Abstract

Parametric optical nonlinearities are usually weak and require both high optical field intensity and phase-matching. Micro/nanophotonics, with strong confinement of light in waveguides of nanometer-scale cross-sections, can provide high field intensity, but is still in need of a solution for phase-matching across a broad bandwidth. In this article, we show that mode-coupling in slot waveguides can engineer the waveguide modal dispersion, and with proper choice of materials, can achieve on-chip broadband second-harmonic phase-matching. A phase-matching bandwidth in the range of 220 nm at mid-infrared can occur for a hetero-slot waveguide consisting of aluminum nitride (AlN) and silicon nitride (SiN). With a high-nonlinearity polymer as cladding material, about 1.76 W−1cm−2 of normalized conversion efficiency in second-harmonic-generation (SHG) and about 23 dB signal gain in degenerate optical parametric amplification (DOPA) can be achieved over a broad bandwidth. An asymmetric-slot waveguide configuration and a thermal tuning scheme are proposed to reduce the fabrication difficulty. This concept of broadband second-harmonic phase-matching can be extended to other nonlinear optical frequency mixing processes, thus expanding the scope of on-chip nonlinear optical applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient second harmonic generation in hyperbolic metamaterial slot waveguides with large phase matching tolerance

Yu Sun, Zheng Zheng, Jiangtao Cheng, Guodong Sun, and Guofu Qiao
Opt. Express 23(5) 6370-6378 (2015)

