Abstract

Recently, diffractive optical elements (DOE’s) have attracted more attention for applications to third generation PV cells. Some DOE types can provide multiple functions such as spectrum splitting and beam concentration (SSBC) simultaneously. An off-axis diffractive lens has been designed and its ability to achieve the SSBC proved experimentally. This lens can be used to separate the solar spectrum in the Vis-NIR range into two bands with a low concentration factor, and about 70% optical efficiency. It is expected that this kind of lens can be integrated with the lateral multijunction PV cells to build an effective compact solar system.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and fabrication of a diffractive optical element as a spectrum-splitting solar concentrator for lateral multijunction solar cells

Qingli Huang, Jinze Wang, Baogang Quan, Qiulin Zhang, Dongxiang Zhang, Dongmei Li, Qingbo Meng, Li Pan, Yanqin Wang, and Guozhen Yang
Appl. Opt. 52(11) 2312-2319 (2013)

Optical study of diffraction grating/Fresnel lens combinations applied to a spectral-splitting solar concentrator for space applications

Céline Michel, Jérôme Loicq, Tanguy Thibert, and Serge Habraken
Appl. Opt. 54(22) 6666-6673 (2015)

Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion

Shelby D. Vorndran, Benjamin Chrysler, Brian Wheelwright, Roger Angel, Zachary Holman, and Raymond Kostuk
Appl. Opt. 55(27) 7522-7529 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32, 510 (1961).
  2. J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
    [Crossref]
  3. R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in proceeding of the 24th European photovoltaic Solar cells conference, Hamburg, Germany(2009).
  4. M. A. Green, “Third generation photovoltaics: ultra-high conversion efficiency at low cost,” Prog. Photovolt. Res. Appl. 9(2), 123–135 (2001).
    [Crossref]
  5. C. Yang, P. Edwards, K. Shi, and Z. Liu, “Proposal and demonstration of a spectrometer using a diffractive optical element with dual dispersion and focusing functionality,” Opt. Lett. 36(11), 2023–2025 (2011).
    [Crossref] [PubMed]
  6. Y. Jia-Sheng, W. Jin-Ze, H. Qing-Li, D. Bi-Zhen, Z. Yan, and Y. Guo-Zhen, “A single diffractive optical element implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency,” Chin. Phys. B 22(3), 034201 (2013).
    [Crossref]
  7. Q. Huang, J. Wang, B. Quan, Q. Zhang, D. Zhang, D. Li, Q. Meng, L. Pan, Y. Wang, and G. Yang, “Design and fabrication of a diffractive optical element as a spectrum-splitting solar concentrator for lateral multijunction solar cells,” Appl. Opt. 52(11), 2312–2319 (2013).
    [Crossref] [PubMed]
  8. C. Michel, J. Loicq, F. Languy, and S. Habraken, “Optical study of a solar concentrator for space applications based on a diffractive/refractive optical combination,” Sol. Energy Mater. Sol. Cells 120, 183–190 (2014).
    [Crossref]
  9. M. Stefancich, A. Zayan, M. Chiesa, S. Rampino, D. Roncati, L. Kimerling, and J. Michel, “Single element spectral splitting solar concentrator for multiple cells CPV system,” Opt. Express 20(8), 9004–9018 (2012).
    [Crossref] [PubMed]
  10. G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
    [Crossref] [PubMed]
  11. P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl. 23(9), 1073–1079 (2014).
  12. Y. Yao, H. Liu, and W. Wu, “Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting,” Appl. Phys. Adv. Mater. 115(3), 713–719 (2014).
  13. G. Zubi, J. L. Bernal-Agustin, and G. V. Fracastoro, “High concentration photovoltaic systems applying III-V cells,” Renew. Sustain. Energy Rev. 13(9), 2645–2652 (2009).
    [Crossref]
  14. R. M. Swanson, Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, Ltd, 2005), pp. 449–503, chap. 11 Photovoltaic Concentrators.
  15. A. Albarazanchi, P. Gerard, P. Ambs, and P. Meyrueis, “Alternative model of a subwavelength diffractive lens proposed for PV cells applications,” IEEE Photonics Technol. Lett. 27(12), 1317–1320 (2015).
    [Crossref]
  16. F. Languy, K. Fleury, C. Lenaerts, J. Loicq, D. Regaert, T. Thibert, and S. Habraken, “Flat fresnel doublets made of PMMA and PC: combining low cost production and very high concentration ratio for CPV,” Opt. Express 19(10), A280–A294 (2011).
    [Crossref] [PubMed]
  17. D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34(14), 2462–2468 (1995).
    [Crossref] [PubMed]
  18. M. V. Kessels, M. El Bouz, R. Pagan, and K. Heggarty, “Versatile stepper based mask-less microlithography using a liquid crystal display for direct write of binary and multi-level microstructures,” J. Micro. Nanolithogr. MEMS MOEMS 6(3), 033002 (2007).
    [Crossref]
  19. T. Hessler, M. Rossi, R. E. Kunz, and M. T. Gale, “Analysis and optimization of fabrication of continuous-relief diffractive optical elements,” Appl. Opt. 37(19), 4069–4079 (1998).
    [Crossref] [PubMed]

