crossref]

G. Keramas, G. Perozziello, O. Geschke, and C. B. V. Christensen, “Development of a multiplex microarray microsystem,” Lab Chip 4(2), 152–158 (2004).
[Crossref] [PubMed]

Perri, A.

G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M. L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H. D. Espinosa, G. Cuda, and E. Di Fabrizio, “Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers,” RSC Advances 4(98), 55590–55598 (2014).
[Crossref]

Perri, A. M.

G. Perozziello, P. Candeloro, F. Gentile, M. L. Coluccio, M. Tallerico, A. De Grazia, A. Nicastri, A. M. Perri, E. Parrotta, F. Pardeo, R. Catalano, G. Cuda, and E. Di Fabrizio, “A microfluidic dialysis device for complex biological mixture SERS analysis,” Microelectron. Eng. 144, 37–41 (2015).
[Crossref]

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Pinho, D.

V. Faustino, D. Pinho, T. Yaginuma, R. C. Calhelha, I. C. Ferreira, and R. Lima, “Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells,” Biochip J. 8(1), 42–47 (2014).
[Crossref]

Proietti Zaccaria, R.

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Pujia, A.

F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, and E. Di Fabrizio, “Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context,” Nanoscale 2(10), 2230–2236 (2010).
[Crossref] [PubMed]

Puppels, G. J.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels, “In vitro and in vivo Raman spectroscopy of human skin,” Biospectroscopy 4(5), S31–S39 (1998).
[Crossref] [PubMed]

Romanato, F.

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. D. Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78, 125–131 (2005).
[Crossref]

Rondanina, E.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few-Molecule Surface-Enhanced Raman Scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

G. Perozziello, R. Catalano, M. Francardi, E. Rondanina, F. Pardeo, F. De Angelis, N. Malara, P. Candeloro, G. Morrone, and E. Di Fabrizio, “A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells,” Microelectron. Eng. 111, 314–319 (2013).
[Crossref]

Savas, T.

A. A. Yu, T. Savas, S. Cabrini, E. Difabrizio, H. I. Smith, and F. Stellacci, “High resolution printing of DNA feature on poly(methyl methacrylate) substrates using supramolecular nano-stamping,” J. Am. Chem. Soc. 127(48), 16774–16775 (2005).
[Crossref] [PubMed]

Scala, G.

F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, and E. Di Fabrizio, “Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context,” Nanoscale 2(10), 2230–2236 (2010).
[Crossref] [PubMed]

Scott, M. D.

J. M. Kwan, Q. Guo, D. L. Kyluik-Price, H. Ma, and M. D. Scott, “Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells,” Am. J. Hematol. 88(8), 682–689 (2013).
[Crossref] [PubMed]

Shafer, K. E.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

Simmons, B. A.

H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
[Crossref] [PubMed]

Simone, G.

G. Perozziello, G. Simone, N. Malara, R. La Rocca, R. Tallerico, R. Catalano, F. Pardeo, P. Candeloro, G. Cuda, E. Carbone, and E. Di Fabrizio, “Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations,” Electrophoresis 34(13), 1845–1851 (2013).
[Crossref] [PubMed]

G. Simone, G. Perozziello, E. Battista, F. De Angelis, P. Candeloro, F. Gentile, N. Malara, A. Manz, E. Carbone, P. Netti, and E. Di Fabrizio, “Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system,” Microelectron. Eng. 98, 668–671 (2012).
[Crossref]

G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M. L. Coluccio, E. Carbone, and E. Di Fabrizio, “Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition,” Small 8(18), 2886–2894 (2012).
[Crossref] [PubMed]

G. Simone and G. Perozziello, “UV/Vis visible optical waveguides fabricated using organic-inorganic nanocomposite layers,” J. Nanosci. Nanotechnol. 11(3), 2057–2063 (2011).
[Crossref] [PubMed]

G. Simone and G. Perozziello, “Ca2+ Mediates the Adhesion of Breast Cancer Cells in Self-Assembled Multifunctional Microfluidic Chip prepared with Carbohydrate Beads,” Micro Nanosyst. 2(4), 261–268 (2010).
[Crossref]

Singh, S.

H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
[Crossref] [PubMed]

Smith, H. I.

A. A. Yu, T. Savas, S. Cabrini, E. Difabrizio, H. I. Smith, and F. Stellacci, “High resolution printing of DNA feature on poly(methyl methacrylate) substrates using supramolecular nano-stamping,” J. Am. Chem. Soc. 127(48), 16774–16775 (2005).
[Crossref] [PubMed]

Sottile, R.

