Abstract

Laser power detectors with natural convective cooling are convenient to use and hence widely applicable in a power range below 150 W. However, the temporal response characteristics of the laser power detectors need to be studied in detail for accurate measurement. The temporal response based on the absolute laser power standards with natural convective cooling is studied through theoretical analysis, numerical simulations, and experimental verifications. Our results show that the response deviates from a single exponential function and that an ultimate response balance is difficult to achieve because the temperature rise of the heat sink leads to continuous increase of the response. To determine the measurement values, an equal time reading method is proposed and validated by the laser power calibrations.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermal characteristics of an end-pumped high-power ytterbium-sensitized erbium-doped fiber laser under natural convection

Y. Jeong, S. Baek, P. Dupriez, J.-N. Maran, J. K. Sahu, J. Nilsson, and B. Lee
Opt. Express 16(24) 19865-19871 (2008)

Thermal hydraulic performance of a microchannel heat sink for cooling a high-power diode laser bar

Di-Hai Wu, Chung-En Zah, and Xingsheng Liu
Appl. Opt. 58(8) 1966-1977 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. L. Dowell, R. D. Jones, H. Laabs, C. L. Cromer, and R. D. Morton, “New developments in excimer laser metrology at 157 nm,” Proc. SPIE 4689, 63–69 (2002).
    [Crossref]
  2. S. Kück, K. Liegmann, F. Brandt, and J. Metzdorf, “Laser radiometry for UV lasers at 193 nm,” Proc. SPIE 4932, 645–655 (2003).
    [Crossref]
  3. S. Kück, F. Brandt, and M. Taddeo, “Gold-coated copper cone detector as a new standard detector for F2 laser radiation at 157 nm,” Appl. Opt. 44(12), 2258–2265 (2005).
    [Crossref] [PubMed]
  4. M. Simionescu and F. Ionescu, “Method and installation for the measurement of laser radiant flux in the range 10 W to 50 W,” Metrologia 32(6), 717–721 (1995).
    [Crossref]
  5. E. D. West and K. L. Churney, “Theory of isoperibol calorimetry for laser power and energy measurements,” J. Appl. Phys. 41(6), 2705–2712 (1970).
    [Crossref]
  6. B. B. Radak and B. R. Branislav, “A simple relative laser power meter,” Rev. Sci. Instrum. 62(2), 318–320 (1991).
    [Crossref]
  7. Y. Lin, “Characterization of temporal response for thermal detector of radiation,” Acta Meteorol. Sin. 29(4), 313–316 (2008).
  8. J. L. Zheng, Q. H. Ying, and W. L. Yang, Signal and System (Higher Education Press, 2000).
  9. B. C. Johnson, A. R. Kumar, Z. M. Zhang, D. J. Livigni, and C. L. Cromer, “Heat transfer analysis and modeling of a cryogenic laser Radiometer,” J. Thermophys. Heat Transfer 12(4), 575–581 (1998).
  10. J. Yu, “Study on the watt level primary standard for laser power,” Modern Meas. Test 1, 38–42 (1998).
  11. T. Xu, J. Yu, E. Zang, and H. Gan, “Improvement of measurement uncertainties in laser power detector calibration by convolving with the detector’s impulse response function,” Opt. Express 20(24), 27018–27023 (2012).
    [Crossref] [PubMed]

2012 (1)

2008 (1)

Y. Lin, “Characterization of temporal response for thermal detector of radiation,” Acta Meteorol. Sin. 29(4), 313–316 (2008).

2005 (1)

2003 (1)

S. Kück, K. Liegmann, F. Brandt, and J. Metzdorf, “Laser radiometry for UV lasers at 193 nm,” Proc. SPIE 4932, 645–655 (2003).
[Crossref]

2002 (1)

M. L. Dowell, R. D. Jones, H. Laabs, C. L. Cromer, and R. D. Morton, “New developments in excimer laser metrology at 157 nm,” Proc. SPIE 4689, 63–69 (2002).
[Crossref]

1998 (2)

B. C. Johnson, A. R. Kumar, Z. M. Zhang, D. J. Livigni, and C. L. Cromer, “Heat transfer analysis and modeling of a cryogenic laser Radiometer,” J. Thermophys. Heat Transfer 12(4), 575–581 (1998).