2015 (1)

A. Albarazanchi, P. Gerard, P. Ambs, and P. Meyrueis, “Alternative model of a subwavelength diffractive lens proposed for PV cells applications,” IEEE Photonics Technol. Lett. 27(12), 1317–1320 (2015).
[Crossref]

2014 (3)

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl. 23(9), 1073–1079 (2014).

Y. Yao, H. Liu, and W. Wu, “Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting,” Appl. Phys. Adv. Mater. 115(3), 713–719 (2014).

C. Michel, J. Loicq, F. Languy, and S. Habraken, “Optical study of a solar concentrator for space applications based on a diffractive/refractive optical combination,” Sol. Energy Mater. Sol. Cells 120, 183–190 (2014).
[Crossref]

2013 (3)

Y. Jia-Sheng, W. Jin-Ze, H. Qing-Li, D. Bi-Zhen, Z. Yan, and Y. Guo-Zhen, “A single diffractive optical element implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency,” Chin. Phys. B 22(3), 034201 (2013).
[Crossref]

Q. Huang, J. Wang, B. Quan, Q. Zhang, D. Zhang, D. Li, Q. Meng, L. Pan, Y. Wang, and G. Yang, “Design and fabrication of a diffractive optical element as a spectrum-splitting solar concentrator for lateral multijunction solar cells,” Appl. Opt. 52(11), 2312–2319 (2013).
[Crossref] [PubMed]

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

2009 (1)

G. Zubi, J. L. Bernal-Agustin, and G. V. Fracastoro, “High concentration photovoltaic systems applying III-V cells,” Renew. Sustain. Energy Rev. 13(9), 2645–2652 (2009).
[Crossref]

2008 (1)

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

2007 (1)

M. V. Kessels, M. El Bouz, R. Pagan, and K. Heggarty, “Versatile stepper based mask-less microlithography using a liquid crystal display for direct write of binary and multi-level microstructures,” J. Micro. Nanolithogr. MEMS MOEMS 6(3), 033002 (2007).
[Crossref]

2001 (1)

M. A. Green, “Third generation photovoltaics: ultra-high conversion efficiency at low cost,” Prog. Photovolt. Res. Appl. 9(2), 123–135 (2001).
[Crossref]

1998 (1)

1995 (1)

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32, 510 (1961).

Albarazanchi, A.

A. Albarazanchi, P. Gerard, P. Ambs, and P. Meyrueis, “Alternative model of a subwavelength diffractive lens proposed for PV cells applications,” IEEE Photonics Technol. Lett. 27(12), 1317–1320 (2015).
[Crossref]

Ambs, P.

A. Albarazanchi, P. Gerard, P. Ambs, and P. Meyrueis, “Alternative model of a subwavelength diffractive lens proposed for PV cells applications,” IEEE Photonics Technol. Lett. 27(12), 1317–1320 (2015).
[Crossref]

Bernal-Agustin, J. L.

G. Zubi, J. L. Bernal-Agustin, and G. V. Fracastoro, “High concentration photovoltaic systems applying III-V cells,” Renew. Sustain. Energy Rev. 13(9), 2645–2652 (2009).
[Crossref]

Bhusari, D.

R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in proceeding of the 24th European photovoltaic Solar cells conference, Hamburg, Germany(2009).

Bi-Zhen, D.

Y. Jia-Sheng, W. Jin-Ze, H. Qing-Li, D. Bi-Zhen, Z. Yan, and Y. Guo-Zhen, “A single diffractive optical element implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency,” Chin. Phys. B 22(3), 034201 (2013).
[Crossref]

Boca, A.