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

Stassi, G.

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

Stellacci, F.

A. A. Yu, T. Savas, S. Cabrini, E. Difabrizio, H. I. Smith, and F. Stellacci, “High resolution printing of DNA feature on poly(methyl methacrylate) substrates using supramolecular nano-stamping,” J. Am. Chem. Soc. 127(48), 16774–16775 (2005).
[Crossref] [PubMed]

Sun, Y.

Y. Zheng, J. Nguyen, C. Wang, and Y. Sun, “Electrical measurement of red blood cell deformability on a microfluidic device,” Lab Chip 13(16), 3275–3283 (2013).
[Crossref] [PubMed]

Tallerico, M.

G. Perozziello, P. Candeloro, F. Gentile, M. L. Coluccio, M. Tallerico, A. De Grazia, A. Nicastri, A. M. Perri, E. Parrotta, F. Pardeo, R. Catalano, G. Cuda, and E. Di Fabrizio, “A microfluidic dialysis device for complex biological mixture SERS analysis,” Microelectron. Eng. 144, 37–41 (2015).
[Crossref]

Tallerico, R.

G. Perozziello, G. Simone, N. Malara, R. La Rocca, R. Tallerico, R. Catalano, F. Pardeo, P. Candeloro, G. Cuda, E. Carbone, and E. Di Fabrizio, “Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations,” Electrophoresis 34(13), 1845–1851 (2013).
[Crossref] [PubMed]

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. De Cuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices,” Microelectron. Eng. 87(5), 798–801 (2010).
[Crossref]

Tirinato, L.

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M. L. Coluccio, E. Carbone, and E. Di Fabrizio, “Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition,” Small 8(18), 2886–2894 (2012).
[Crossref] [PubMed]

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. De Cuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices,” Microelectron. Eng. 87(5), 798–801 (2010).
[Crossref]

Todaro, M.

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

Toma, A.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few-Molecule Surface-Enhanced Raman Scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

F. De Angelis, M. Malerba, M. Patrini, E. Miele, G. Das, A. Toma, R. P. Zaccaria, and E. Di Fabrizio, “3D hollow nanostructures as building blocks for multifunctional plasmonics,” Nano Lett. 13(8), 3553–3558 (2013).
[Crossref] [PubMed]

Valiathan, M.

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

Volponi, J. V.

H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
[Crossref] [PubMed]

Wang, C.

Y. Zheng, J. Nguyen, C. Wang, and Y. Sun, “Electrical measurement of red blood cell deformability on a microfluidic device,” Lab Chip 13(16), 3275–3283 (2013).
[Crossref] [PubMed]

Wang, K. L.

A. Balandin, K. L. Wang, N. Kouklin, and S. Bandyopadhyay, “Raman spectroscopy of electrochemically self-assembled CdS quantum dots,” Appl. Phys. Lett. 76(2), 137–139 (2000).
[Crossref]

Wang, T. H.

Y. Zhang, S. Park, S. Yang, and T. H. Wang, “An all-in-one microfluidic device for parallel DNA extraction and gene analysis,” Biomed. Microdevices 12(6), 1043–1049 (2010).
[Crossref] [PubMed]

Watanabe, T. M.

T. Ichimura, L. D. Chiu, K. Fujita, S. Kawata, T. M. Watanabe, T. Yanagida, and H. Fujita, “Visualizing cell state transition using Raman spectroscopy,” PLoS One 9(1), e84478 (2014).
[Crossref] [PubMed]

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Wolthuis, R.

P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels, “In vitro and in vivo Raman spectroscopy of human skin,” Biospectroscopy 4(5), S31–S39 (1998).
[Crossref] [PubMed]

Wood, B. R.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

Wu, H.

H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
[Crossref] [PubMed]

Xu, X. L.

L. Lu, X. L. Xu, W. T. Liang, and H. F. Lu, “Raman analysis of CdSe/CdS core-shell quantum dots with different CdS shell thickness,” J. Phys. Condens. Matter 19(40), 406221 (2007).
[Crossref] [PubMed]

Yaginuma, T.

V. Faustino, D. Pinho, T. Yaginuma, R. C. Calhelha, I. C. Ferreira, and R. Lima, “Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells,” Biochip J. 8(1), 42–47 (2014).
[Crossref]

Yanagida, T.