Cascaded waveguide phase-matching arrangement

Di Yang, Jacob B. Khurgin, and Yujie J. Ding
Opt. Lett. 25(7) 496-498 (2000)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  2. J.-M. Liu, Photonic Devices (Cambridge University, 2005).
    [Crossref]
  3. A. Weiner, Ultrafast Optics (John Wiley & Sons, 2011).
  4. T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer, 2003).
    [Crossref]
  5. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [Crossref]
  6. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “Cmos-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
    [Crossref]
  7. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
    [Crossref]
  8. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
    [Crossref] [PubMed]
  9. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
    [Crossref]
  10. W. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100, 223501 (2012).
    [Crossref]
  11. B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
    [Crossref]
  12. T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref] [PubMed]
  13. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
    [Crossref] [PubMed]
  14. X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
    [Crossref]
  15. R. Begley, A. Harvey, and R. L. Byer, “Coherent anti-stokes raman spectroscopy,” Appl. Phys. Lett. 25, 387–390 (1974).
    [Crossref]
  16. B. Mizaikoff, “Mid-ir fiber-optic sensors,” Anal. Chem. 75, 258A (2003).
    [Crossref]
  17. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser. Eng. 37, 101–114 (2002).
    [Crossref]
  18. M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-ir spectroscopy,” IEEE J. Sel. Topics Quantum Electron 18, 1502–1513 (2012).
    [Crossref]
  19. J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “Ir optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
    [Crossref]
  20. S. E. Reutebuch, H.-E. Andersen, and R. J. McGaughey, “Light detection and ranging (lidar): an emerging tool for multiple resource inventory,” J. Forest. 103, 286–292 (2005).
  21. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
    [Crossref]
  22. T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond yb: fiber oscillator,” Opt. Lett. 36, 4020–4022 (2011).
    [Crossref] [PubMed]
  23. L. Høgstedt, J. S. Dam, A.-L. Sahlberg, Z. Li, M. Aldén, C. Pedersen, and P. Tidemand-Lichtenberg, “Low-noise mid-ir upconversion detector for improved ir-degenerate four-wave mixing gas sensing,” Opt. Lett. 39, 5321–5324 (2014).
    [Crossref]
  24. E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55 μm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
    [Crossref]
  25. Z. Zheng, A. M. Weiner, K. R. Parameswaran, M.-H. Chou, and M. M. Fejer, “Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides with simultaneous strong pump depletion and group-velocity walk-off,” J. Opt. Soc. Am. B 19, 839–848 (2002).
    [Crossref]
  26. G. Imeshev, M. Arbore, M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17, 304–318 (2000).
    [Crossref]
  27. A. S. Solntsev and A. A. Sukhorukov, “Complete conversion of one to two photons in dispersion-engineered nonlinear waveguides,” Conference on Lasers and Electro-Optics p. JThD112 (2015).
  28. D. A. Antonosyan, A. S. Solntsev, and A. A. Sukhorukov, “Single-photon spontaneous parametric downconversion in quadratic nonlinear waveguide arrays,” Opt. Commun. 327, 22–26 (2014).
    [Crossref]
  29. U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
    [Crossref]
  30. J. Pastrňák and L. Roskovcova, “Refraction index measurements on aln single crystals,” Phys. Status Solidi (b) 14, K5–K8 (1966).
    [Crossref]
  31. H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochem. Soc. 120, 295–300 (1973).
    [Crossref]
  32. http://refractiveindex.info/ .
  33. I. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
    [Crossref]
  34. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [Crossref] [PubMed]
  35. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2006).
  36. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
    [Crossref]
  37. D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
    [Crossref]
  38. K. Lengle, L. Bramerie, M. Gay, J. Simon, S. Combrié, G. Lehoucq, and A. De Rossi, “Efficient second harmonic generation in nanophotonic waveguides for optical signal processing,” Appl. Phys. Lett. 102, 151114 (2013).
    [Crossref]
  39. K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98, 263113 (2011).
    [Crossref]
  40. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
    [Crossref] [PubMed]
  41. J. Zhang, E. Cassan, D. Gao, and X. Zhang, “Highly efficient phase-matched second harmonic generation using an asymmetric plasmonic slot waveguide configuration in hybrid polymer-silicon photonics,” Opt. Express 21, 14876–14887 (2013).
    [Crossref] [PubMed]
  42. L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 db nonreciprocal transmission,” Opt. Lett. 38, 1259–1261 (2013).
    [Crossref] [PubMed]
  43. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25gb/s 1v-driving cmos ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
    [Crossref] [PubMed]
  44. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).
  45. C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
    [Crossref]
  46. V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18, 17631–17639 (2010).
    [Crossref] [PubMed]
  47. A. R. Zanatta and I. B. Gallo, “The thermo optic coefficient of amorphous sin films in the near-infrared and visible regions and its experimental determination,” Appl. Phys. Express 6, 042402 (2013).
    [Crossref]
  48. A. Bar-Cohen, B. Han, and K. J. Kim, “Thermo-optic effects in polymer bragg gratings,” in “Micro-and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging,” (Springer, 2007), pp. A65–A110.
  49. C. Chang and A. Sakdinawat, “Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics,” Nat. Commun. 5, 4243 (2014).
    [Crossref] [PubMed]
  50. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
    [Crossref] [PubMed]
  51. A. Bartels, D. Heinecke, and S. A. Diddams, “10-ghz self-referenced optical frequency comb,” Science 326, 681 (2009).
    [Crossref] [PubMed]
  52. H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and ir frequency comb line generation from single ir pump in aln microring resonator,” Optica 1, 396–399 (2014).
    [Crossref]
  53. Lumerical Solutions Inc, http://www.lumerical.com/ .
  54. L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, “Second-order nonlinear silicon-organic hybrid waveguides,” Opt. Express 20, 20506–20515 (2012).
    [Crossref] [PubMed]
  55. Y. Enami, C. Derose, D. Mathine, C. Loychik, C. Greenlee, R. Norwood, T. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1, 180–185 (2007).
    [Crossref]
  56. J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
    [Crossref]

2015 (1)

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

2014 (4)

D. A. Antonosyan, A. S. Solntsev, and A. A. Sukhorukov, “Single-photon spontaneous parametric downconversion in quadratic nonlinear waveguide arrays,” Opt. Commun. 327, 22–26 (2014).
[Crossref]

C. Chang and A. Sakdinawat, “Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics,” Nat. Commun. 5, 4243 (2014).
[Crossref] [PubMed]

L. Høgstedt, J. S. Dam, A.-L. Sahlberg, Z. Li, M. Aldén, C. Pedersen, and P. Tidemand-Lichtenberg, “Low-noise mid-ir upconversion detector for improved ir-degenerate four-wave mixing gas sensing,” Opt. Lett. 39, 5321–5324 (2014).
[Crossref]

H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and ir frequency comb line generation from single ir pump in aln microring resonator,” Optica 1, 396–399 (2014).
[Crossref]

2013 (5)

2012 (6)

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-ir spectroscopy,” IEEE J. Sel. Topics Quantum Electron 18, 1502–1513 (2012).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

W. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100, 223501 (2012).
[Crossref]

L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, “Second-order nonlinear silicon-organic hybrid waveguides,” Opt. Express 20, 20506–20515 (2012).
[Crossref] [PubMed]

