Abstract

We demonstrate a novel distributed acoustic sensing (DAS) system based on phase-sensitive optical time-domain reflectometry (Φ-OTDR). Both the phase and the amplitude of the Rayleigh scattering (RS) light can be demodulated in real-time. The technique is based on I/Q demodulation and homodyne detection using a 90° optical hybrid. The theoretical analysis is given, and as a proof of the concept, the dynamic strain sensing is experimentally demonstrated, with a sensing range of 12.566 km and a spatial resolution of 10 m.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection

Yonas Muanenda, Stefano Faralli, Claudio J. Oton, and Fabrizio Di Pasquale
Opt. Express 26(2) 687-701 (2018)

Phase demodulation method in phase-sensitive OTDR without coherent detection

Zhou Sha, Hao Feng, and Zhoumo Zeng
Opt. Express 25(5) 4831-4844 (2017)

Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer

Yongkang Dong, Xi Chen, Erhu Liu, Cheng Fu, Hongying Zhang, and Zhiwei Lu
Appl. Opt. 55(28) 7810-7815 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Thévenaz, “Next generation of optical fibre sensors: new concepts and perspectives,” Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 9157AN (2014).
  2. Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39(20), 5866–5869 (2014).
    [Crossref] [PubMed]
  3. S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
    [Crossref] [PubMed]
  4. L. Zhang, Z. N. Wang, J. Li, J. J. Zeng, X. H. Jia, and Y. J. Rao, “Ultra-long dual-sideband BOTDA with balanced detection,” Opt. Laser Technol. 68, 206–210 (2015).
    [Crossref]
  5. Y. J. Rao, J. Z. Li, Z. L. Ran, and K. L. Xie, “Distributed intrusion detection based on combination of φ-OTDR and POTDR,” Proc. SPIE 7004, 19th International Conference on Optical Fibre Sensors, 700461 (2008).
    [Crossref]
  6. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [Crossref] [PubMed]
  7. H. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castanon, O. Frazao, and M. Gonzalez-Herraez, “Distributed vibration sensing over 125km with enhanced SNR using phi-OTDR over an URFL cavity,” J. Lightwave Technol. 33(12), 2628–2632 (2015).
    [Crossref]
  8. H. F. Tarlor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. Patent 5194847 (1993).
  9. A. Masoudi, M. Belaland, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
    [Crossref]
  10. C. Wang, C. Wang, Y. Shang, S. Ying, X. H. Liu, and G. D. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
    [Crossref]
  11. G. S. Fang, T. W. Xu, S. W. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightwave Technol. 33(13), 2811–2816 (2015).
    [Crossref]
  12. Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” in Optical Sensors and Biophotonics, J. Popp, D. Matthews, J. Tian, and C. Yang, eds., Proc. SPIE 8311 (Optical Society of America, 2011), paper 83110S.
  13. M. G. Taylor, “Phase estimation methods for optical coherent detection using digital signal processing,” J. Lightwave Technol. 27(7), 901–914 (2009).
    [Crossref]
  14. J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multi- frequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
    [Crossref]
  15. R. Hui and M. S. O’Sullivan, Fiber Optic Measurement Techniques (Academic Press, 2009).
  16. G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Φ-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27, 1349–1352 (2015).
    [Crossref]
  17. B. Szafraniec, T. S. Marshall, and B. Nebendahl, “Performance monitoring and measurement techniques for coherent optical systems,” J. Lightwave Technol. 31(4), 648–663 (2013).
    [Crossref]

2015 (5)

L. Zhang, Z. N. Wang, J. Li, J. J. Zeng, X. H. Jia, and Y. J. Rao, “Ultra-long dual-sideband BOTDA with balanced detection,” Opt. Laser Technol. 68, 206–210 (2015).
[Crossref]

C. Wang, C. Wang, Y. Shang, S. Ying, X. H. Liu, and G. D. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Φ-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27, 1349–1352 (2015).
[Crossref]

G. S. Fang, T. W. Xu, S. W. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm,” J. Lightwave Technol. 33(13), 2811–2816 (2015).
[Crossref]

H. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castanon, O. Frazao, and M. Gonzalez-Herraez, “Distributed vibration sensing over 125km with enhanced SNR using phi-OTDR over an URFL cavity,” J. Lightwave Technol. 33(12), 2628–2632 (2015).
[Crossref]

2014 (1)

2013 (3)

B. Szafraniec, T. S. Marshall, and B. Nebendahl, “Performance monitoring and measurement techniques for coherent optical systems,” J. Lightwave Technol. 31(4), 648–663 (2013).
[Crossref]

J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multi- frequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
[Crossref]

A. Masoudi, M. Belaland, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

Alcon-Camas, M.

Ania-Castanon, J. D.

Ania-Castañon, J. D.

Bao, X.

Belaland, M.

A. Masoudi, M. Belaland, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Cai, H. W.

J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multi- frequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
[Crossref]

Chen, L.

Corredera, P.

Fan, M. Q.

Fang, G. S.

Fang, Z. J.

J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multi- frequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
[Crossref]

Feng, S. W.

Frazao, O.

Gonzalez-Herraez, M.

Jia, X. H.

L. Zhang, Z. N. Wang, J. Li, J. J. Zeng, X. H. Jia, and Y. J. Rao, “Ultra-long dual-sideband BOTDA with balanced detection,” Opt. Laser Technol. 68, 206–210 (2015).
[Crossref]

Li, F.

Li, J.

L. Zhang, Z. N. Wang, J. Li, J. J. Zeng, X. H. Jia, and Y. J. Rao, “Ultra-long dual-sideband BOTDA with balanced detection,” Opt. Laser Technol. 68, 206–210 (2015).
[Crossref]

Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39(20), 5866–5869 (2014).
[Crossref] [PubMed]

Li, W.

Li, Y.

Liu, X. H.

C. Wang, C. Wang, Y. Shang, S. Ying, X. H. Liu, and G. D. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Marshall, T. S.

Martin-Lopez, S.

Martins, H.

Masoudi, A.

A. Masoudi, M. Belaland, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Nakarmi, B.

G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Φ-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27, 1349–1352 (2015).
[Crossref]

Nebendahl, B.

Newson, T. P.

A. Masoudi, M. Belaland, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Pan, Z. Q.

J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multi- frequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
[Crossref]

Peng, F.

Peng, G. D.

C. Wang, C. Wang, Y. Shang, S. Ying, X. H. Liu, and G. D. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Qu, R. H.

J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multi- frequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
[Crossref]

Rao, Y. J.

L. Zhang, Z. N. Wang, J. Li, J. J. Zeng, X. H. Jia, and Y. J. Rao, “Ultra-long dual-sideband BOTDA with balanced detection,” Opt. Laser Technol. 68, 206–210 (2015).
[Crossref]

Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39(20), 5866–5869 (2014).
[Crossref] [PubMed]

Rodriguez, F.

Shang, Y.

C. Wang, C. Wang, Y. Shang, S. Ying, X. H. Liu, and G. D. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Szafraniec, B.

Taylor, M. G.

Thévenaz, L.

Tu, G. J.

G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Φ-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27, 1349–1352 (2015).
[Crossref]

Wang, C.

C. Wang, C. Wang, Y. Shang, S. Ying, X. H. Liu, and G. D. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

C. Wang, C. Wang, Y. Shang, S. Ying, X. H. Liu, and G. D. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Wang, Z. N.

L. Zhang, Z. N. Wang, J. Li, J. J. Zeng, X. H. Jia, and Y. J. Rao, “Ultra-long dual-sideband BOTDA with balanced detection,” Opt. Laser Technol. 68, 206–210 (2015).
[Crossref]

Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39(20), 5866–5869 (2014).
[Crossref] [PubMed]

Wu, H.

Xia, L.

G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Φ-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27, 1349–1352 (2015).
[Crossref]

Xu, T. W.

Ye, Q.

J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multi- frequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
[Crossref]

Ying, S.

C. Wang, C. Wang, Y. Shang, S. Ying, X. H. Liu, and G. D. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Zeng, J. J.