R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in proceeding of the 24th European photovoltaic Solar cells conference, Hamburg, Germany(2009).

Chiesa, M.

Dominguez-Caballero, J. A.

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl. 23(9), 1073–1079 (2014).

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

Duda, A.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Edmondson, K. M.

R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in proceeding of the 24th European photovoltaic Solar cells conference, Hamburg, Germany(2009).

Edwards, P.

El Bouz, M.

M. V. Kessels, M. El Bouz, R. Pagan, and K. Heggarty, “Versatile stepper based mask-less microlithography using a liquid crystal display for direct write of binary and multi-level microstructures,” J. Micro. Nanolithogr. MEMS MOEMS 6(3), 033002 (2007).
[Crossref]

Faklis, D.

Fetzer, C. M.

R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in proceeding of the 24th European photovoltaic Solar cells conference, Hamburg, Germany(2009).

Fleury, K.

Fracastoro, G. V.

G. Zubi, J. L. Bernal-Agustin, and G. V. Fracastoro, “High concentration photovoltaic systems applying III-V cells,” Renew. Sustain. Energy Rev. 13(9), 2645–2652 (2009).
[Crossref]

Friedman, D. J.

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl. 23(9), 1073–1079 (2014).

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Gale, M. T.

Geisz, J. F.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Gerard, P.

A. Albarazanchi, P. Gerard, P. Ambs, and P. Meyrueis, “Alternative model of a subwavelength diffractive lens proposed for PV cells applications,” IEEE Photonics Technol. Lett. 27(12), 1317–1320 (2015).
[Crossref]

Green, M. A.

M. A. Green, “Third generation photovoltaics: ultra-high conversion efficiency at low cost,” Prog. Photovolt. Res. Appl. 9(2), 123–135 (2001).
[Crossref]

Guo-Zhen, Y.

Y. Jia-Sheng, W. Jin-Ze, H. Qing-Li, D. Bi-Zhen, Z. Yan, and Y. Guo-Zhen, “A single diffractive optical element implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency,” Chin. Phys. B 22(3), 034201 (2013).
[Crossref]

Habraken, S.

C. Michel, J. Loicq, F. Languy, and S. Habraken, “Optical study of a solar concentrator for space applications based on a diffractive/refractive optical combination,” Sol. Energy Mater. Sol. Cells 120, 183–190 (2014).
[Crossref]

F. Languy, K. Fleury, C. Lenaerts, J. Loicq, D. Regaert, T. Thibert, and S. Habraken, “Flat fresnel doublets made of PMMA and PC: combining low cost production and very high concentration ratio for CPV,” Opt. Express 19(10), A280–A294 (2011).
[Crossref] [PubMed]

Heggarty, K.

M. V. Kessels, M. El Bouz, R. Pagan, and K. Heggarty, “Versatile stepper based mask-less microlithography using a liquid crystal display for direct write of binary and multi-level microstructures,” J. Micro. Nanolithogr. MEMS MOEMS 6(3), 033002 (2007).
[Crossref]

Hessler, T.

Hong, W.

R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in proceeding of the 24th European photovoltaic Solar cells conference, Hamburg, Germany(2009).

Huang, Q.

Jia-Sheng, Y.

Y. Jia-Sheng, W. Jin-Ze, H. Qing-Li, D. Bi-Zhen, Z. Yan, and Y. Guo-Zhen, “A single diffractive optical element implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency,” Chin. Phys. B 22(3), 034201 (2013).
[Crossref]

Jin-Ze, W.

Y. Jia-Sheng, W. Jin-Ze, H. Qing-Li, D. Bi-Zhen, Z. Yan, and Y. Guo-Zhen, “A single diffractive optical element implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency,” Chin. Phys. B 22(3), 034201 (2013).
[Crossref]

Jones, K. M.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Karam, N. H.

R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in proceeding of the 24th European photovoltaic Solar cells conference, Hamburg, Germany(2009).

Kessels, M. V.

M. V. Kessels, M. El Bouz, R. Pagan, and K. Heggarty, “Versatile stepper based mask-less microlithography using a liquid crystal display for direct write of binary and multi-level microstructures,” J. Micro. Nanolithogr. MEMS MOEMS 6(3), 033002 (2007).
[Crossref]

Kiehl, J. T.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Kim, G.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

Kimerling, L.