2011 (8)

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98, 263113 (2011).
[Crossref]

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
[Crossref]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
[Crossref] [PubMed]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref] [PubMed]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
[Crossref] [PubMed]

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25gb/s 1v-driving cmos ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[Crossref] [PubMed]

T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond yb: fiber oscillator,” Opt. Lett. 36, 4020–4022 (2011).
[Crossref] [PubMed]

2010 (4)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “Cmos-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18, 17631–17639 (2010).
[Crossref] [PubMed]

2009 (3)

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-ghz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref] [PubMed]

2007 (1)

Y. Enami, C. Derose, D. Mathine, C. Loychik, C. Greenlee, R. Norwood, T. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1, 180–185 (2007).
[Crossref]

2005 (2)

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55 μm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

S. E. Reutebuch, H.-E. Andersen, and R. J. McGaughey, “Light detection and ranging (lidar): an emerging tool for multiple resource inventory,” J. Forest. 103, 286–292 (2005).

2004 (1)

2003 (2)

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “Ir optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

B. Mizaikoff, “Mid-ir fiber-optic sensors,” Anal. Chem. 75, 258A (2003).
[Crossref]

2002 (3)

2000 (1)

1995 (1)

U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[Crossref]

1974 (1)

R. Begley, A. Harvey, and R. L. Byer, “Coherent anti-stokes raman spectroscopy,” Appl. Phys. Lett. 25, 387–390 (1974).
[Crossref]

1973 (1)

H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochem. Soc. 120, 295–300 (1973).
[Crossref]

1966 (1)

J. Pastrňák and L. Roskovcova, “Refraction index measurements on aln single crystals,” Phys. Status Solidi (b) 14, K5–K8 (1966).
[Crossref]

1965 (1)

Aimez, V.

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
[Crossref]

Aldén, M.

Alloatti, L.

Almeida, V. R.

Andersen, H.-E.

S. E. Reutebuch, H.-E. Andersen, and R. J. McGaughey, “Light detection and ranging (lidar): an emerging tool for multiple resource inventory,” J. Forest. 103, 286–292 (2005).

Angelis, C. D.

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
[Crossref]

Antonosyan, D. A.

D. A. Antonosyan, A. S. Solntsev, and A. A. Sukhorukov, “Single-photon spontaneous parametric downconversion in quadratic nonlinear waveguide arrays,” Opt. Commun. 327, 22–26 (2014).
[Crossref]

Arbore, M.

Arés, R.

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
[Crossref]

Baets, R.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

Bar-Cohen, A.

A. Bar-Cohen, B. Han, and K. J. Kim, “Thermo-optic effects in polymer bragg gratings,” in “Micro-and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging,” (Springer, 2007), pp. A65–A110.

Barrios, C. A.

Bartels, A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-ghz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref] [PubMed]

Begley, R.

R. Begley, A. Harvey, and R. L. Byer, “Coherent anti-stokes raman spectroscopy,” Appl. Phys. Lett. 25, 387–390 (1974).
[Crossref]

Bhargava, R.

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-ir spectroscopy,” IEEE J. Sel. Topics Quantum Electron 18, 1502–1513 (2012).
[Crossref]

Biaggio, I.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

Bianco, F.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Borga, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Boussard-Plédel, C.

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “Ir optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Bramerie, L.

K. Lengle, L. Bramerie, M. Gay, J. Simon, S. Combrié, G. Lehoucq, and A. De Rossi, “Efficient second harmonic generation in nanophotonic waveguides for optical signal processing,” Appl. Phys. Lett. 102, 151114 (2013).
[Crossref]

Brosi, J.-M.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

Buckley, S.

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98, 263113 (2011).
[Crossref]

Bureau, B.

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “Ir optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

Byer, R. L.

R. Begley, A. Harvey, and R. L. Byer, “Coherent anti-stokes raman spectroscopy,” Appl. Phys. Lett. 25, 387–390 (1974).
[Crossref]

Cassan, E.

Cazzanelli, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Chaker, M.

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
[Crossref]

Chang, C.

C. Chang and A. Sakdinawat, “Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics,” Nat. Commun. 5, 4243 (2014).
[Crossref] [PubMed]

Chen, S.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

Chou, M.-H.

Christodoulides, D. N.

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
[Crossref]

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “Cmos-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Combrié, S.

