Abstract

The possibility of using surface enhanced Raman scattering (SERS) detection method for bromate-anion determination and quantitative evaluation in water has been demonstrated for the first time. The decreasing of Rhodamine 6G (R6G) Raman peaks intensity has been used as the analytical signal corresponding to the catalytic oxidation by bromate. Electrostatically immobilized silver nanoparticles have been proven as efficient SERS-active substrate. A linear relationship between the Raman intensity of Rh6G as a function of BrO3- was observed in the range of 0 – 10−7 М and the detect limit was as low as 10−10 M (nearly 0.01 μg/L). The results prove the potential of the proposed method for further application in the development of new portable SERS-based sensors for drinking water monitoring with high sensitivity, simplicity and the low cost.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Real-time optofluidic surface-enhanced Raman spectroscopy based on a graphene oxide/gold nanorod nanocomposite

Pilar G. Vianna, Daniel Grasseschi, Sergio H. Domingues, and Christiano J. S. de Matos
Opt. Express 26(18) 22698-22708 (2018)

Multifunctional paper strip based on GO-veiled Ag nanoparticles with highly SERS sensitive and deliverable properties for high-performance molecular detection

Cheng Yang, Yuanyuan Xu, Minghong Wang, Tianming Li, Yanyan Huo, Chuanxi Yang, and Baoyuan Man
Opt. Express 26(8) 10023-10037 (2018)

Optofluidic in-fiber integrated surface-enhanced Raman spectroscopy detection based on a hollow optical fiber with a suspended core

Danheng Gao, Xinghua Yang, Pingping Teng, Zhihai Liu, Jun Yang, Depeng Kong, Jianzhong Zhang, Meng Luo, Zhanao Li, Fengjun Tian, and Libo Yuan
Opt. Lett. 44(21) 5173-5176 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. R. Haag and J. Hoigné, “Ozonation of bromide-containing water: Kinetics of formation of hypobromous acid and bromate,” Environ. Sci. Technol. 17(5), 261–267 (1983).
    [Crossref]
  2. Disinfectants and disinfectant by-products. International Programme on Chemical Safety, Geneva, World Health Organization, 2000. (Environmental Health Criteria 216).
  3. Bromate in Drinking-water, Background document for development of World Health Organization Guidelines for Drinking-water Quality. World Health Organization 2005.
  4. Bromate. Guidelines for Canadian drinking water quality — supporting document. Ottawa, Ontario, Health Canada, Environmental Health Directorate, Health Protection Branch, 1999.
  5. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  6. S. V. Gaponenko and D. V. Guzatov, “Possible rationale for ultimate enhancement factors in single molecule Raman spectroscopy,” Chem. Phys. Lett. 477(4-6), 411–414 (2009).
    [Crossref]
  7. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering (Springer-Verlag, 2006)
  8. J. Kneipp, H. Kneipp, and K. Kneipp, “SERS - A Single-Molecule and Nanoscale Tool for Bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
    [Crossref] [PubMed]
  9. R. Aroca, “Surface-Enhanced Vibrational Spectroscopy,” (Chichester, UK: Wiley&Sons, 2006), 164–176.
  10. J. Vongsvivut, E. G. Robertson, and D. McNaughton, “Surface-enhanced Raman spectroscopic analysis of fonofos pesticide adsorbed on silver and gold nanoparticles,” J. Raman Spectrosc. 41(10), 1137–1148 (2010).
    [Crossref]
  11. N. C. Dingari, G. L. Horowitz, J. W. Kang, R. R. Dasari, and I. Barman, “Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation,” PLoS One 7(2), e32406 (2012).
    [Crossref] [PubMed]
  12. K. A. Mahmoud and M. Zourob, “Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT),” Analyst (Lond.) 138(9), 2712–2719 (2013).
    [Crossref] [PubMed]
  13. A. Yu. Panarin, I. A. Khodasevich, O. L. Gladkova, and S. N. Terekhov, “Determination of Antimony by Surface-Enhanced Raman Spectroscopy,” Appl. Spectrosc. 68(3), 297–306 (2014).
    [Crossref] [PubMed]
  14. Q. Liu, J. Dong, Y. Luo, G. Wen, L. Wei, A. Liang, and Zh. Jiang, “A highly sensitive SERS method for the determination of nitrogen oxide in air based on the signal amplification effect of nitrite catalyzing the bromate oxidization of a rhodamine 6G probe,” RSC Advances 4(21), 10955–10959 (2014).
    [Crossref]
  15. J. A. Creighton, C. G. Blatchford, and M. G. Albrecht, “Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver and gold solid particles of size comparable to the excitation wavelength,” J. Chem. Soc. Faraday II. 75, 790–798 (1979).
    [Crossref]
  16. K. Kneipp, H. Kneipp, and M. Rentsch, “SERS on 1,1´–diethyl–2,2´ cyanine dye adsorbed on colloidal silver,” J. Mol. Struct. 156(3-4), 331–340 (1987).
    [Crossref]
  17. A. Rumyantseva, S. Kostcheev, P. M. Adam, S. V. Gaponenko, S. V. Vaschenko, O. S. Kulakovich, A. A. Ramanenka, D. V. Guzatov, D. Korbutyak, V. Dzhagan, A. Stroyuk, and V. Shvalagin, “Nonresonant Surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles,” ACS Nano 7(4), 3420–3426 (2013).
    [Crossref] [PubMed]
  18. P. C. Lee and D. Meisel, “Adsorption and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
    [Crossref]
  19. P. Hilderbrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
    [Crossref]
  20. A. V. Baranov and Ya. Bobovich, “Giant combinational scattering as structural analytical method in material research,” Opt. Spectrosc. (Engng Trans.)  52, 231 (1982).
  21. C. S. Rout, A. Kumar, and T. S. Fisher, “Carbon nanowalls amplify the surface-enhanced Raman scattering from Ag nanoparticles,” Nanotechnology 22(39), 395704 (2011).
    [Crossref] [PubMed]
  22. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  23. Laboratory and Field Methods for Determination of Bromate in Drinking Water, Luxembourg: Office for Official Publications of the European Communities, 2000.