King, R. R.

R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in proceeding of the 24th European photovoltaic Solar cells conference, Hamburg, Germany(2009).

Kunz, R. E.

Languy, F.

C. Michel, J. Loicq, F. Languy, and S. Habraken, “Optical study of a solar concentrator for space applications based on a diffractive/refractive optical combination,” Sol. Energy Mater. Sol. Cells 120, 183–190 (2014).
[Crossref]

F. Languy, K. Fleury, C. Lenaerts, J. Loicq, D. Regaert, T. Thibert, and S. Habraken, “Flat fresnel doublets made of PMMA and PC: combining low cost production and very high concentration ratio for CPV,” Opt. Express 19(10), A280–A294 (2011).
[Crossref] [PubMed]

Larrabee, D.

R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in proceeding of the 24th European photovoltaic Solar cells conference, Hamburg, Germany(2009).

Law, D. C.

R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in proceeding of the 24th European photovoltaic Solar cells conference, Hamburg, Germany(2009).

Lee, H.

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

Lenaerts, C.

Li, D.

Liu, H.

Y. Yao, H. Liu, and W. Wu, “Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting,” Appl. Phys. Adv. Mater. 115(3), 713–719 (2014).

Liu, X.-Q.

R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in proceeding of the 24th European photovoltaic Solar cells conference, Hamburg, Germany(2009).

Liu, Z.

Loicq, J.

C. Michel, J. Loicq, F. Languy, and S. Habraken, “Optical study of a solar concentrator for space applications based on a diffractive/refractive optical combination,” Sol. Energy Mater. Sol. Cells 120, 183–190 (2014).
[Crossref]

F. Languy, K. Fleury, C. Lenaerts, J. Loicq, D. Regaert, T. Thibert, and S. Habraken, “Flat fresnel doublets made of PMMA and PC: combining low cost production and very high concentration ratio for CPV,” Opt. Express 19(10), A280–A294 (2011).
[Crossref] [PubMed]

Meng, Q.

Menon, R.

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl. 23(9), 1073–1079 (2014).

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

Mesropian, S.

R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in proceeding of the 24th European photovoltaic Solar cells conference, Hamburg, Germany(2009).

Meyrueis, P.

A. Albarazanchi, P. Gerard, P. Ambs, and P. Meyrueis, “Alternative model of a subwavelength diffractive lens proposed for PV cells applications,” IEEE Photonics Technol. Lett. 27(12), 1317–1320 (2015).
[Crossref]

Michel, C.

C. Michel, J. Loicq, F. Languy, and S. Habraken, “Optical study of a solar concentrator for space applications based on a diffractive/refractive optical combination,” Sol. Energy Mater. Sol. Cells 120, 183–190 (2014).
[Crossref]

Michel, J.

Moriarty, T. E.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Morris, G. M.

Norman, A. G.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Olavarria, W. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Pagan, R.

M. V. Kessels, M. El Bouz, R. Pagan, and K. Heggarty, “Versatile stepper based mask-less microlithography using a liquid crystal display for direct write of binary and multi-level microstructures,” J. Micro. Nanolithogr. MEMS MOEMS 6(3), 033002 (2007).
[Crossref]

Pan, L.

Qing-Li, H.

Y. Jia-Sheng, W. Jin-Ze, H. Qing-Li, D. Bi-Zhen, Z. Yan, and Y. Guo-Zhen, “A single diffractive optical element implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency,” Chin. Phys. B 22(3), 034201 (2013).
[Crossref]

Quan, B.

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32, 510 (1961).

Rampino, S.

Regaert, D.

Romero, M. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Roncati, D.

Rossi, M.

Shi, K.

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32, 510 (1961).

Stefancich, M.

Thibert, T.

Wang, J.

Wang, P.

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl. 23(9), 1073–1079 (2014).

Wang, Y.

Ward, J. S.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Wu, W.

Y. Yao, H. Liu, and W. Wu, “Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting,” Appl. Phys. Adv. Mater. 115(3), 713–719 (2014).

Yan, Z.

Y. Jia-Sheng, W. Jin-Ze, H. Qing-Li, D. Bi-Zhen, Z. Yan, and Y. Guo-Zhen, “A single diffractive optical element implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency,” Chin. Phys. B 22(3), 034201 (2013).
[Crossref]

Yang, C.

