Abstract

It is well known that radially polarized beam could produce an ultra-long longitudinally polarized focus, referred to as “optical needle”. In this work, we reveal that the counterpart transversely polarized optical needle (~5.83λ) with exceptionally suppressed sidelobes (9.9% of the maximum of the principal lobe) can be generated by tightly focusing a hybridly polarized beam through a multibelt binary phase filter. A universal analytical model is built up for investigating the depth, uniformity and polarization properties of the needle. We find that there is a trade-off between needle length and intensity uniformity, and the main lobe keeps almost transverse polarization at each observation plane. Such a nondiffraction transversely polarized optical needle has potential applications in ultrahigh density magnetic storage as well as atomic trap and switches.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of longitudinally polarized optical needles

Léo Turquet, Xiaorun Zang, Joona-Pekko Kakko, Harri Lipsanen, Godofredo Bautista, and Martti Kauranen
Opt. Express 26(21) 27572-27584 (2018)

Generation of a strong uniform transversely polarized nondiffracting beam using a high-numerical-aperture lens axicon with a binary phase mask

P. Suresh, C. Mariyal, K. B. Rajesh, T. V. S. Pillai, and Z. Jaroszewicz
Appl. Opt. 52(4) 849-853 (2013)

Synthesis of sub-diffraction quasi-non-diffracting beams by angular spectrum compression

Shuo Zhang, Hao Chen, Zhixiang Wu, Kun Zhang, Yuyan Li, Gang Chen, Zhihai Zhang, Zhongquan Wen, Luru Dai, and and Lingfang Wang
Opt. Express 25(22) 27104-27118 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
    [Crossref] [PubMed]
  2. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [Crossref] [PubMed]
  3. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
    [Crossref] [PubMed]
  4. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004).
    [Crossref]
  5. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vaccum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
    [Crossref]
  6. K. Huang, P. Shi, X.-L. Kang, X. Zhang, and Y.-P. Li, “Design of DOE for generating a needle of a strong longitudinally polarized field,” Opt. Lett. 35(7), 965–967 (2010).
    [Crossref] [PubMed]
  7. T. Grosjean and D. Courjon, “Smallest focal spots,” Opt. Commun. 272(2), 314–319 (2007).
    [Crossref]
  8. K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express 18(5), 4518–4525 (2010).
    [Crossref] [PubMed]
  9. H. Dehez, A. April, and M. Piché, “Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent,” Opt. Express 20(14), 14891–14905 (2012).
    [Crossref] [PubMed]
  10. M. Zhu, Q. Cao, and H. Gao, “Creation of a 50,000λ long needle-like field with 0.36λ width,” J. Opt. Soc. Am. A 31(3), 500–504 (2014).
    [Crossref] [PubMed]
  11. D. Panneton, G. St-Onge, M. Piché, and S. Thibault, “Needles of light produced with a spherical mirror,” Opt. Lett. 40(3), 419–422 (2015).
    [Crossref] [PubMed]
  12. J. Lin, K. Yin, Y. Li, and J. Tan, “Achievement of longitudinally polarized focusing with long focal depth by amplitude modulation,” Opt. Lett. 36(7), 1185–1187 (2011).
    [Crossref] [PubMed]
  13. S. Y. Chou, M. S. Wei, P. R. Krauss, and P. B. Fischer, “Singledomain magnetic pillar array of 35 nm diameter and 65 Gbits/in.2 density for ultrahigh density quantum magnetic storage,” J. Appl. Phys. 76(10), 6673–6675 (1994).
    [Crossref]
  14. P. D. Ye, D. Weiss, R. R. Gerhardts, M. Seeger, K. Eberl, and H. Nickel, “Electrons in a periodic magnetic field induced by a regular array of micromagnets,” Phys. Rev. Lett. 74(15), 3013–3016 (1995).
    [Crossref] [PubMed]
  15. C. V. Saba, P. A. Barton, M. G. Boshier, I. G. Hughes, P. Rosenbusch, B. E. Sauer, and E. A. Hinds, “Reconstruction of a cold atom cloud by magnetic focusing,” Phys. Rev. Lett. 82(3), 468–471 (1999).
    [Crossref]
  16. B. Tian and J. Pu, “Tight focusing of a double-ring-shaped, azimuthally polarized beam,” Opt. Lett. 36(11), 2014–2016 (2011).
    [Crossref] [PubMed]
  17. G. H. Yuan, S. B. Wei, and X.-C. Yuan, “Nondiffracting transversally polarized beam,” Opt. Lett. 36(17), 3479–3481 (2011).
    [Crossref] [PubMed]
  18. X.-L. Wang, Y. Li, J. Chen, C.-S. Guo, J. Ding, and H.-T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18(10), 10786–10795 (2010).
    [Crossref] [PubMed]
  19. X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010).
    [Crossref] [PubMed]
  20. G. M. Lerman, L. Stern, and U. Levy, “Generation and tight focusing of hybridly polarized vector beams,” Opt. Express 18(26), 27650–27657 (2010).
    [Crossref] [PubMed]
  21. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [Crossref]
  22. G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
    [Crossref] [PubMed]
  23. G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order Pancharatnam-Berry phase and the angular momentum of light,” Phys. Rev. Lett. 108(19), 190401 (2012).
    [Crossref] [PubMed]
  24. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref] [PubMed]
  25. E. Collet, Polarized Light (Dekker, 1993).
  26. Z. Bomzon, M. Gu, and J. Shamir, “Angular momentum and geometrical phases in tight-focused circularly polarized plane waves,” Appl. Phys. Lett. 89(24), 241104 (2006).
    [Crossref]
  27. Q. Zhan, “Properties of circularly polarized vortex beams,” Opt. Lett. 31(7), 867–869 (2006).
    [Crossref] [PubMed]
  28. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
    [Crossref] [PubMed]
  29. B. Chen and J. Pu, “Tight focusing of elliptically polarized vortex beams,” Appl. Opt. 48(7), 1288–1294 (2009).
    [Crossref] [PubMed]
  30. D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11(21), 2747–2752 (2003).
    [Crossref] [PubMed]
  31. H. Wang, L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89(17), 171102 (2006).
    [Crossref]