K. Lengle, L. Bramerie, M. Gay, J. Simon, S. Combrié, G. Lehoucq, and A. De Rossi, “Efficient second harmonic generation in nanophotonic waveguides for optical signal processing,” Appl. Phys. Lett. 102, 151114 (2013).
[Crossref]

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Cunningham, J. E.

Dam, J. S.

De Rossi, A.

K. Lengle, L. Bramerie, M. Gay, J. Simon, S. Combrié, G. Lehoucq, and A. De Rossi, “Efficient second harmonic generation in nanophotonic waveguides for optical signal processing,” Appl. Phys. Lett. 102, 151114 (2013).
[Crossref]

Degoli, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Delprat, S.

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
[Crossref]

Derose, C.

Y. Enami, C. Derose, D. Mathine, C. Loychik, C. Greenlee, R. Norwood, T. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1, 180–185 (2007).
[Crossref]

Diamanti, E.

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55 μm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

Diddams, S.

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Diddams, S. A.

Diederich, F.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

Duchesne, D.

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “Cmos-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Dumon, P.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

Eggleton, B.

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Enami, Y.

Y. Enami, C. Derose, D. Mathine, C. Loychik, C. Greenlee, R. Norwood, T. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1, 180–185 (2007).
[Crossref]

Fan, L.

Fejer, M.

Fejer, M. M.

Fermann, M.

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “Cmos-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Fischer, D.

Fong, K. Y.

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
[Crossref] [PubMed]

Foster, M. A.

Frank, B.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

Freude, W.

L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, “Second-order nonlinear silicon-organic hybrid waveguides,” Opt. Express 20, 20506–20515 (2012).
[Crossref] [PubMed]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

Fujimura, M.

Gaeta, A. L.

Gallo, I. B.

A. R. Zanatta and I. B. Gallo, “The thermo optic coefficient of amorphous sin films in the near-infrared and visible regions and its experimental determination,” Appl. Phys. Express 6, 042402 (2013).
[Crossref]

Galvanauskas, A.

Gao, D.

Gay, M.

K. Lengle, L. Bramerie, M. Gay, J. Simon, S. Combrié, G. Lehoucq, and A. De Rossi, “Efficient second harmonic generation in nanophotonic waveguides for optical signal processing,” Appl. Phys. Lett. 102, 151114 (2013).
[Crossref]

Ghosh, G.

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).

Ghulinyan, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Green, W. M.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

Greenlee, C.

Y. Enami, C. Derose, D. Mathine, C. Loychik, C. Greenlee, R. Norwood, T. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1, 180–185 (2007).
[Crossref]

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Guo, X.

Han, B.

A. Bar-Cohen, B. Han, and K. J. Kim, “Thermo-optic effects in polymer bragg gratings,” in “Micro-and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging,” (Springer, 2007), pp. A65–A110.

Harter, D.

Harvey, A.

R. Begley, A. Harvey, and R. L. Byer, “Coherent anti-stokes raman spectroscopy,” Appl. Phys. Lett. 25, 387–390 (1974).
[Crossref]

Hatami, F.

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98, 263113 (2011).
[Crossref]

Heinecke, D.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-ghz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref] [PubMed]

Høgstedt, L.

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Honjo, T.

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55 μm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

Hu, J.

Imeshev, G.

Inoue, K.

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55 μm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

Izuhara, T.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

Jänker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser. Eng. 37, 101–114 (2002).
[Crossref]

Jen, A. K.-Y.

Y. Enami, C. Derose, D. Mathine, C. Loychik, C. Greenlee, R. Norwood, T. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1, 180–185 (2007).
[Crossref]

Johnson, A. R.

Johnson, T. A.

Jung, H.

Keirsse, J.

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “Ir optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

Kim, K. J.

A. Bar-Cohen, B. Han, and K. J. Kim, “Thermo-optic effects in polymer bragg gratings,” in “Micro-and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging,” (Springer, 2007), pp. A65–A110.

Kim, T.

Y. Enami, C. Derose, D. Mathine, C. Loychik, C. Greenlee, R. Norwood, T. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1, 180–185 (2007).
[Crossref]

Kimerling, L.

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Koos, C.

L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, “Second-order nonlinear silicon-organic hybrid waveguides,” Opt. Express 20, 20506–20515 (2012).
[Crossref] [PubMed]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser. Eng. 37, 101–114 (2002).
[Crossref]

Korn, D.

