Abstract

A regenerative amplifier based on thin-disk technology has been upgraded and optimized. Within a CPA laser system chirped 1 ns pulses are amplified to more than 300 mJ pulse energy. In addition to the high pulse energy the amplifier shows a very good energy stability with 0.25% (rms) fluctuation as well as an excellent beam quality of M2 = 1.04. The regenerative amplifier is equipped with an Yb:YAG thin-disk of 17 mm in diameter pumped with 1.75 kW peak power. It is operated at a repetition rate of 100 Hz. The optical-to-optical efficiency is better than 18%. The laser pulses are compressed to 1.8 ps pulse duration.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thin disk amplifier-based 40 mJ, 1 kHz, picosecond laser at 515 nm

Jakub Novák, Jonathan T. Green, Thomas Metzger, Tomáš Mazanec, Bedřich Himmel, Martin Horáček, Zbyněk Hubka, Robert Boge, Roman Antipenkov, František Batysta, Jack A. Naylon, Pavel Bakule, and Bedřich Rus
Opt. Express 24(6) 5728-5733 (2016)

Thin-disk ring amplifier for high pulse energy

Robert Jung, Johannes Tümmler, Thomas Nubbemeyer, and Ingo Will
Opt. Express 24(5) 4375-4381 (2016)

Sub-picosecond regenerative amplifier of Yb-doped Y2O3 ceramic thin disk

Momoko Maruyama, Hajime Okada, Yoshihiro Ochi, and Keisuke Nagashima
Opt. Express 24(2) 1685-1692 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Chyla, T. Miura, M. Smrž, P. Severova, O. Novak, A. Endo, and T. Mocek, “50-mJ, 1-kHz Yb:YAG thin-disk regenerative amplifier with 969-nm pulsed pumping,” Proc. SPIE 8959, 89590S (2014).
  2. C. Teisset, M. Schultze, R. Bessing, M. Haefner, S. Prinz, D. Sutter, and T. Metzger, “300 W Picosecond Thin-Disk Regenerative Amplifier at 10 kHz Repetition Rate,” in Advanced Solid-State Lasers Congress Postdeadline, G. Huber and P. Moulton, eds., OSA Postdeadline Paper Digest (online) (Optical Society of America, 2013), paper JTh5A.1.
  3. J.-P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
    [Crossref] [PubMed]
  4. M. Schulz, H. Hoeppner, M. Temme, R. Riedel, B. Faatz, M. J. Prandolini, M. Drescher, and F. Tavella, “14 kilowatt burst average power from 2-stage cascaded Yb:YAG thin-disk multipass amplifier,” in Frontiers in Optics 2013, I. Kang, D. Reitze, N. Alic, and D. Hagan, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper FTu4A.2.
  5. http://boeing.mediaroom.com/Boeing-Thin-Disk-Laser-Exceeds-Performance-Requirements-During-Testing .
  6. S. Klingebiel, M. Schultze, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, M. Gorjan, D. H. Sutter, K. Michel, H. G. Barros, Z. Major, F. Krausz, and T. Metzger, “220mJ ultrafast thin-disk regenerative amplifier,” in CLEO:2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper STu4O.2.
  7. J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, and W. Sandner, “High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy,” Opt. Lett. 34(9), 1378–1380 (2009).
    [Crossref] [PubMed]
  8. R. Platz, G. Erbert, W. Pittroff, M. Malchus, K. Vogel, and G. Tränkle, “400 µm stripe lasers for high-power fiber coupled pump modules,” High Power Laser Sci. Eng. 1(1), 60–67 (2013).
    [Crossref]
  9. R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm broad area diode lasers optimized for high pulse-power fiber coupled applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
    [Crossref]
  10. R. Jung, J. Tümmler, and I. Will, “1 Joule, 100 Hz Yb,” YAG Thin Disk Amplifier Operating at Room-Temperature (to be published).

2014 (2)

M. Chyla, T. Miura, M. Smrž, P. Severova, O. Novak, A. Endo, and T. Mocek, “50-mJ, 1-kHz Yb:YAG thin-disk regenerative amplifier with 969-nm pulsed pumping,” Proc. SPIE 8959, 89590S (2014).