J. Yu, “Study on the watt level primary standard for laser power,” Modern Meas. Test 1, 38–42 (1998).

1995 (1)

M. Simionescu and F. Ionescu, “Method and installation for the measurement of laser radiant flux in the range 10 W to 50 W,” Metrologia 32(6), 717–721 (1995).
[Crossref]

1991 (1)

B. B. Radak and B. R. Branislav, “A simple relative laser power meter,” Rev. Sci. Instrum. 62(2), 318–320 (1991).
[Crossref]

1970 (1)

E. D. West and K. L. Churney, “Theory of isoperibol calorimetry for laser power and energy measurements,” J. Appl. Phys. 41(6), 2705–2712 (1970).
[Crossref]

Brandt, F.

Branislav, B. R.

B. B. Radak and B. R. Branislav, “A simple relative laser power meter,” Rev. Sci. Instrum. 62(2), 318–320 (1991).
[Crossref]

Churney, K. L.

E. D. West and K. L. Churney, “Theory of isoperibol calorimetry for laser power and energy measurements,” J. Appl. Phys. 41(6), 2705–2712 (1970).
[Crossref]

Cromer, C. L.

M. L. Dowell, R. D. Jones, H. Laabs, C. L. Cromer, and R. D. Morton, “New developments in excimer laser metrology at 157 nm,” Proc. SPIE 4689, 63–69 (2002).
[Crossref]

B. C. Johnson, A. R. Kumar, Z. M. Zhang, D. J. Livigni, and C. L. Cromer, “Heat transfer analysis and modeling of a cryogenic laser Radiometer,” J. Thermophys. Heat Transfer 12(4), 575–581 (1998).

Dowell, M. L.

M. L. Dowell, R. D. Jones, H. Laabs, C. L. Cromer, and R. D. Morton, “New developments in excimer laser metrology at 157 nm,” Proc. SPIE 4689, 63–69 (2002).
[Crossref]

Gan, H.

Ionescu, F.

M. Simionescu and F. Ionescu, “Method and installation for the measurement of laser radiant flux in the range 10 W to 50 W,” Metrologia 32(6), 717–721 (1995).
[Crossref]

Johnson, B. C.

B. C. Johnson, A. R. Kumar, Z. M. Zhang, D. J. Livigni, and C. L. Cromer, “Heat transfer analysis and modeling of a cryogenic laser Radiometer,” J. Thermophys. Heat Transfer 12(4), 575–581 (1998).

Jones, R. D.

M. L. Dowell, R. D. Jones, H. Laabs, C. L. Cromer, and R. D. Morton, “New developments in excimer laser metrology at 157 nm,” Proc. SPIE 4689, 63–69 (2002).
[Crossref]

Kück, S.

Kumar, A. R.

B. C. Johnson, A. R. Kumar, Z. M. Zhang, D. J. Livigni, and C. L. Cromer, “Heat transfer analysis and modeling of a cryogenic laser Radiometer,” J. Thermophys. Heat Transfer 12(4), 575–581 (1998).

Laabs, H.

M. L. Dowell, R. D. Jones, H. Laabs, C. L. Cromer, and R. D. Morton, “New developments in excimer laser metrology at 157 nm,” Proc. SPIE 4689, 63–69 (2002).
[Crossref]

Liegmann, K.

S. Kück, K. Liegmann, F. Brandt, and J. Metzdorf, “Laser radiometry for UV lasers at 193 nm,” Proc. SPIE 4932, 645–655 (2003).
[Crossref]

Lin, Y.

Y. Lin, “Characterization of temporal response for thermal detector of radiation,” Acta Meteorol. Sin. 29(4), 313–316 (2008).

Livigni, D. J.

B. C. Johnson, A. R. Kumar, Z. M. Zhang, D. J. Livigni, and C. L. Cromer, “Heat transfer analysis and modeling of a cryogenic laser Radiometer,” J. Thermophys. Heat Transfer 12(4), 575–581 (1998).

Metzdorf, J.

S. Kück, K. Liegmann, F. Brandt, and J. Metzdorf, “Laser radiometry for UV lasers at 193 nm,” Proc. SPIE 4932, 645–655 (2003).
[Crossref]

Morton, R. D.

M. L. Dowell, R. D. Jones, H. Laabs, C. L. Cromer, and R. D. Morton, “New developments in excimer laser metrology at 157 nm,” Proc. SPIE 4689, 63–69 (2002).
[Crossref]

Radak, B. B.

B. B. Radak and B. R. Branislav, “A simple relative laser power meter,” Rev. Sci. Instrum. 62(2), 318–320 (1991).
[Crossref]

Simionescu, M.

M. Simionescu and F. Ionescu, “Method and installation for the measurement of laser radiant flux in the range 10 W to 50 W,” Metrologia 32(6), 717–721 (1995).
[Crossref]

Taddeo, M.

West, E. D.