Krauss, T.

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Krishnamoorthy, A. V.

Kurz, J. R.

Lamont, M. R.

Leaird, D. E.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

Lederer, F.

U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[Crossref]

Légaré, F.

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
[Crossref]

Lehoucq, G.

K. Lengle, L. Bramerie, M. Gay, J. Simon, S. Combrié, G. Lehoucq, and A. De Rossi, “Efficient second harmonic generation in nanophotonic waveguides for optical signal processing,” Appl. Phys. Lett. 102, 151114 (2013).
[Crossref]

Lengle, K.

K. Lengle, L. Bramerie, M. Gay, J. Simon, S. Combrié, G. Lehoucq, and A. De Rossi, “Efficient second harmonic generation in nanophotonic waveguides for optical signal processing,” Appl. Phys. Lett. 102, 151114 (2013).
[Crossref]

Leroyer, P.

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “Ir optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

Leuthold, J.

L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, “Second-order nonlinear silicon-organic hybrid waveguides,” Opt. Express 20, 20506–20515 (2012).
[Crossref] [PubMed]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

Levy, J. S.

Li, G.

Li, Z.

Lipson, M.

Little, B.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “Cmos-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Liu, J.-M.

J.-M. Liu, Photonic Devices (Cambridge University, 2005).
[Crossref]

Liu, X.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

Liu, Y.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

Locatelli, A.

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
[Crossref]

Loreal, O.

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “Ir optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

Loychik, C.

Y. Enami, C. Derose, D. Mathine, C. Loychik, C. Greenlee, R. Norwood, T. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1, 180–185 (2007).
[Crossref]

Lucas, J.

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “Ir optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

Luo, J.

Y. Enami, C. Derose, D. Mathine, C. Loychik, C. Greenlee, R. Norwood, T. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1, 180–185 (2007).
[Crossref]

Luo, Y.

Luppi, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Malitson, I.

Mathine, D.

Y. Enami, C. Derose, D. Mathine, C. Loychik, C. Greenlee, R. Norwood, T. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1, 180–185 (2007).
[Crossref]

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser. Eng. 37, 101–114 (2002).
[Crossref]

McGaughey, R. J.

S. E. Reutebuch, H.-E. Andersen, and R. J. McGaughey, “Light detection and ranging (lidar): an emerging tool for multiple resource inventory,” J. Forest. 103, 286–292 (2005).

Michel, J.

Mizaikoff, B.

B. Mizaikoff, “Mid-ir fiber-optic sensors,” Anal. Chem. 75, 258A (2003).
[Crossref]

Modotto, D.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
[Crossref]

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Morandotti, R.

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “Cmos-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Moss, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “Cmos-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Mücke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser. Eng. 37, 101–114 (2002).
[Crossref]

Neely, T. W.

Norwood, R.

Y. Enami, C. Derose, D. Mathine, C. Loychik, C. Greenlee, R. Norwood, T. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1, 180–185 (2007).
[Crossref]

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Okawachi, Y.

Osgood, R. M.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

Ossicini, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Palacios, T.

Parameswaran, K. R.

Pastrnák, J.

J. Pastrňák and L. Roskovcova, “Refraction index measurements on aln single crystals,” Phys. Status Solidi (b) 14, K5–K8 (1966).
[Crossref]

Pavesi, L.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Pedersen, C.

Pernice, W.

W. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100, 223501 (2012).
[Crossref]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
[Crossref] [PubMed]

Pernice, W. H.

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Peschel, T.

U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[Crossref]

Peschel, U.

U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[Crossref]

Peyghambarian, N.

Y. Enami, C. Derose, D. Mathine, C. Loychik, C. Greenlee, R. Norwood, T. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1, 180–185 (2007).
[Crossref]

Philipp, H. R.

H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochem. Soc. 120, 295–300 (1973).
[Crossref]

Pierobon, R.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Pucker, G.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Qi, M.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 db nonreciprocal transmission,” Opt. Lett. 38, 1259–1261 (2013).
[Crossref] [PubMed]

Raghunathan, V.

Raj, K.

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “Cmos-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Reddy, R. K.

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-ir spectroscopy,” IEEE J. Sel. Topics Quantum Electron 18, 1502–1513 (2012).
[Crossref]

Reutebuch, S. E.

S. E. Reutebuch, H.-E. Andersen, and R. J. McGaughey, “Light detection and ranging (lidar): an emerging tool for multiple resource inventory,” J. Forest. 103, 286–292 (2005).