R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm broad area diode lasers optimized for high pulse-power fiber coupled applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
[Crossref]

2013 (2)

R. Platz, G. Erbert, W. Pittroff, M. Malchus, K. Vogel, and G. Tränkle, “400 µm stripe lasers for high-power fiber coupled pump modules,” High Power Laser Sci. Eng. 1(1), 60–67 (2013).
[Crossref]

J.-P. Negel, A. Voss, M. Abdou Ahmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38(24), 5442–5445 (2013).
[Crossref] [PubMed]

2009 (1)

Abdou Ahmed, M.

Bauer, D.

Chyla, M.

M. Chyla, T. Miura, M. Smrž, P. Severova, O. Novak, A. Endo, and T. Mocek, “50-mJ, 1-kHz Yb:YAG thin-disk regenerative amplifier with 969-nm pulsed pumping,” Proc. SPIE 8959, 89590S (2014).

Crump, P.

R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm broad area diode lasers optimized for high pulse-power fiber coupled applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
[Crossref]

Endo, A.

M. Chyla, T. Miura, M. Smrž, P. Severova, O. Novak, A. Endo, and T. Mocek, “50-mJ, 1-kHz Yb:YAG thin-disk regenerative amplifier with 969-nm pulsed pumping,” Proc. SPIE 8959, 89590S (2014).

Eppich, B.

R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm broad area diode lasers optimized for high pulse-power fiber coupled applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
[Crossref]

Erbert, G.

R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm broad area diode lasers optimized for high pulse-power fiber coupled applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
[Crossref]

R. Platz, G. Erbert, W. Pittroff, M. Malchus, K. Vogel, and G. Tränkle, “400 µm stripe lasers for high-power fiber coupled pump modules,” High Power Laser Sci. Eng. 1(1), 60–67 (2013).
[Crossref]

Graf, T.

Jung, R.

Killi, A.

Knigge, S.

R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm broad area diode lasers optimized for high pulse-power fiber coupled applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
[Crossref]

Maaßdorf, A.

R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm broad area diode lasers optimized for high pulse-power fiber coupled applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
[Crossref]

Malchus, M.

R. Platz, G. Erbert, W. Pittroff, M. Malchus, K. Vogel, and G. Tränkle, “400 µm stripe lasers for high-power fiber coupled pump modules,” High Power Laser Sci. Eng. 1(1), 60–67 (2013).
[Crossref]

Miura, T.

M. Chyla, T. Miura, M. Smrž, P. Severova, O. Novak, A. Endo, and T. Mocek, “50-mJ, 1-kHz Yb:YAG thin-disk regenerative amplifier with 969-nm pulsed pumping,” Proc. SPIE 8959, 89590S (2014).

Mocek, T.

M. Chyla, T. Miura, M. Smrž, P. Severova, O. Novak, A. Endo, and T. Mocek, “50-mJ, 1-kHz Yb:YAG thin-disk regenerative amplifier with 969-nm pulsed pumping,” Proc. SPIE 8959, 89590S (2014).

Negel, J.-P.

Nickles, P. V.

Novak, O.

M. Chyla, T. Miura, M. Smrž, P. Severova, O. Novak, A. Endo, and T. Mocek, “50-mJ, 1-kHz Yb:YAG thin-disk regenerative amplifier with 969-nm pulsed pumping,” Proc. SPIE 8959, 89590S (2014).

Pittroff, W.

R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm broad area diode lasers optimized for high pulse-power fiber coupled applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
[Crossref]

R. Platz, G. Erbert, W. Pittroff, M. Malchus, K. Vogel, and G. Tränkle, “400 µm stripe lasers for high-power fiber coupled pump modules,” High Power Laser Sci. Eng. 1(1), 60–67 (2013).
[Crossref]

Platz, R.

R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm broad area diode lasers optimized for high pulse-power fiber coupled applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
[Crossref]

R. Platz, G. Erbert, W. Pittroff, M. Malchus, K. Vogel, and G. Tränkle, “400 µm stripe lasers for high-power fiber coupled pump modules,” High Power Laser Sci. Eng. 1(1), 60–67 (2013).
[Crossref]

Sandner, W.

Severova, P.

M. Chyla, T. Miura, M. Smrž, P. Severova, O. Novak, A. Endo, and T. Mocek, “50-mJ, 1-kHz Yb:YAG thin-disk regenerative amplifier with 969-nm pulsed pumping,” Proc. SPIE 8959, 89590S (2014).

Smrž, M.

M. Chyla, T. Miura, M. Smrž, P. Severova, O. Novak, A. Endo, and T. Mocek, “50-mJ, 1-kHz Yb:YAG thin-disk regenerative amplifier with 969-nm pulsed pumping,” Proc. SPIE 8959, 89590S (2014).