T. Ichimura, L. D. Chiu, K. Fujita, S. Kawata, T. M. Watanabe, T. Yanagida, and H. Fujita, “Visualizing cell state transition using Raman spectroscopy,” PLoS One 9(1), e84478 (2014).
[Crossref] [PubMed]

Yang, S.

Y. Zhang, S. Park, S. Yang, and T. H. Wang, “An all-in-one microfluidic device for parallel DNA extraction and gene analysis,” Biomed. Microdevices 12(6), 1043–1049 (2010).
[Crossref] [PubMed]

Yu, A. A.

A. A. Yu, T. Savas, S. Cabrini, E. Difabrizio, H. I. Smith, and F. Stellacci, “High resolution printing of DNA feature on poly(methyl methacrylate) substrates using supramolecular nano-stamping,” J. Am. Chem. Soc. 127(48), 16774–16775 (2005).
[Crossref] [PubMed]

Zaccaria, R. P.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few-Molecule Surface-Enhanced Raman Scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

F. De Angelis, M. Malerba, M. Patrini, E. Miele, G. Das, A. Toma, R. P. Zaccaria, and E. Di Fabrizio, “3D hollow nanostructures as building blocks for multifunctional plasmonics,” Nano Lett. 13(8), 3553–3558 (2013).
[Crossref] [PubMed]

Zachariah, E.

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, S. Park, S. Yang, and T. H. Wang, “An all-in-one microfluidic device for parallel DNA extraction and gene analysis,” Biomed. Microdevices 12(6), 1043–1049 (2010).
[Crossref] [PubMed]

Zheng, Y.

Y. Zheng, J. Nguyen, C. Wang, and Y. Sun, “Electrical measurement of red blood cell deformability on a microfluidic device,” Lab Chip 13(16), 3275–3283 (2013).
[Crossref] [PubMed]

Zhukovsky, S. V.

Adv. Mater. (1)

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few-Molecule Surface-Enhanced Raman Scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Am. J. Hematol. (1)

J. M. Kwan, Q. Guo, D. L. Kyluik-Price, H. Ma, and M. D. Scott, “Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells,” Am. J. Hematol. 88(8), 682–689 (2013).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387(5), 1691–1703 (2007).
[Crossref] [PubMed]

Analyst (Lond.) (1)

K. Liu and Z. H. Fan, “Thermoplastic microfluidic devices and their applications in protein and DNA analysis,” Analyst (Lond.) 136(7), 1288–1297 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

A. Balandin, K. L. Wang, N. Kouklin, and S. Bandyopadhyay, “Raman spectroscopy of electrochemically self-assembled CdS quantum dots,” Appl. Phys. Lett. 76(2), 137–139 (2000).
[Crossref]

Appl. Spectrosc. (1)

M. J. Pelletier, “Quantitative analysis using Raman spectrometry,” Appl. Spectrosc. 57(1), 20–42 (2003).
[Crossref] [PubMed]

Biochip J. (1)

V. Faustino, D. Pinho, T. Yaginuma, R. C. Calhelha, I. C. Ferreira, and R. Lima, “Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells,” Biochip J. 8(1), 42–47 (2014).
[Crossref]

Biomed. Microdevices (1)

Y. Zhang, S. Park, S. Yang, and T. H. Wang, “An all-in-one microfluidic device for parallel DNA extraction and gene analysis,” Biomed. Microdevices 12(6), 1043–1049 (2010).
[Crossref] [PubMed]

Biospectroscopy (1)

P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels, “In vitro and in vivo Raman spectroscopy of human skin,” Biospectroscopy 4(5), S31–S39 (1998).
[Crossref] [PubMed]

Electrophoresis (1)

G. Perozziello, G. Simone, N. Malara, R. La Rocca, R. Tallerico, R. Catalano, F. Pardeo, P. Candeloro, G. Cuda, E. Carbone, and E. Di Fabrizio, “Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations,” Electrophoresis 34(13), 1845–1851 (2013).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

A. A. Yu, T. Savas, S. Cabrini, E. Difabrizio, H. I. Smith, and F. Stellacci, “High resolution printing of DNA feature on poly(methyl methacrylate) substrates using supramolecular nano-stamping,” J. Am. Chem. Soc. 127(48), 16774–16775 (2005).
[Crossref] [PubMed]