Rivoire, K.

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98, 263113 (2011).
[Crossref]

Roskovcova, L.

J. Pastrňák and L. Roskovcova, “Refraction index measurements on aln single crystals,” Phys. Status Solidi (b) 14, K5–K8 (1966).
[Crossref]

Roussev, R. V.

Route, R. K.

Rutkowska, K. A.

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
[Crossref]

Ryu, K. K.

Saha, K.

Sahlberg, A.-L.

Sakdinawat, A.

C. Chang and A. Sakdinawat, “Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics,” Nat. Commun. 5, 4243 (2014).
[Crossref] [PubMed]

Salamo, G.

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
[Crossref]

Salem, R.

Schuck, C.

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

W. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100, 223501 (2012).
[Crossref]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
[Crossref] [PubMed]

Scimeca, M. L.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

Shim, B.

Shubin, I.

Simon, J.

K. Lengle, L. Bramerie, M. Gay, J. Simon, S. Combrié, G. Lehoucq, and A. De Rossi, “Efficient second harmonic generation in nanophotonic waveguides for optical signal processing,” Appl. Phys. Lett. 102, 151114 (2013).
[Crossref]

Sire, O.

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “Ir optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser. Eng. 37, 101–114 (2002).
[Crossref]

Solntsev, A. S.

D. A. Antonosyan, A. S. Solntsev, and A. A. Sukhorukov, “Single-photon spontaneous parametric downconversion in quadratic nonlinear waveguide arrays,” Opt. Commun. 327, 22–26 (2014).
[Crossref]

A. S. Solntsev and A. A. Sukhorukov, “Complete conversion of one to two photons in dispersion-engineered nonlinear waveguides,” Conference on Lasers and Electro-Optics p. JThD112 (2015).

Sorel, M.

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
[Crossref]

Stoll, R.

Suhara, T.

T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer, 2003).
[Crossref]

Sukhorukov, A. A.

D. A. Antonosyan, A. S. Solntsev, and A. A. Sukhorukov, “Single-photon spontaneous parametric downconversion in quadratic nonlinear waveguide arrays,” Opt. Commun. 327, 22–26 (2014).
[Crossref]

A. S. Solntsev and A. A. Sukhorukov, “Complete conversion of one to two photons in dispersion-engineered nonlinear waveguides,” Conference on Lasers and Electro-Optics p. JThD112 (2015).

Sun, X.

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Takesue, H.

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55 μm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

Tang, H. X.

H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and ir frequency comb line generation from single ir pump in aln microring resonator,” Optica 1, 396–399 (2014).
[Crossref]

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

W. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100, 223501 (2012).
[Crossref]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
[Crossref] [PubMed]

Thacker, H.

Tian, Y.

Y. Enami, C. Derose, D. Mathine, C. Loychik, C. Greenlee, R. Norwood, T. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1, 180–185 (2007).
[Crossref]

Tidemand-Lichtenberg, P.

Turlin, B.

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “Ir optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

Varghese, L. T.

Véniard, V.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Vlasov, Y. A.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

Volatier, M.

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
[Crossref]

Vuckovic, J.

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98, 263113 (2011).
[Crossref]

Wabnitz, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Walsh, M. J.

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-ir spectroscopy,” IEEE J. Sel. Topics Quantum Electron 18, 1502–1513 (2012).
[Crossref]

Wang, J.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 db nonreciprocal transmission,” Opt. Lett. 38, 1259–1261 (2013).
[Crossref] [PubMed]

Wang, P.-H.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

Weimann, C.

Weiner, A.

A. Weiner, Ultrafast Optics (John Wiley & Sons, 2011).

Weiner, A. M.

Wen, Y. H.

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser. Eng. 37, 101–114 (2002).
[Crossref]

White, T.

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Xiong, C.

W. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100, 223501 (2012).
[Crossref]

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
[Crossref] [PubMed]

Xu, Q.

Xuan, Y.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 db nonreciprocal transmission,” Opt. Lett. 38, 1259–1261 (2013).
[Crossref] [PubMed]

Xue, X.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

Yamamoto, Y.

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55 μm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

Yao, J.

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2006).

Ye, W. N.

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2006).

Zanatta, A. R.