2015 (1)

2014 (1)

2012 (2)

H. Dehez, A. April, and M. Piché, “Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent,” Opt. Express 20(14), 14891–14905 (2012).
[Crossref] [PubMed]

G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order Pancharatnam-Berry phase and the angular momentum of light,” Phys. Rev. Lett. 108(19), 190401 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (5)

2009 (1)

2008 (1)

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vaccum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

2007 (2)

T. Grosjean and D. Courjon, “Smallest focal spots,” Opt. Commun. 272(2), 314–319 (2007).
[Crossref]

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

2006 (3)

H. Wang, L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89(17), 171102 (2006).
[Crossref]

Z. Bomzon, M. Gu, and J. Shamir, “Angular momentum and geometrical phases in tight-focused circularly polarized plane waves,” Appl. Phys. Lett. 89(24), 241104 (2006).
[Crossref]

Q. Zhan, “Properties of circularly polarized vortex beams,” Opt. Lett. 31(7), 867–869 (2006).
[Crossref] [PubMed]

2004 (1)

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004).
[Crossref]

2003 (2)

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11(21), 2747–2752 (2003).
[Crossref] [PubMed]

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (1)

C. V. Saba, P. A. Barton, M. G. Boshier, I. G. Hughes, P. Rosenbusch, B. E. Sauer, and E. A. Hinds, “Reconstruction of a cold atom cloud by magnetic focusing,” Phys. Rev. Lett. 82(3), 468–471 (1999).
[Crossref]

1995 (2)

P. D. Ye, D. Weiss, R. R. Gerhardts, M. Seeger, K. Eberl, and H. Nickel, “Electrons in a periodic magnetic field induced by a regular array of micromagnets,” Phys. Rev. Lett. 74(15), 3013–3016 (1995).
[Crossref] [PubMed]

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
[Crossref] [PubMed]

1994 (1)

S. Y. Chou, M. S. Wei, P. R. Krauss, and P. B. Fischer, “Singledomain magnetic pillar array of 35 nm diameter and 65 Gbits/in.2 density for ultrahigh density quantum magnetic storage,” J. Appl. Phys. 76(10), 6673–6675 (1994).
[Crossref]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Alfano, R. R.