2014 (2)

Q. Liu, J. Dong, Y. Luo, G. Wen, L. Wei, A. Liang, and Zh. Jiang, “A highly sensitive SERS method for the determination of nitrogen oxide in air based on the signal amplification effect of nitrite catalyzing the bromate oxidization of a rhodamine 6G probe,” RSC Advances 4(21), 10955–10959 (2014).
[Crossref]

A. Yu. Panarin, I. A. Khodasevich, O. L. Gladkova, and S. N. Terekhov, “Determination of Antimony by Surface-Enhanced Raman Spectroscopy,” Appl. Spectrosc. 68(3), 297–306 (2014).
[Crossref] [PubMed]

2013 (2)

K. A. Mahmoud and M. Zourob, “Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT),” Analyst (Lond.) 138(9), 2712–2719 (2013).
[Crossref] [PubMed]

A. Rumyantseva, S. Kostcheev, P. M. Adam, S. V. Gaponenko, S. V. Vaschenko, O. S. Kulakovich, A. A. Ramanenka, D. V. Guzatov, D. Korbutyak, V. Dzhagan, A. Stroyuk, and V. Shvalagin, “Nonresonant Surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles,” ACS Nano 7(4), 3420–3426 (2013).
[Crossref] [PubMed]

2012 (1)

N. C. Dingari, G. L. Horowitz, J. W. Kang, R. R. Dasari, and I. Barman, “Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation,” PLoS One 7(2), e32406 (2012).
[Crossref] [PubMed]

2011 (1)

C. S. Rout, A. Kumar, and T. S. Fisher, “Carbon nanowalls amplify the surface-enhanced Raman scattering from Ag nanoparticles,” Nanotechnology 22(39), 395704 (2011).
[Crossref] [PubMed]

2010 (1)

J. Vongsvivut, E. G. Robertson, and D. McNaughton, “Surface-enhanced Raman spectroscopic analysis of fonofos pesticide adsorbed on silver and gold nanoparticles,” J. Raman Spectrosc. 41(10), 1137–1148 (2010).
[Crossref]

2009 (1)