Stiel, H.

Sutter, D.

Tränkle, G.

R. Platz, G. Erbert, W. Pittroff, M. Malchus, K. Vogel, and G. Tränkle, “400 µm stripe lasers for high-power fiber coupled pump modules,” High Power Laser Sci. Eng. 1(1), 60–67 (2013).
[Crossref]

Tümmler, J.

Vogel, K.

R. Platz, G. Erbert, W. Pittroff, M. Malchus, K. Vogel, and G. Tränkle, “400 µm stripe lasers for high-power fiber coupled pump modules,” High Power Laser Sci. Eng. 1(1), 60–67 (2013).
[Crossref]

Voss, A.

Will, I.

R. Jung, J. Tümmler, and I. Will, “1 Joule, 100 Hz Yb,” YAG Thin Disk Amplifier Operating at Room-Temperature (to be published).

High Power Laser Sci. Eng. (1)

R. Platz, G. Erbert, W. Pittroff, M. Malchus, K. Vogel, and G. Tränkle, “400 µm stripe lasers for high-power fiber coupled pump modules,” High Power Laser Sci. Eng. 1(1), 60–67 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. Platz, B. Eppich, P. Crump, W. Pittroff, S. Knigge, A. Maaßdorf, and G. Erbert, “940-nm broad area diode lasers optimized for high pulse-power fiber coupled applications,” IEEE Photonics Technol. Lett. 26(6), 625–628 (2014).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (1)

M. Chyla, T. Miura, M. Smrž, P. Severova, O. Novak, A. Endo, and T. Mocek, “50-mJ, 1-kHz Yb:YAG thin-disk regenerative amplifier with 969-nm pulsed pumping,” Proc. SPIE 8959, 89590S (2014).

Other (5)

C. Teisset, M. Schultze, R. Bessing, M. Haefner, S. Prinz, D. Sutter, and T. Metzger, “300 W Picosecond Thin-Disk Regenerative Amplifier at 10 kHz Repetition Rate,” in Advanced Solid-State Lasers Congress Postdeadline, G. Huber and P. Moulton, eds., OSA Postdeadline Paper Digest (online) (Optical Society of America, 2013), paper JTh5A.1.

R. Jung, J. Tümmler, and I. Will, “1 Joule, 100 Hz Yb,” YAG Thin Disk Amplifier Operating at Room-Temperature (to be published).

M. Schulz, H. Hoeppner, M. Temme, R. Riedel, B. Faatz, M. J. Prandolini, M. Drescher, and F. Tavella, “14 kilowatt burst average power from 2-stage cascaded Yb:YAG thin-disk multipass amplifier,” in Frontiers in Optics 2013, I. Kang, D. Reitze, N. Alic, and D. Hagan, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper FTu4A.2.

http://boeing.mediaroom.com/Boeing-Thin-Disk-Laser-Exceeds-Performance-Requirements-During-Testing .

S. Klingebiel, M. Schultze, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, M. Gorjan, D. H. Sutter, K. Michel, H. G. Barros, Z. Major, F. Krausz, and T. Metzger, “220mJ ultrafast thin-disk regenerative amplifier,” in CLEO:2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper STu4O.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup of the thin-disk regenerative amplifier. For in- and out-coupling the polarizing elements (waveplates, polarizers, Pockels cell, Faraday rotator) are used. The Yb:YAG thin-disk serves as one end-mirror. The other end-mirror is motorized for remote controlled alignment. The combination of convex (M1, M4) and concave mirrors (M3, end-mirror) is used to achieve a relatively large beam diameter on the Yb:YAG thin-disk.

Fig. 2
Fig. 2

Output pulse energy measured over a period of 2.5 h. The mean pulse energy is 306.6 mJ +/− 0.8 mJ (rms). The inset shows the output pulse energy depending on the applied pump power.

Fig. 3
Fig. 3

The beam quality was measured to be M2 = 1.04.

Fig. 4
Fig. 4

Beam pointing measurement at the focus position of a f = 1 m lens over a time interval of 27 min. The centroid position of the focus fluctuates by +/− 2 µm (rms).

Fig. 5
Fig. 5

Autocorrelation trace of the compressed laser pulse. The pulse duration of 1.8 ps (FWHM) is close to the Fourier-transform limit of 1.5 ps. The corresponding spectrum is shown in the inset.

Metrics