A. R. Zanatta and I. B. Gallo, “The thermo optic coefficient of amorphous sin films in the near-infrared and visible regions and its experimental determination,” Appl. Phys. Express 6, 042402 (2013).
[Crossref]

Zhang, J.

Zhang, X.

Zheng, X.

Zheng, Z.

Anal. Chem. (1)

B. Mizaikoff, “Mid-ir fiber-optic sensors,” Anal. Chem. 75, 258A (2003).
[Crossref]

Appl. Phys. Express (1)

A. R. Zanatta and I. B. Gallo, “The thermo optic coefficient of amorphous sin films in the near-infrared and visible regions and its experimental determination,” Appl. Phys. Express 6, 042402 (2013).
[Crossref]

Appl. Phys. Lett. (5)

K. Lengle, L. Bramerie, M. Gay, J. Simon, S. Combrié, G. Lehoucq, and A. De Rossi, “Efficient second harmonic generation in nanophotonic waveguides for optical signal processing,” Appl. Phys. Lett. 102, 151114 (2013).
[Crossref]

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98, 263113 (2011).
[Crossref]

U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995).
[Crossref]

W. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100, 223501 (2012).
[Crossref]

R. Begley, A. Harvey, and R. L. Byer, “Coherent anti-stokes raman spectroscopy,” Appl. Phys. Lett. 25, 387–390 (1974).
[Crossref]

IEEE J. Sel. Topics Quantum Electron (1)

M. J. Walsh, R. K. Reddy, and R. Bhargava, “Label-free biomedical imaging with mid-ir spectroscopy,” IEEE J. Sel. Topics Quantum Electron 18, 1502–1513 (2012).
[Crossref]

J. Electrochem. Soc. (1)

H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochem. Soc. 120, 295–300 (1973).
[Crossref]

J. Forest. (1)

S. E. Reutebuch, H.-E. Andersen, and R. J. McGaughey, “Light detection and ranging (lidar): an emerging tool for multiple resource inventory,” J. Forest. 103, 286–292 (2005).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

C. Chang and A. Sakdinawat, “Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics,” Nat. Commun. 5, 4243 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Nat. Photonics (7)

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “Cmos-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010).
[Crossref]

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

Y. Enami, C. Derose, D. Mathine, C. Loychik, C. Greenlee, R. Norwood, T. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1, 180–185 (2007).
[Crossref]

New J. Phys. (1)

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Opt. Commun. (1)

D. A. Antonosyan, A. S. Solntsev, and A. A. Sukhorukov, “Single-photon spontaneous parametric downconversion in quadratic nonlinear waveguide arrays,” Opt. Commun. 327, 22–26 (2014).
[Crossref]

Opt. Express (8)

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. D. Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arés, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 219, 12408–12417 (2011).
[Crossref]

V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18, 17631–17639 (2010).
[Crossref] [PubMed]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
[Crossref] [PubMed]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref] [PubMed]

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25gb/s 1v-driving cmos ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[Crossref] [PubMed]

L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, “Second-order nonlinear silicon-organic hybrid waveguides,” Opt. Express 20, 20506–20515 (2012).
[Crossref] [PubMed]

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
[Crossref] [PubMed]

J. Zhang, E. Cassan, D. Gao, and X. Zhang, “Highly efficient phase-matched second harmonic generation using an asymmetric plasmonic slot waveguide configuration in hybrid polymer-silicon photonics,” Opt. Express 21, 14876–14887 (2013).
[Crossref] [PubMed]

Opt. Laser. Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser. Eng. 37, 101–114 (2002).
[Crossref]

Opt. Lett. (6)

Optica (1)

Phys. Rev. A (1)

E. Diamanti, H. Takesue, T. Honjo, K. Inoue, and Y. Yamamoto, “Performance of various quantum-key-distribution systems using 1.55 μm up-conversion single-photon detectors,” Phys. Rev. A 72, 052311 (2005).
[Crossref]

Phys. Status Solidi (b) (1)

J. Pastrňák and L. Roskovcova, “Refraction index measurements on aln single crystals,” Phys. Status Solidi (b) 14, K5–K8 (1966).
[Crossref]

Proc. IEEE (1)

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

Science (2)

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-ghz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “Ir optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

Other (10)

A. S. Solntsev and A. A. Sukhorukov, “Complete conversion of one to two photons in dispersion-engineered nonlinear waveguides,” Conference on Lasers and Electro-Optics p. JThD112 (2015).