S. V. Gaponenko and D. V. Guzatov, “Possible rationale for ultimate enhancement factors in single molecule Raman spectroscopy,” Chem. Phys. Lett. 477(4-6), 411–414 (2009).
[Crossref]

2008 (1)

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS - A Single-Molecule and Nanoscale Tool for Bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

1997 (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1987 (1)

K. Kneipp, H. Kneipp, and M. Rentsch, “SERS on 1,1´–diethyl–2,2´ cyanine dye adsorbed on colloidal silver,” J. Mol. Struct. 156(3-4), 331–340 (1987).
[Crossref]

1984 (1)

P. Hilderbrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

1983 (1)

W. R. Haag and J. Hoigné, “Ozonation of bromide-containing water: Kinetics of formation of hypobromous acid and bromate,” Environ. Sci. Technol. 17(5), 261–267 (1983).
[Crossref]

1982 (2)

A. V. Baranov and Ya. Bobovich, “Giant combinational scattering as structural analytical method in material research,” Opt. Spectrosc. (Engng Trans.)  52, 231 (1982).

P. C. Lee and D. Meisel, “Adsorption and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

1979 (1)

J. A. Creighton, C. G. Blatchford, and M. G. Albrecht, “Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver and gold solid particles of size comparable to the excitation wavelength,” J. Chem. Soc. Faraday II. 75, 790–798 (1979).
[Crossref]

Adam, P. M.

A. Rumyantseva, S. Kostcheev, P. M. Adam, S. V. Gaponenko, S. V. Vaschenko, O. S. Kulakovich, A. A. Ramanenka, D. V. Guzatov, D. Korbutyak, V. Dzhagan, A. Stroyuk, and V. Shvalagin, “Nonresonant Surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles,” ACS Nano 7(4), 3420–3426 (2013).
[Crossref] [PubMed]

Albrecht, M. G.

J. A. Creighton, C. G. Blatchford, and M. G. Albrecht, “Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver and gold solid particles of size comparable to the excitation wavelength,” J. Chem. Soc. Faraday II. 75, 790–798 (1979).
[Crossref]

Baranov, A. V.

A. V. Baranov and Ya. Bobovich, “Giant combinational scattering as structural analytical method in material research,” Opt. Spectrosc. (Engng Trans.)  52, 231 (1982).

Barman, I.

N. C. Dingari, G. L. Horowitz, J. W. Kang, R. R. Dasari, and I. Barman, “Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation,” PLoS One 7(2), e32406 (2012).
[Crossref] [PubMed]

Blatchford, C. G.

J. A. Creighton, C. G. Blatchford, and M. G. Albrecht, “Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver and gold solid particles of size comparable to the excitation wavelength,” J. Chem. Soc. Faraday II. 75, 790–798 (1979).
[Crossref]

Bobovich, Ya.

A. V. Baranov and Ya. Bobovich, “Giant combinational scattering as structural analytical method in material research,” Opt. Spectrosc. (Engng Trans.)  52, 231 (1982).

Creighton, J. A.

J. A. Creighton, C. G. Blatchford, and M. G. Albrecht, “Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver and gold solid particles of size comparable to the excitation wavelength,” J. Chem. Soc. Faraday II. 75, 790–798 (1979).
[Crossref]

Dasari, R. R.

N. C. Dingari, G. L. Horowitz, J. W. Kang, R. R. Dasari, and I. Barman, “Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation,” PLoS One 7(2), e32406 (2012).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Dingari, N. C.

N. C. Dingari, G. L. Horowitz, J. W. Kang, R. R. Dasari, and I. Barman, “Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation,” PLoS One 7(2), e32406 (2012).
[Crossref] [PubMed]

Dong, J.

Q. Liu, J. Dong, Y. Luo, G. Wen, L. Wei, A. Liang, and Zh. Jiang, “A highly sensitive SERS method for the determination of nitrogen oxide in air based on the signal amplification effect of nitrite catalyzing the bromate oxidization of a rhodamine 6G probe,” RSC Advances 4(21), 10955–10959 (2014).
[Crossref]

Dzhagan, V.