G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order Pancharatnam-Berry phase and the angular momentum of light,” Phys. Rev. Lett. 108(19), 190401 (2012).
[Crossref] [PubMed]

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref] [PubMed]

April, A.

Barton, P. A.

C. V. Saba, P. A. Barton, M. G. Boshier, I. G. Hughes, P. Rosenbusch, B. E. Sauer, and E. A. Hinds, “Reconstruction of a cold atom cloud by magnetic focusing,” Phys. Rev. Lett. 82(3), 468–471 (1999).
[Crossref]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Bomzon, Z.

Z. Bomzon, M. Gu, and J. Shamir, “Angular momentum and geometrical phases in tight-focused circularly polarized plane waves,” Appl. Phys. Lett. 89(24), 241104 (2006).
[Crossref]

Boshier, M. G.

C. V. Saba, P. A. Barton, M. G. Boshier, I. G. Hughes, P. Rosenbusch, B. E. Sauer, and E. A. Hinds, “Reconstruction of a cold atom cloud by magnetic focusing,” Phys. Rev. Lett. 82(3), 468–471 (1999).
[Crossref]

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Brown, T.

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Cao, Q.

Chen, B.

Chen, J.

X.-L. Wang, Y. Li, J. Chen, C.-S. Guo, J. Ding, and H.-T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18(10), 10786–10795 (2010).
[Crossref] [PubMed]

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010).
[Crossref] [PubMed]

Chiu, D. T.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Chong, C. T.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vaccum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Chong, T.

H. Wang, L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89(17), 171102 (2006).
[Crossref]

Chou, S. Y.

S. Y. Chou, M. S. Wei, P. R. Krauss, and P. B. Fischer, “Singledomain magnetic pillar array of 35 nm diameter and 65 Gbits/in.2 density for ultrahigh density quantum magnetic storage,” J. Appl. Phys. 76(10), 6673–6675 (1994).
[Crossref]

Courjon, D.

T. Grosjean and D. Courjon, “Smallest focal spots,” Opt. Commun. 272(2), 314–319 (2007).
[Crossref]

Dehez, H.

Ding, J.

X.-L. Wang, Y. Li, J. Chen, C.-S. Guo, J. Ding, and H.-T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18(10), 10786–10795 (2010).
[Crossref] [PubMed]

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010).
[Crossref] [PubMed]

Eberl, K.

P. D. Ye, D. Weiss, R. R. Gerhardts, M. Seeger, K. Eberl, and H. Nickel, “Electrons in a periodic magnetic field induced by a regular array of micromagnets,” Phys. Rev. Lett. 74(15), 3013–3016 (1995).
[Crossref] [PubMed]

Edgar, J. S.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Evans, S.

G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order Pancharatnam-Berry phase and the angular momentum of light,” Phys. Rev. Lett. 108(19), 190401 (2012).
[Crossref] [PubMed]

Fischer, P. B.

S. Y. Chou, M. S. Wei, P. R. Krauss, and P. B. Fischer, “Singledomain magnetic pillar array of 35 nm diameter and 65 Gbits/in.2 density for ultrahigh density quantum magnetic storage,” J. Appl. Phys. 76(10), 6673–6675 (1994).
[Crossref]

Gan, X.

Ganic, D.

Gao, H.

Gerhardts, R. R.

P. D. Ye, D. Weiss, R. R. Gerhardts, M. Seeger, K. Eberl, and H. Nickel, “Electrons in a periodic magnetic field induced by a regular array of micromagnets,” Phys. Rev. Lett. 74(15), 3013–3016 (1995).
[Crossref] [PubMed]

Grosjean, T.

T. Grosjean and D. Courjon, “Smallest focal spots,” Opt. Commun. 272(2), 314–319 (2007).
[Crossref]

Gu, M.