L. Zhang, Z. N. Wang, J. Li, J. J. Zeng, X. H. Jia, and Y. J. Rao, “Ultra-long dual-sideband BOTDA with balanced detection,” Opt. Laser Technol. 68, 206–210 (2015).
[Crossref]

Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39(20), 5866–5869 (2014).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, Z. N. Wang, J. Li, J. J. Zeng, X. H. Jia, and Y. J. Rao, “Ultra-long dual-sideband BOTDA with balanced detection,” Opt. Laser Technol. 68, 206–210 (2015).
[Crossref]

Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39(20), 5866–5869 (2014).
[Crossref] [PubMed]

Zhang, X. P.

G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Φ-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27, 1349–1352 (2015).
[Crossref]

Zhang, Y. X.

G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Φ-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27, 1349–1352 (2015).
[Crossref]

Zhou, J.

J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multi- frequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
[Crossref]

Zhou, Y.

Zhu, F.

G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Φ-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27, 1349–1352 (2015).
[Crossref]

Chin. J. Lasers (1)

J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multi- frequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G. J. Tu, X. P. Zhang, Y. X. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Φ-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27, 1349–1352 (2015).
[Crossref]

J. Lightwave Technol. (4)

Meas. Sci. Technol. (1)

A. Masoudi, M. Belaland, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Opt. Commun. (1)

C. Wang, C. Wang, Y. Shang, S. Ying, X. H. Liu, and G. D. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

L. Zhang, Z. N. Wang, J. Li, J. J. Zeng, X. H. Jia, and Y. J. Rao, “Ultra-long dual-sideband BOTDA with balanced detection,” Opt. Laser Technol. 68, 206–210 (2015).
[Crossref]

Opt. Lett. (1)

Other (5)

L. Thévenaz, “Next generation of optical fibre sensors: new concepts and perspectives,” Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 9157AN (2014).

Y. J. Rao, J. Z. Li, Z. L. Ran, and K. L. Xie, “Distributed intrusion detection based on combination of φ-OTDR and POTDR,” Proc. SPIE 7004, 19th International Conference on Optical Fibre Sensors, 700461 (2008).
[Crossref]

H. F. Tarlor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. Patent 5194847 (1993).

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” in Optical Sensors and Biophotonics, J. Popp, D. Matthews, J. Tian, and C. Yang, eds., Proc. SPIE 8311 (Optical Society of America, 2011), paper 83110S.

R. Hui and M. S. O’Sullivan, Fiber Optic Measurement Techniques (Academic Press, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A general block diagram of I/Q demodulation using 90° hybrid.
Fig. 2
Fig. 2 Experimental setup (Cir: circulator; SMF: single mode fiber).
Fig. 3
Fig. 3 Rayleigh backscattering trace of the DAS.
Fig. 4
Fig. 4 (a) The time-domain trace and (b) the spectrum of the demodulated phase variation.
Fig. 5
Fig. 5 Amplitude of the phase variation v.s. voltage applied to the PZT.
Fig. 6
Fig. 6 Spectrums with different perturbation frequencies.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A s exp[i ω s t+iφ(t)+i φ s ]
A s exp[i ω s t+iφ(t)+i φ s +i(π/2)].
A o exp(i ω o t+i φ o )
{ I(t)= 1 2 R[ A s A o cos(( ω s ω o )t+φ(t)+ φ s φ o )+A + s 2 A ] o 2 Q(t)= 1 2 R[ A s A o sin(( ω s ω o )t+φ(t)+ φ s φ o )+A + s 2 A ] o 2
{ I AC 1 2 R A s A o cos(( ω s ω o )t+φ(t)+ φ s φ o ) Q AC 1 2 R A s A o sin(( ω s ω o )t+φ(t)+ φ s φ o )
{ I AC 1 2 R A s A o cos(φ(t)+ φ d ) Q AC 1 2 R A s A o sin(φ(t)+ φ d )
{ A s I AC 2 + Q AC 2 φ(t)arctan( Q AC I AC )- φ d
Δφ(t)= φ Z 1 (t) φ Z 2 (t)

Metrics