A. Rumyantseva, S. Kostcheev, P. M. Adam, S. V. Gaponenko, S. V. Vaschenko, O. S. Kulakovich, A. A. Ramanenka, D. V. Guzatov, D. Korbutyak, V. Dzhagan, A. Stroyuk, and V. Shvalagin, “Nonresonant Surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles,” ACS Nano 7(4), 3420–3426 (2013).
[Crossref] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Fisher, T. S.

C. S. Rout, A. Kumar, and T. S. Fisher, “Carbon nanowalls amplify the surface-enhanced Raman scattering from Ag nanoparticles,” Nanotechnology 22(39), 395704 (2011).
[Crossref] [PubMed]

Gaponenko, S. V.

A. Rumyantseva, S. Kostcheev, P. M. Adam, S. V. Gaponenko, S. V. Vaschenko, O. S. Kulakovich, A. A. Ramanenka, D. V. Guzatov, D. Korbutyak, V. Dzhagan, A. Stroyuk, and V. Shvalagin, “Nonresonant Surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles,” ACS Nano 7(4), 3420–3426 (2013).
[Crossref] [PubMed]

S. V. Gaponenko and D. V. Guzatov, “Possible rationale for ultimate enhancement factors in single molecule Raman spectroscopy,” Chem. Phys. Lett. 477(4-6), 411–414 (2009).
[Crossref]

Gladkova, O. L.

Guzatov, D. V.

A. Rumyantseva, S. Kostcheev, P. M. Adam, S. V. Gaponenko, S. V. Vaschenko, O. S. Kulakovich, A. A. Ramanenka, D. V. Guzatov, D. Korbutyak, V. Dzhagan, A. Stroyuk, and V. Shvalagin, “Nonresonant Surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles,” ACS Nano 7(4), 3420–3426 (2013).
[Crossref] [PubMed]

S. V. Gaponenko and D. V. Guzatov, “Possible rationale for ultimate enhancement factors in single molecule Raman spectroscopy,” Chem. Phys. Lett. 477(4-6), 411–414 (2009).
[Crossref]

Haag, W. R.

W. R. Haag and J. Hoigné, “Ozonation of bromide-containing water: Kinetics of formation of hypobromous acid and bromate,” Environ. Sci. Technol. 17(5), 261–267 (1983).
[Crossref]

Hilderbrandt, P.

P. Hilderbrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

Hoigné, J.

W. R. Haag and J. Hoigné, “Ozonation of bromide-containing water: Kinetics of formation of hypobromous acid and bromate,” Environ. Sci. Technol. 17(5), 261–267 (1983).
[Crossref]

Horowitz, G. L.

N. C. Dingari, G. L. Horowitz, J. W. Kang, R. R. Dasari, and I. Barman, “Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation,” PLoS One 7(2), e32406 (2012).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jiang, Zh.

Q. Liu, J. Dong, Y. Luo, G. Wen, L. Wei, A. Liang, and Zh. Jiang, “A highly sensitive SERS method for the determination of nitrogen oxide in air based on the signal amplification effect of nitrite catalyzing the bromate oxidization of a rhodamine 6G probe,” RSC Advances 4(21), 10955–10959 (2014).
[Crossref]

Kang, J. W.

N. C. Dingari, G. L. Horowitz, J. W. Kang, R. R. Dasari, and I. Barman, “Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation,” PLoS One 7(2), e32406 (2012).
[Crossref] [PubMed]

Khodasevich, I. A.

Kneipp, H.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS - A Single-Molecule and Nanoscale Tool for Bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

K. Kneipp, H. Kneipp, and M. Rentsch, “SERS on 1,1´–diethyl–2,2´ cyanine dye adsorbed on colloidal silver,” J. Mol. Struct. 156(3-4), 331–340 (1987).
[Crossref]

Kneipp, J.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS - A Single-Molecule and Nanoscale Tool for Bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

Kneipp, K.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS - A Single-Molecule and Nanoscale Tool for Bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

K. Kneipp, H. Kneipp, and M. Rentsch, “SERS on 1,1´–diethyl–2,2´ cyanine dye adsorbed on colloidal silver,” J. Mol. Struct. 156(3-4), 331–340 (1987).
[Crossref]

Korbutyak, D.