R. W. Boyd, Nonlinear Optics (Academic, 2008).

J.-M. Liu, Photonic Devices (Cambridge University, 2005).
[Crossref]

A. Weiner, Ultrafast Optics (John Wiley & Sons, 2011).

T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer, 2003).
[Crossref]

Lumerical Solutions Inc, http://www.lumerical.com/ .

A. Bar-Cohen, B. Han, and K. J. Kim, “Thermo-optic effects in polymer bragg gratings,” in “Micro-and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging,” (Springer, 2007), pp. A65–A110.

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2006).

http://refractiveindex.info/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Cross-sectional view and geometric parameters of a hetero-slot waveguide. (b) Refractive indices (blue lines) and material dispersions (red lines) of each material: AlN (solid lines), SiN (circled lines), nonlinear polymer (triangled lines), and SiO2 (dashed lines). (c) Illustration of dispersion engineering with mode-coupling and mode-conversion. (d) Normalized mode profiles (|Ex|) of symmetric (upper row) and antisymmetric (middle row) modes at 2ω, and slot (lower row) mode at ω: wa = 1515 nm, wb = 1300 nm, g = 100 nm, and h = 2000 nm.
Fig. 2
Fig. 2 (a,b) neff of symmetric (circled blue line) and antisymmetric (dashed blue line) modes at λ2ω (blue) and that of slot (solid red line) mode at λω (red): (a) Type-A and (b) Type-S phase-matchings. (c,d) Index difference Δn (blue) and coherent buildup length Lcoh (red) of (c) Type-A and (d) Type-S phase-matchings. Geometric parameters for (a,c) type A are wa = 1300 nm, wb = 1515 nm, g = 100 nm, and h = 2000 nm and those for (b,d) type S are wa = 600 nm, wb = 1270 nm, g = 200 nm, and h = 2600 nm.
Fig. 3
Fig. 3 Nonlinear coupling coefficient |κ| of type-S (solid) and type-A (dashed) phase-matchings, as a function of λω (red) and corresponding λ2ω (blue).
Fig. 4
Fig. 4 Signal gain spectra of the DOPA with type-S phase-matching at different device lengths of Lc = 1.0 mm (circled), 4.0 mm (dashed), and 7.0 mm (solid): (a) wb = 600 nm, (b) wb = 605 nm, and (c) wb = 610 nm. Other geometries are the same as type-S phase-matching described in Fig. 2.
Fig. 5
Fig. 5 Signal gain spectra of DOPA (red) and DOPDA (green) with type-S phase-matching at different device lengths of Lc = 0.5 mm (circled), 1.0 mm (dashed), and 1.5 mm (solid).
Fig. 6
Fig. 6 Pump power Pω (red) and SHG power P2ω (blue) spectra with type-S phase-matching at different device lengths of Lc = 1.0 mm (circled), 2.0 mm (dashed), and 3.0 mm (solid): (a) wb = 600 nm, (b) wb = 605 nm, and (c) wb = 610 nm. Same devices as in DOPA (Fig. 4) are used for the SHG.
Fig. 7
Fig. 7 Pump power Pω (red) and SHG power P2ω (blue) spectra with type-S phase-matching that are similar to Fig. 6, but for the fixed waveguide width wb = 600 nm at different temperatures: (a) T = 300 K, (b) T = 320 K, and (c) T = 340 K. Other geometries are the same as type-S phase-matching described in Fig. 2.
Fig. 8
Fig. 8 (a) Cross-sectional view and geometric parameters of an asymmetric-slot waveguide. (b) Δn (blue) and Lcoh (red), and (c) |κ| of type-S phase-matching. (d–f) Signal gain spectra of DOPA and (g–i) SHG spectra of type-S phase-matching with asymmetric-slot waveguides. Other geometric parameters are h =2500 nm, g =200 nm, and wb =400 nm.

Tables (1)

Tables Icon

Table 1 Summary of previously demonstrated [10,36–40] and proposed [41] SHG on-chip photonic devices. (wg: waveguide and PhC: photonic crystal)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d A ω d z = i κ * A ω * A 2 ω exp ( i Δ β z ) α ω 2 A ω ,
d A 2 ω d z = i κ A ω A ω exp ( i Δ β z ) α 2 ω 2 A 2 ω ,
κ = 2 ω ε 0 4 E 2 ω * ( x , y ) d ( x , y ) E ω ( x , y ) E ω ( x , y ) d x d y ,

Metrics