Z. Bomzon, M. Gu, and J. Shamir, “Angular momentum and geometrical phases in tight-focused circularly polarized plane waves,” Appl. Phys. Lett. 89(24), 241104 (2006).
[Crossref]

D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11(21), 2747–2752 (2003).
[Crossref] [PubMed]

Guo, C.-S.

X.-L. Wang, Y. Li, J. Chen, C.-S. Guo, J. Ding, and H.-T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18(10), 10786–10795 (2010).
[Crossref] [PubMed]

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010).
[Crossref] [PubMed]

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Hayazawa, N.

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004).
[Crossref]

Hinds, E. A.

C. V. Saba, P. A. Barton, M. G. Boshier, I. G. Hughes, P. Rosenbusch, B. E. Sauer, and E. A. Hinds, “Reconstruction of a cold atom cloud by magnetic focusing,” Phys. Rev. Lett. 82(3), 468–471 (1999).
[Crossref]

Huang, K.

Hughes, I. G.

C. V. Saba, P. A. Barton, M. G. Boshier, I. G. Hughes, P. Rosenbusch, B. E. Sauer, and E. A. Hinds, “Reconstruction of a cold atom cloud by magnetic focusing,” Phys. Rev. Lett. 82(3), 468–471 (1999).
[Crossref]

Jeffries, G. D. M.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Kang, X.-L.

Kawata, S.

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004).
[Crossref]

Kitamura, K.

Krauss, P. R.

S. Y. Chou, M. S. Wei, P. R. Krauss, and P. B. Fischer, “Singledomain magnetic pillar array of 35 nm diameter and 65 Gbits/in.2 density for ultrahigh density quantum magnetic storage,” J. Appl. Phys. 76(10), 6673–6675 (1994).
[Crossref]

Lerman, G. M.

Levy, U.

Li, Y.

Li, Y.-P.

Lin, J.

Lukyanchuk, B.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vaccum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

McGloin, D.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Miao, X. S.

H. Wang, L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89(17), 171102 (2006).
[Crossref]

Milione, G.

G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order Pancharatnam-Berry phase and the angular momentum of light,” Phys. Rev. Lett. 108(19), 190401 (2012).
[Crossref] [PubMed]

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref] [PubMed]

Murokh, A.

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
[Crossref] [PubMed]

Nickel, H.

P. D. Ye, D. Weiss, R. R. Gerhardts, M. Seeger, K. Eberl, and H. Nickel, “Electrons in a periodic magnetic field induced by a regular array of micromagnets,” Phys. Rev. Lett. 74(15), 3013–3016 (1995).
[Crossref] [PubMed]

Noda, S.

Nolan, D. A.

G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order Pancharatnam-Berry phase and the angular momentum of light,” Phys. Rev. Lett. 108(19), 190401 (2012).
[Crossref] [PubMed]

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref] [PubMed]

Novotny, L.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Panneton, D.

Pellegrini, C.

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
[Crossref] [PubMed]

Piché, M.

Pu, J.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Rosenbusch, P.

C. V. Saba, P. A. Barton, M. G. Boshier, I. G. Hughes, P. Rosenbusch, B. E. Sauer, and E. A. Hinds, “Reconstruction of a cold atom cloud by magnetic focusing,” Phys. Rev. Lett. 82(3), 468–471 (1999).
[Crossref]

Rosenzweig, J.

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
[Crossref] [PubMed]

Saba, C. V.

C. V. Saba, P. A. Barton, M. G. Boshier, I. G. Hughes, P. Rosenbusch, B. E. Sauer, and E. A. Hinds, “Reconstruction of a cold atom cloud by magnetic focusing,” Phys. Rev. Lett. 82(3), 468–471 (1999).
[Crossref]

Saito, Y.

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004).
[Crossref]

Sakai, K.

Sauer, B. E.

C. V. Saba, P. A. Barton, M. G. Boshier, I. G. Hughes, P. Rosenbusch, B. E. Sauer, and E. A. Hinds, “Reconstruction of a cold atom cloud by magnetic focusing,” Phys. Rev. Lett. 82(3), 468–471 (1999).
[Crossref]

Seeger, M.