A. Rumyantseva, S. Kostcheev, P. M. Adam, S. V. Gaponenko, S. V. Vaschenko, O. S. Kulakovich, A. A. Ramanenka, D. V. Guzatov, D. Korbutyak, V. Dzhagan, A. Stroyuk, and V. Shvalagin, “Nonresonant Surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles,” ACS Nano 7(4), 3420–3426 (2013).
[Crossref] [PubMed]

Kostcheev, S.

A. Rumyantseva, S. Kostcheev, P. M. Adam, S. V. Gaponenko, S. V. Vaschenko, O. S. Kulakovich, A. A. Ramanenka, D. V. Guzatov, D. Korbutyak, V. Dzhagan, A. Stroyuk, and V. Shvalagin, “Nonresonant Surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles,” ACS Nano 7(4), 3420–3426 (2013).
[Crossref] [PubMed]

Kulakovich, O. S.

A. Rumyantseva, S. Kostcheev, P. M. Adam, S. V. Gaponenko, S. V. Vaschenko, O. S. Kulakovich, A. A. Ramanenka, D. V. Guzatov, D. Korbutyak, V. Dzhagan, A. Stroyuk, and V. Shvalagin, “Nonresonant Surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles,” ACS Nano 7(4), 3420–3426 (2013).
[Crossref] [PubMed]

Kumar, A.

C. S. Rout, A. Kumar, and T. S. Fisher, “Carbon nanowalls amplify the surface-enhanced Raman scattering from Ag nanoparticles,” Nanotechnology 22(39), 395704 (2011).
[Crossref] [PubMed]

Lee, P. C.

P. C. Lee and D. Meisel, “Adsorption and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

Liang, A.

Q. Liu, J. Dong, Y. Luo, G. Wen, L. Wei, A. Liang, and Zh. Jiang, “A highly sensitive SERS method for the determination of nitrogen oxide in air based on the signal amplification effect of nitrite catalyzing the bromate oxidization of a rhodamine 6G probe,” RSC Advances 4(21), 10955–10959 (2014).
[Crossref]

Liu, Q.

Q. Liu, J. Dong, Y. Luo, G. Wen, L. Wei, A. Liang, and Zh. Jiang, “A highly sensitive SERS method for the determination of nitrogen oxide in air based on the signal amplification effect of nitrite catalyzing the bromate oxidization of a rhodamine 6G probe,” RSC Advances 4(21), 10955–10959 (2014).
[Crossref]

Luo, Y.

Q. Liu, J. Dong, Y. Luo, G. Wen, L. Wei, A. Liang, and Zh. Jiang, “A highly sensitive SERS method for the determination of nitrogen oxide in air based on the signal amplification effect of nitrite catalyzing the bromate oxidization of a rhodamine 6G probe,” RSC Advances 4(21), 10955–10959 (2014).
[Crossref]

Mahmoud, K. A.

K. A. Mahmoud and M. Zourob, “Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT),” Analyst (Lond.) 138(9), 2712–2719 (2013).
[Crossref] [PubMed]

McNaughton, D.

J. Vongsvivut, E. G. Robertson, and D. McNaughton, “Surface-enhanced Raman spectroscopic analysis of fonofos pesticide adsorbed on silver and gold nanoparticles,” J. Raman Spectrosc. 41(10), 1137–1148 (2010).
[Crossref]

Meisel, D.

P. C. Lee and D. Meisel, “Adsorption and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Panarin, A. Yu.

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Ramanenka, A. A.

A. Rumyantseva, S. Kostcheev, P. M. Adam, S. V. Gaponenko, S. V. Vaschenko, O. S. Kulakovich, A. A. Ramanenka, D. V. Guzatov, D. Korbutyak, V. Dzhagan, A. Stroyuk, and V. Shvalagin, “Nonresonant Surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles,” ACS Nano 7(4), 3420–3426 (2013).
[Crossref] [PubMed]

Rentsch, M.

K. Kneipp, H. Kneipp, and M. Rentsch, “SERS on 1,1´–diethyl–2,2´ cyanine dye adsorbed on colloidal silver,” J. Mol. Struct. 156(3-4), 331–340 (1987).
[Crossref]

Robertson, E. G.