J. Immunol. (1)

R. Tallerico, M. Todaro, S. Di Franco, C. Maccalli, C. Garofalo, R. Sottile, C. Palmieri, L. Tirinato, P. N. Pangigadde, R. La Rocca, O. Mandelboim, G. Stassi, E. Di Fabrizio, G. Parmiani, A. Moretta, F. Dieli, K. Kärre, and E. Carbone, “Human NK Cells Selective Targeting of Colon Cancer-Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules,” J. Immunol. 190(5), 2381–2390 (2013).
[Crossref] [PubMed]

J. Nanosci. Nanotechnol. (1)

G. Simone and G. Perozziello, “UV/Vis visible optical waveguides fabricated using organic-inorganic nanocomposite layers,” J. Nanosci. Nanotechnol. 11(3), 2057–2063 (2011).
[Crossref] [PubMed]

J. Phys. Condens. Matter (1)

L. Lu, X. L. Xu, W. T. Liang, and H. F. Lu, “Raman analysis of CdSe/CdS core-shell quantum dots with different CdS shell thickness,” J. Phys. Condens. Matter 19(40), 406221 (2007).
[Crossref] [PubMed]

Lab Chip (2)

G. Keramas, G. Perozziello, O. Geschke, and C. B. V. Christensen, “Development of a multiplex microarray microsystem,” Lab Chip 4(2), 152–158 (2004).
[Crossref] [PubMed]

Y. Zheng, J. Nguyen, C. Wang, and Y. Sun, “Electrical measurement of red blood cell deformability on a microfluidic device,” Lab Chip 13(16), 3275–3283 (2013).
[Crossref] [PubMed]

Micro Nanosyst. (1)

G. Simone and G. Perozziello, “Ca2+ Mediates the Adhesion of Breast Cancer Cells in Self-Assembled Multifunctional Microfluidic Chip prepared with Carbohydrate Beads,” Micro Nanosyst. 2(4), 261–268 (2010).
[Crossref]

Microelectron. Eng. (5)

G. Simone, G. Perozziello, E. Battista, F. De Angelis, P. Candeloro, F. Gentile, N. Malara, A. Manz, E. Carbone, P. Netti, and E. Di Fabrizio, “Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system,” Microelectron. Eng. 98, 668–671 (2012).
[Crossref]

G. Perozziello, R. Catalano, M. Francardi, E. Rondanina, F. Pardeo, F. De Angelis, N. Malara, P. Candeloro, G. Morrone, and E. Di Fabrizio, “A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells,” Microelectron. Eng. 111, 314–319 (2013).
[Crossref]

G. Perozziello, P. Candeloro, F. Gentile, M. L. Coluccio, M. Tallerico, A. De Grazia, A. Nicastri, A. M. Perri, E. Parrotta, F. Pardeo, R. Catalano, G. Cuda, and E. Di Fabrizio, “A microfluidic dialysis device for complex biological mixture SERS analysis,” Microelectron. Eng. 144, 37–41 (2015).
[Crossref]

D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Romanato, and E. D. Fabrizio, “Laser trapping and micro-manipulation using optical vortices,” Microelectron. Eng. 78, 125–131 (2005).
[Crossref]

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. De Cuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices,” Microelectron. Eng. 87(5), 798–801 (2010).
[Crossref]

Nano Lett. (1)

F. De Angelis, M. Malerba, M. Patrini, E. Miele, G. Das, A. Toma, R. P. Zaccaria, and E. Di Fabrizio, “3D hollow nanostructures as building blocks for multifunctional plasmonics,” Nano Lett. 13(8), 3553–3558 (2013).
[Crossref] [PubMed]

Nanoscale (2)

F. De Angelis, C. Liberale, M. L. Coluccio, G. Cojoc, and E. Di Fabrizio, “Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies,” Nanoscale 3(7), 2689–2696 (2011).
[Crossref] [PubMed]

F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, and E. Di Fabrizio, “Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context,” Nanoscale 2(10), 2230–2236 (2010).
[Crossref] [PubMed]

Nature (1)

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Med. Biol. (1)

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

PLoS One (2)

T. Ichimura, L. D. Chiu, K. Fujita, S. Kawata, T. M. Watanabe, T. Yanagida, and H. Fujita, “Visualizing cell state transition using Raman spectroscopy,” PLoS One 9(1), e84478 (2014).
[Crossref] [PubMed]

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells,” PLoS One 5(4), e10427 (2010).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 108(9), 3809–3814 (2011).
[Crossref] [PubMed]

RSC Advances (1)