E. D. West and K. L. Churney, “Theory of isoperibol calorimetry for laser power and energy measurements,” J. Appl. Phys. 41(6), 2705–2712 (1970).
[Crossref]

Xu, T.

Yu, J.

Zang, E.

Zhang, Z. M.

B. C. Johnson, A. R. Kumar, Z. M. Zhang, D. J. Livigni, and C. L. Cromer, “Heat transfer analysis and modeling of a cryogenic laser Radiometer,” J. Thermophys. Heat Transfer 12(4), 575–581 (1998).

Acta Meteorol. Sin. (1)

Y. Lin, “Characterization of temporal response for thermal detector of radiation,” Acta Meteorol. Sin. 29(4), 313–316 (2008).

Appl. Opt. (1)

J. Appl. Phys. (1)

E. D. West and K. L. Churney, “Theory of isoperibol calorimetry for laser power and energy measurements,” J. Appl. Phys. 41(6), 2705–2712 (1970).
[Crossref]

J. Thermophys. Heat Transfer (1)

B. C. Johnson, A. R. Kumar, Z. M. Zhang, D. J. Livigni, and C. L. Cromer, “Heat transfer analysis and modeling of a cryogenic laser Radiometer,” J. Thermophys. Heat Transfer 12(4), 575–581 (1998).

Metrologia (1)

M. Simionescu and F. Ionescu, “Method and installation for the measurement of laser radiant flux in the range 10 W to 50 W,” Metrologia 32(6), 717–721 (1995).
[Crossref]

Modern Meas. Test (1)

J. Yu, “Study on the watt level primary standard for laser power,” Modern Meas. Test 1, 38–42 (1998).

Opt. Express (1)

Proc. SPIE (2)

M. L. Dowell, R. D. Jones, H. Laabs, C. L. Cromer, and R. D. Morton, “New developments in excimer laser metrology at 157 nm,” Proc. SPIE 4689, 63–69 (2002).
[Crossref]

S. Kück, K. Liegmann, F. Brandt, and J. Metzdorf, “Laser radiometry for UV lasers at 193 nm,” Proc. SPIE 4932, 645–655 (2003).
[Crossref]

Rev. Sci. Instrum. (1)

B. B. Radak and B. R. Branislav, “A simple relative laser power meter,” Rev. Sci. Instrum. 62(2), 318–320 (1991).
[Crossref]

Other (1)

J. L. Zheng, Q. H. Ying, and W. L. Yang, Signal and System (Higher Education Press, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Structure design of the laser power standard.
Fig. 2
Fig. 2 Simulation results of temperature rise with time. t0 - the time for the power load on, t1 - the time for the power load stop, T2 - the temperature of the hot end of the thermopile, T3 - the temperature of the reference end of the thermopile, T4 - the temperature of the heat sink, ΔT23 - the temperature difference between T2 and T3.
Fig. 3
Fig. 3 Experimental results of the response with #1304 and #1501. t0 - the time for the power load on, t1 - the time for the power load stop.
Fig. 4
Fig. 4 Experimental results of the fall time constant with #1501.
Fig. 5
Fig. 5 The responsivity change in 10s interval with time for #1304.
Fig. 6
Fig. 6 Measurement repeatability of #1304 with different time delay of reading.

Tables (4)

Tables Icon

Table 1 Thermal parameters of the detector materials used in the simulation.

Tables Icon

Table 2 Calibration results with the equal time reading method.

Tables Icon

Table 3 Uncertainty evaluation for the measurement consistency tests at 420 s and 600 s.

Tables Icon

Table 4 Responsivity with different convection modes.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

h Δ20 (t)= h Δ23 (t) h Δ34 (t) h Δ40 (t)
h Δ30 (t)= h Δ34 (t) h Δ40 (t),
e Δ20 (t)=p(t) h Δ12 (t) h Δ12 (t)dt ,
e Δ30 (t)=p(t) h Δ12 (t) h Δ12 (t)dt h Δ23 (t) h Δ23 (t)dt .
r Δ 20 (t)= p(t) h Δ12 (t) h Δ23 (t) h Δ34 (t) h Δ40 (t) h Δ12 (t)dt
r Δ30 (t)= p(t) h Δ12 (t) h Δ23 (t) h Δ34 (t) h Δ40 (t) h Δ12 (t)dt h Δ23 (t)dt ,
r Δ 23 (t)= [ h Δ23 (t)dt 1]p(t) h Δ12 (t) h Δ23 (t) h Δ34 (t) h Δ40 (t) h Δ12 (t)dt h Δ23 (t)dt .
τ(t)= Δt ln[U(t)]-ln[U(t+Δt)] ,

Metrics