J. Vongsvivut, E. G. Robertson, and D. McNaughton, “Surface-enhanced Raman spectroscopic analysis of fonofos pesticide adsorbed on silver and gold nanoparticles,” J. Raman Spectrosc. 41(10), 1137–1148 (2010).
[Crossref]

Rout, C. S.

C. S. Rout, A. Kumar, and T. S. Fisher, “Carbon nanowalls amplify the surface-enhanced Raman scattering from Ag nanoparticles,” Nanotechnology 22(39), 395704 (2011).
[Crossref] [PubMed]

Rumyantseva, A.

A. Rumyantseva, S. Kostcheev, P. M. Adam, S. V. Gaponenko, S. V. Vaschenko, O. S. Kulakovich, A. A. Ramanenka, D. V. Guzatov, D. Korbutyak, V. Dzhagan, A. Stroyuk, and V. Shvalagin, “Nonresonant Surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles,” ACS Nano 7(4), 3420–3426 (2013).
[Crossref] [PubMed]

Shvalagin, V.

A. Rumyantseva, S. Kostcheev, P. M. Adam, S. V. Gaponenko, S. V. Vaschenko, O. S. Kulakovich, A. A. Ramanenka, D. V. Guzatov, D. Korbutyak, V. Dzhagan, A. Stroyuk, and V. Shvalagin, “Nonresonant Surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles,” ACS Nano 7(4), 3420–3426 (2013).
[Crossref] [PubMed]

Stockburger, M.

P. Hilderbrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

Stroyuk, A.

A. Rumyantseva, S. Kostcheev, P. M. Adam, S. V. Gaponenko, S. V. Vaschenko, O. S. Kulakovich, A. A. Ramanenka, D. V. Guzatov, D. Korbutyak, V. Dzhagan, A. Stroyuk, and V. Shvalagin, “Nonresonant Surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles,” ACS Nano 7(4), 3420–3426 (2013).
[Crossref] [PubMed]

Terekhov, S. N.

Vaschenko, S. V.

A. Rumyantseva, S. Kostcheev, P. M. Adam, S. V. Gaponenko, S. V. Vaschenko, O. S. Kulakovich, A. A. Ramanenka, D. V. Guzatov, D. Korbutyak, V. Dzhagan, A. Stroyuk, and V. Shvalagin, “Nonresonant Surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles,” ACS Nano 7(4), 3420–3426 (2013).
[Crossref] [PubMed]

Vongsvivut, J.

J. Vongsvivut, E. G. Robertson, and D. McNaughton, “Surface-enhanced Raman spectroscopic analysis of fonofos pesticide adsorbed on silver and gold nanoparticles,” J. Raman Spectrosc. 41(10), 1137–1148 (2010).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wei, L.

Q. Liu, J. Dong, Y. Luo, G. Wen, L. Wei, A. Liang, and Zh. Jiang, “A highly sensitive SERS method for the determination of nitrogen oxide in air based on the signal amplification effect of nitrite catalyzing the bromate oxidization of a rhodamine 6G probe,” RSC Advances 4(21), 10955–10959 (2014).
[Crossref]

Wen, G.

Q. Liu, J. Dong, Y. Luo, G. Wen, L. Wei, A. Liang, and Zh. Jiang, “A highly sensitive SERS method for the determination of nitrogen oxide in air based on the signal amplification effect of nitrite catalyzing the bromate oxidization of a rhodamine 6G probe,” RSC Advances 4(21), 10955–10959 (2014).
[Crossref]

Zourob, M.

K. A. Mahmoud and M. Zourob, “Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT),” Analyst (Lond.) 138(9), 2712–2719 (2013).
[Crossref] [PubMed]

ACS Nano (1)

A. Rumyantseva, S. Kostcheev, P. M. Adam, S. V. Gaponenko, S. V. Vaschenko, O. S. Kulakovich, A. A. Ramanenka, D. V. Guzatov, D. Korbutyak, V. Dzhagan, A. Stroyuk, and V. Shvalagin, “Nonresonant Surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles,” ACS Nano 7(4), 3420–3426 (2013).
[Crossref] [PubMed]

Analyst (Lond.) (1)