Yang, G.

Yao, Y.

Y. Yao, H. Liu, and W. Wu, “Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting,” Appl. Phys. Adv. Mater. 115(3), 713–719 (2014).

Zayan, A.

Zhang, D.

Zhang, Q.

Zubi, G.

G. Zubi, J. L. Bernal-Agustin, and G. V. Fracastoro, “High concentration photovoltaic systems applying III-V cells,” Renew. Sustain. Energy Rev. 13(9), 2645–2652 (2009).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Adv. Mater. (1)

Y. Yao, H. Liu, and W. Wu, “Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting,” Appl. Phys. Adv. Mater. 115(3), 713–719 (2014).

Appl. Phys. Lett. (1)

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008).
[Crossref]

Chin. Phys. B (1)

Y. Jia-Sheng, W. Jin-Ze, H. Qing-Li, D. Bi-Zhen, Z. Yan, and Y. Guo-Zhen, “A single diffractive optical element implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency,” Chin. Phys. B 22(3), 034201 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Albarazanchi, P. Gerard, P. Ambs, and P. Meyrueis, “Alternative model of a subwavelength diffractive lens proposed for PV cells applications,” IEEE Photonics Technol. Lett. 27(12), 1317–1320 (2015).
[Crossref]

J. Appl. Phys. (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” J. Appl. Phys. 32, 510 (1961).

J. Micro. Nanolithogr. MEMS MOEMS (1)

M. V. Kessels, M. El Bouz, R. Pagan, and K. Heggarty, “Versatile stepper based mask-less microlithography using a liquid crystal display for direct write of binary and multi-level microstructures,” J. Micro. Nanolithogr. MEMS MOEMS 6(3), 033002 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman, and R. Menon, “Increased photovoltaic power output via diffractive spectrum separation,” Phys. Rev. Lett. 110(12), 123901 (2013).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (2)

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovolt. Res. Appl. 23(9), 1073–1079 (2014).

M. A. Green, “Third generation photovoltaics: ultra-high conversion efficiency at low cost,” Prog. Photovolt. Res. Appl. 9(2), 123–135 (2001).
[Crossref]

Renew. Sustain. Energy Rev. (1)

G. Zubi, J. L. Bernal-Agustin, and G. V. Fracastoro, “High concentration photovoltaic systems applying III-V cells,” Renew. Sustain. Energy Rev. 13(9), 2645–2652 (2009).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

C. Michel, J. Loicq, F. Languy, and S. Habraken, “Optical study of a solar concentrator for space applications based on a diffractive/refractive optical combination,” Sol. Energy Mater. Sol. Cells 120, 183–190 (2014).
[Crossref]

Other (2)

R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in proceeding of the 24th European photovoltaic Solar cells conference, Hamburg, Germany(2009).

R. M. Swanson, Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, Ltd, 2005), pp. 449–503, chap. 11 Photovoltaic Concentrators.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram that shows the principle of the SSBC of a diffractive lens.
Fig. 2
Fig. 2 Schematic diagram of a hybrid propagator. (a) FDTD simulation. (b) ASM simulation.
Fig. 3
Fig. 3 Zygo profilometer measurements for the designed and fabricated off-axis diffracted lens. (a) 3D interferometric microscope image. (b) Etching profile of the structure in (a).
Fig. 4
Fig. 4 Schematic diagram of the optical setup used for the optical performance characterization.
Fig. 5
Fig. 5 The images show the SSBC of the fabricated lens. (a) Photograph at the separation distance. (b) Map of the spatial spectral intensity distribution at both of the separation planes (PV cells surface).
Fig. 6
Fig. 6 Comparison of the calculated, and measured optical efficiency that obtained from designed and fabricated off-axis diffractive lens.

Tables (1)

Tables Icon

Table 1 Average optical efficiency of an off-axis diffractive lens.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

LCA( λ i )= f( λ i )f( λ D ) f( λ D )      
f( λ i )=( λ D / λ i )( p/m )f( λ D )
η( λ i )=sin c 2 ( mp[ ( n i 1 ) λ D /( n D 1 ) λ i ] )
C opt = C geo η opt =( A C / A P V i )( Ø P V i / Ø C )
C opt = C geo ( 1/k ) i=1 k η opt ( λ i )
η P V i ( λ )= i=1 N i I( i ) / i=1 N I o ( i )

Metrics