P. D. Ye, D. Weiss, R. R. Gerhardts, M. Seeger, K. Eberl, and H. Nickel, “Electrons in a periodic magnetic field induced by a regular array of micromagnets,” Phys. Rev. Lett. 74(15), 3013–3016 (1995).
[Crossref] [PubMed]

Shamir, J.

Z. Bomzon, M. Gu, and J. Shamir, “Angular momentum and geometrical phases in tight-focused circularly polarized plane waves,” Appl. Phys. Lett. 89(24), 241104 (2006).
[Crossref]

Sheppard, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vaccum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Shi, L.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vaccum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

H. Wang, L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89(17), 171102 (2006).
[Crossref]

Shi, P.

Stern, L.

St-Onge, G.

Sztul, H. I.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref] [PubMed]

Tan, J.

Tan, W.

H. Wang, L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89(17), 171102 (2006).
[Crossref]

Thibault, S.

Tian, B.

Wang, H.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vaccum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

H. Wang, L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89(17), 171102 (2006).
[Crossref]

Wang, H.-T.

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010).
[Crossref] [PubMed]

X.-L. Wang, Y. Li, J. Chen, C.-S. Guo, J. Ding, and H.-T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18(10), 10786–10795 (2010).
[Crossref] [PubMed]

Wang, X.-L.

X.-L. Wang, Y. Li, J. Chen, C.-S. Guo, J. Ding, and H.-T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18(10), 10786–10795 (2010).
[Crossref] [PubMed]

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010).
[Crossref] [PubMed]

Wei, M. S.

S. Y. Chou, M. S. Wei, P. R. Krauss, and P. B. Fischer, “Singledomain magnetic pillar array of 35 nm diameter and 65 Gbits/in.2 density for ultrahigh density quantum magnetic storage,” J. Appl. Phys. 76(10), 6673–6675 (1994).
[Crossref]

Wei, S. B.

Weiss, D.

P. D. Ye, D. Weiss, R. R. Gerhardts, M. Seeger, K. Eberl, and H. Nickel, “Electrons in a periodic magnetic field induced by a regular array of micromagnets,” Phys. Rev. Lett. 74(15), 3013–3016 (1995).
[Crossref] [PubMed]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Ye, P. D.

P. D. Ye, D. Weiss, R. R. Gerhardts, M. Seeger, K. Eberl, and H. Nickel, “Electrons in a periodic magnetic field induced by a regular array of micromagnets,” Phys. Rev. Lett. 74(15), 3013–3016 (1995).
[Crossref] [PubMed]

Yin, K.

Youngworth, K.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Yuan, G.

H. Wang, L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89(17), 171102 (2006).
[Crossref]

Yuan, G. H.

Yuan, X.-C.

Zhan, Q.

Zhang, X.

Zhao, Y.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Zhu, M.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004).
[Crossref]

Z. Bomzon, M. Gu, and J. Shamir, “Angular momentum and geometrical phases in tight-focused circularly polarized plane waves,” Appl. Phys. Lett. 89(24), 241104 (2006).
[Crossref]

H. Wang, L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89(17), 171102 (2006).
[Crossref]

J. Appl. Phys. (1)

S. Y. Chou, M. S. Wei, P. R. Krauss, and P. B. Fischer, “Singledomain magnetic pillar array of 35 nm diameter and 65 Gbits/in.2 density for ultrahigh density quantum magnetic storage,” J. Appl. Phys. 76(10), 6673–6675 (1994).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vaccum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Opt. Commun. (1)

T. Grosjean and D. Courjon, “Smallest focal spots,” Opt. Commun. 272(2), 314–319 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Phys. Rev. Lett. (9)

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref] [PubMed]

G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order Pancharatnam-Berry phase and the angular momentum of light,” Phys. Rev. Lett. 108(19), 190401 (2012).
[Crossref] [PubMed]

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
[Crossref] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

P. D. Ye, D. Weiss, R. R. Gerhardts, M. Seeger, K. Eberl, and H. Nickel, “Electrons in a periodic magnetic field induced by a regular array of micromagnets,” Phys. Rev. Lett. 74(15), 3013–3016 (1995).
[Crossref] [PubMed]