G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M. L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H. D. Espinosa, G. Cuda, and E. Di Fabrizio, “Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers,” RSC Advances 4(98), 55590–55598 (2014).
[Crossref]

Sci. Adv. (1)

M. L. Coluccio, F. Gentile, G. Das, A. Nicastri, A. M. Perri, P. Candeloro, G. Perozziello, R. Proietti Zaccaria, J. S. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, and E. Di Fabrizio, “Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain,” Sci. Adv. 1(8), e1500487 (2015).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

G. Perozziello, F. Bundgaard, and O. Geschke, “Fluidic interconnections for microfluidic systems: a new integrated fluidic interconnection allowing plug ‘n’play functionality,” Sens. Actuators B Chem. 130(2), 947–953 (2008).
[Crossref]

Sensors (Basel) (1)

M. L. Coluccio, F. Gentile, M. Francardi, G. Perozziello, N. Malara, P. Candeloro, and E. Di Fabrizio, “Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications,” Sensors (Basel) 14(4), 6056–6083 (2014).
[Crossref] [PubMed]

Small (1)

G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M. L. Coluccio, E. Carbone, and E. Di Fabrizio, “Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition,” Small 8(18), 2886–2894 (2012).
[Crossref] [PubMed]

Other (6)

H. C. Tekin, C. Scherz, and M. A. M. Gijs, “Microfluidic device for analysis of protein biomarkers using magnetic bead surface coverage detection,” in Proceedings of the 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS, 2011).

J. Wu, X. Z. Wu, T. Huang, and J. Pawliszyn, Analysis of Proteins by CE, CIEF, and Microfluidic Devices with Whole-Column-Imaging Detection, M. A. Strege, A. L. Lagu, eds. (Humana Press, 2004).

N. Colthup, Introduction to Infrared and Raman Spectroscopy (Amsterdam: Elsevier, 2012).

H. M. Shapiro, Practical Flow Cytometry (John Wiley & Sons Inc, 2005).

M. G. Ormerod and D. Novo, “Flow cytometry: a basic introduction”, MG Ormerod, (2008).

W. D. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction (John Wiley & Sons Inc., 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic representation of the microfluidic device working principle: 1. Cell trapping: [I] represents the inlet; [T] represents the position of the trap; [C] represents the constriction in width of the channel; [O] represents the outlet; 2. Raman analysis: Raman laser hits the plasmonic nanodimers where the cell is trapped and the Raman spectrum of the cell is recorded; 3. Cell deformation: The pressure deforms the cell that moves towards the constriction; 4. Cell realising: The cell passes the constriction and another cell is trapped.
Fig. 2
Fig. 2 Assembled microfluidic device.
Fig. 3
Fig. 3 (A) Optical image of an assembled microfluidic chip; (B) a channel in which a small not-bonded area is present; the magnification of (B) depicts a defined bonded channel ready to accommodate cells. (C) bonding tests results: The x-axis and y-axis report, respectively, the applied force and the time used in the tests; the different colors represent different bonding temperatures; on the z-axis the percentage of the bonded area is shown (100%* indicates that even if the channels are bonded they collapse, 100% is the value for a correct bonding).
Fig. 4
Fig. 4 Scanning electron image of the microfluidic trap and the integrated array of nanodimers. (A): Top view; (B): isometric view; (C): zoom in the area where the nanodimers are integrated.
Fig. 5
Fig. 5 Sequence of the cell analysis mechanism: (1) the cell approaches the trap followed by other cells (t = 0s); (2) the cell is trapped and the flow is stopped (t = 2s), in this phase Raman measurements can be performed on the cell (t = 4s); (3) the increasing pressure due to clogged channel deform the cell forcing it through the trap (t = 6s); (4) the cell is released continuing to move over the trap while other cells are approaching the trap aligning themselves to it (t = 8s).
Fig. 6
Fig. 6 Raman spectra collected from red blood cells (RBC) on nanodimers (used power for the enhanced Raman measurements is 10% of the total) and on a flat substrate (used power for the standard Raman measurements is 100% of the total). The spectrum recorder on nanodimers exhibits an higher signal and is more resolved.
Fig. 7
Fig. 7 Raman spectra collected in three different experiments with different cell lines, in the proximity of the microfluidic traps. From top to bottom average spectra of red blood cells (RBC), peripheral blood lymphocytes (PBL), and K562 tumor cells from leukemia are reported. See the text for assignment of the main peaks.

Metrics