K. A. Mahmoud and M. Zourob, “Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT),” Analyst (Lond.) 138(9), 2712–2719 (2013).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

S. V. Gaponenko and D. V. Guzatov, “Possible rationale for ultimate enhancement factors in single molecule Raman spectroscopy,” Chem. Phys. Lett. 477(4-6), 411–414 (2009).
[Crossref]

Chem. Soc. Rev. (1)

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS - A Single-Molecule and Nanoscale Tool for Bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

Environ. Sci. Technol. (1)

W. R. Haag and J. Hoigné, “Ozonation of bromide-containing water: Kinetics of formation of hypobromous acid and bromate,” Environ. Sci. Technol. 17(5), 261–267 (1983).
[Crossref]

J. Chem. Soc. Faraday II. (1)

J. A. Creighton, C. G. Blatchford, and M. G. Albrecht, “Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver and gold solid particles of size comparable to the excitation wavelength,” J. Chem. Soc. Faraday II. 75, 790–798 (1979).
[Crossref]

J. Mol. Struct. (1)

K. Kneipp, H. Kneipp, and M. Rentsch, “SERS on 1,1´–diethyl–2,2´ cyanine dye adsorbed on colloidal silver,” J. Mol. Struct. 156(3-4), 331–340 (1987).
[Crossref]

J. Phys. Chem. (2)

P. C. Lee and D. Meisel, “Adsorption and surface enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

P. Hilderbrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

J. Raman Spectrosc. (1)

J. Vongsvivut, E. G. Robertson, and D. McNaughton, “Surface-enhanced Raman spectroscopic analysis of fonofos pesticide adsorbed on silver and gold nanoparticles,” J. Raman Spectrosc. 41(10), 1137–1148 (2010).
[Crossref]

Nanotechnology (1)

C. S. Rout, A. Kumar, and T. S. Fisher, “Carbon nanowalls amplify the surface-enhanced Raman scattering from Ag nanoparticles,” Nanotechnology 22(39), 395704 (2011).
[Crossref] [PubMed]

Opt. Spectrosc. (1)

A. V. Baranov and Ya. Bobovich, “Giant combinational scattering as structural analytical method in material research,” Opt. Spectrosc. (Engng Trans.)  52, 231 (1982).

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

PLoS One (1)

N. C. Dingari, G. L. Horowitz, J. W. Kang, R. R. Dasari, and I. Barman, “Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation,” PLoS One 7(2), e32406 (2012).
[Crossref] [PubMed]

RSC Advances (1)

Q. Liu, J. Dong, Y. Luo, G. Wen, L. Wei, A. Liang, and Zh. Jiang, “A highly sensitive SERS method for the determination of nitrogen oxide in air based on the signal amplification effect of nitrite catalyzing the bromate oxidization of a rhodamine 6G probe,” RSC Advances 4(21), 10955–10959 (2014).
[Crossref]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Other (6)

Laboratory and Field Methods for Determination of Bromate in Drinking Water, Luxembourg: Office for Official Publications of the European Communities, 2000.

Disinfectants and disinfectant by-products. International Programme on Chemical Safety, Geneva, World Health Organization, 2000. (Environmental Health Criteria 216).

Bromate in Drinking-water, Background document for development of World Health Organization Guidelines for Drinking-water Quality. World Health Organization 2005.

Bromate. Guidelines for Canadian drinking water quality — supporting document. Ottawa, Ontario, Health Canada, Environmental Health Directorate, Health Protection Branch, 1999.

R. Aroca, “Surface-Enhanced Vibrational Spectroscopy,” (Chichester, UK: Wiley&Sons, 2006), 164–176.

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering (Springer-Verlag, 2006)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Optical density spectra of Ag sol and Ag film. The electron microscope image of Ag-film is presented in inset.
Fig. 2
Fig. 2 SERS spectra of Rhodamine 6G (Rh6G) on silver film in presence of 10−4 - 10−10 M KBrO3. Rh6G concentration is 0.5 μmol/L. The uppermost spectrum label with (*) corresponds to the reference sample without bromate.
Fig. 3
Fig. 3 Variation of ΔI1512 line intensity as a function of KBrO3 concentration.

Metrics