C. V. Saba, P. A. Barton, M. G. Boshier, I. G. Hughes, P. Rosenbusch, B. E. Sauer, and E. A. Hinds, “Reconstruction of a cold atom cloud by magnetic focusing,” Phys. Rev. Lett. 82(3), 468–471 (1999).
[Crossref]

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Other (1)

E. Collet, Polarized Light (Dekker, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The schematic configuration. (a) Focusing system composed of a binary phase plate and a high NA lens. The focal plane of the focusing lens is at z = 0; (b) Phase structure of a seven-belt binary element (left) and its transmission function T(θ) (right); (c) Polarization and intensity distributions of four radial-variant HP beams with m = 0.2, 0.5, 0.59, and 1, respectively.
Fig. 2
Fig. 2 Electric energy density in the focal region. (a−d), Total intensity distributions of focus in the x-z plane for the HP beams with m = 0.2, 0.5, 0.59, and 1 respectively. (e), Normalized intensity profiles along the optical axis for the above four HP beams compared to the results of linearly, circularly, and radially polarized beams under the same focusing conditions.
Fig. 3
Fig. 3 Generation of the transversely polarized optical needle. (a−c), The electric intensity distributions of transverse, longitudinal, and the total (sum of transverse and longitudinal components) in the x-z plane for the radial-variant HP beam with m = 0.59 after modulation of a four-belt binary phase element respectively, (d), Normalized intensity profile along the optical axis. Inset shows the total intensity distribution in the focal plane, and the size is 3λ × 3λ.
Fig. 4
Fig. 4 Revealing the polarization evolution. (a), Cross section of the ellipticity of local polarization ellipses at different observation planes, (b), Azimuthal angle distribution at the focal plane.
Fig. 5
Fig. 5 Revealing the effect of belt number of binary phase plate to the focus. (a), (b), Intensity profiles in the focal plane and along the optical axis for the two-belt (dotted curve), three-belt (dashed-dotted curve), four-belt (dashed curve) and five-belt (solid curve) binary phase modulated HP beam with m = 0.59 respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E = A 0 ( r , 0 ) 2 [ ( cos ψ e ^ x + sin ψ e ^ y ) exp [ i δ ( r , φ ) ] + ( sin ψ e ^ x + cos ψ e ^ y ) exp [ i δ ( r , φ ) ] ] ,
E ρ ( r s , φ s , z s ) = i B π 0 2 π 0 α sin θ A ( θ ) l ( θ ) exp { i k [ z s cos θ + ρ s sin θ cos ( φ φ s ) ] } × { [ cos ( ψ φ ) cos θ cos ( φ φ s ) + sin ( ψ φ ) sin ( φ s φ ) ] exp ( j δ ) [ sin ( ψ φ ) cos θ cos ( φ φ s ) + cos ( ψ φ ) sin ( φ φ s ) ] exp ( j δ ) } d φ d θ ,
E φ ( r s , φ s , z s ) = i B π 0 2 π 0 α sin θ A ( θ ) l ( θ ) exp { i k [ z s cos θ + ρ s sin θ cos ( φ φ s ) ] } × { [ cos ( ψ φ ) cos θ sin ( φ φ s ) + sin ( ψ φ ) cos ( φ φ s ) ] exp ( j δ ) + [ sin ( ψ φ ) cos θ sin ( φ s φ ) + cos ( ψ φ ) cos ( φ φ s ) ] exp ( j δ ) } d φ d θ ,
E φ ( r s , φ s , z s ) = i B π 0 2 π 0 α sin θ A ( θ ) l ( θ ) exp { i k [ z s cos θ + ρ s sin θ cos ( φ φ s ) ] } × [ cos ( ψ φ ) sin θ exp ( j δ ) + sin ( ψ φ ) sin θ exp ( j δ ) ] d φ d θ .
l ( θ ) = exp [ β 0 2 ( sin θ sin α ) 2 ] J 1 ( 2 β 0 sin θ sin α ) .
θ 1 = 11.489 ° , θ 2 = 50.838 ° , θ 3 = 66.061 ° .

Metrics