Abstract

We present a simple conceptual model describing the absorption enhancement provided by diffraction gratings due to resonant coupling to guided modes in a multi-layered structure. In doing so, we provide insight into why certain guided modes are more strongly excited than others and demonstrate that the spatial overlap of the mode profile with the grating is important. The model is verified by comparison to optical simulations and experimental measurements. We fabricate metal nanoparticle gratings integrated as back contacts in solution-processed PbS colloidal quantum dot photodiodes. The measured photocurrent at the target wavelength is enhanced by 250%, with reference to planar devices, due to resonant coupling to guided modes with strong spatial overlap with the gratings. In comparison, resonant coupling to weakly overlapping modes results in a 25% increase at the same wavelength.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes

Seyed Milad Mahpeykar, Qiuyang Xiong, and Xihua Wang
Opt. Express 22(S6) A1576-A1588 (2014)

Light trapping with plasmonic particles: beyond the dipole model

Fiona J. Beck, Sudha Mokkapati, and Kylie R. Catchpole
Opt. Express 19(25) 25230-25241 (2011)

Nano-photonic light trapping near the Lambertian limit in organic solar cell architectures

Rana Biswas and Erik Timmons
Opt. Express 21(S5) A841-A846 (2013)

References

  • View by:
  • |
  • |
  • |

  1. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
    [Crossref] [PubMed]
  2. A. Mihi, F. J. Beck, T. Lasanta, A. K. Rath, and G. Konstantatos, “Imprinted electrodes for enhanced light trapping in solution processed solar cells,” Adv. Mater. 26(3), 443–448 (2014).
    [Crossref] [PubMed]
  3. A. Ono, Y. Enomoto, Y. Matsumura, H. Satoh, and H. Inokawa, “Broadband absorption enhancement of thin SOI photodiode with high-density gold nanoparticles,” Opt. Express 2329, 5663–5666 (2014).
  4. F. J. Beck, A. Stavrinadis, S. L. Diedenhofen, T. Lasanta, and G. Konstantatos, “Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics,” ACS Photonics 1(11), 1197–1205 (2014).
    [Crossref]
  5. M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
    [Crossref]
  6. G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25(10), 1748 (2008).
    [Crossref]
  7. S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
    [Crossref]
  8. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
    [Crossref]
  9. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar-cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
    [Crossref]
  10. H. R. Stuart and D. G. Hall, “Thermodynamic limit to light trapping in thin planar structures,” J. Opt. Soc. Am. A 14(11), 3001 (1997).
    [Crossref]
  11. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
    [Crossref] [PubMed]
  12. J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett. 100(12), 121121 (2012).
    [Crossref]
  13. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
    [Crossref] [PubMed]
  14. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3Suppl 3), A335–A341 (2010).
    [Crossref] [PubMed]
  15. R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
    [Crossref] [PubMed]
  16. M.-C. van Lare and A. Polman, “Optimized scattering power spectral density of photovoltaic light trapping patterns,” ACS Photonics 2, 822–831 (2015).
  17. E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
    [Crossref] [PubMed]
  18. F. J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106(4), 044502 (2009).
    [Crossref]
  19. F. J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
    [Crossref]
  20. N. N. Lal, H. Zhou, M. Hawkeye, J. K. Sinha, P. N. Bartlett, G. A. J. Amaratunga, and J. J. Baumberg, “Using spacer layers to control metal and semiconductor absorption in ultrathin solar cells with plasmonic substrates,” Phys. Rev. B – Condens. Matter Mater. Phys. 85(24), 1–10 (2012).
    [Crossref]
  21. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
    [Crossref] [PubMed]
  22. J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress,” Adv. Mater. 23(1), 12–29 (2011).
    [Crossref] [PubMed]
  23. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
    [Crossref] [PubMed]
  24. M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3, 2928 (2013).
    [Crossref] [PubMed]
  25. F. P. García de Arquer, F. J. Beck, and G. Konstantatos, “Absorption enhancement in solution processed metal-semiconductor nanocomposites,” Opt. Express 19(21), 21038–21049 (2011).
    [Crossref] [PubMed]
  26. F. P. García de Arquer, F. J. Beck, M. M. Bernechea, and G. Konstantatos, “Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors,” Appl. Phys. Lett. 100(4), 043101 (2012).
    [Crossref]
  27. U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(S6Suppl 6), A1219–A1230 (2011).
    [Crossref] [PubMed]
  28. U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 94–96 (2011).
    [Crossref]
  29. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
    [Crossref]
  30. Lumerical FDTD Solutions, version 6.0.3, www.lumerical.com , (Lumerical Solutions Inc. 2008), Vancouver.
  31. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  32. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [Crossref]
  33. M. Mariano, F. J. Rodríguez, P. Romero-Gomez, G. Kozyreff, and J. Martorell, “Light coupling into the whispering gallery modes of a fiber array solar cell for mechanically fixed sun tracking,” (in preparation).
    [Crossref] [PubMed]
  34. B. R. Hyun, J. J. Choi, K. L. Seyler, T. Hanrath, and F. W. Wise, “Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers,” ACS Nano 7(12), 10938–10947 (2013).
    [Crossref] [PubMed]

2015 (1)

M.-C. van Lare and A. Polman, “Optimized scattering power spectral density of photovoltaic light trapping patterns,” ACS Photonics 2, 822–831 (2015).

2014 (3)

A. Mihi, F. J. Beck, T. Lasanta, A. K. Rath, and G. Konstantatos, “Imprinted electrodes for enhanced light trapping in solution processed solar cells,” Adv. Mater. 26(3), 443–448 (2014).
[Crossref] [PubMed]

A. Ono, Y. Enomoto, Y. Matsumura, H. Satoh, and H. Inokawa, “Broadband absorption enhancement of thin SOI photodiode with high-density gold nanoparticles,” Opt. Express 2329, 5663–5666 (2014).

F. J. Beck, A. Stavrinadis, S. L. Diedenhofen, T. Lasanta, and G. Konstantatos, “Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics,” ACS Photonics 1(11), 1197–1205 (2014).
[Crossref]

2013 (4)

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3, 2928 (2013).
[Crossref] [PubMed]

B. R. Hyun, J. J. Choi, K. L. Seyler, T. Hanrath, and F. W. Wise, “Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers,” ACS Nano 7(12), 10938–10947 (2013).
[Crossref] [PubMed]

2012 (4)

N. N. Lal, H. Zhou, M. Hawkeye, J. K. Sinha, P. N. Bartlett, G. A. J. Amaratunga, and J. J. Baumberg, “Using spacer layers to control metal and semiconductor absorption in ultrathin solar cells with plasmonic substrates,” Phys. Rev. B – Condens. Matter Mater. Phys. 85(24), 1–10 (2012).
[Crossref]

F. P. García de Arquer, F. J. Beck, M. M. Bernechea, and G. Konstantatos, “Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors,” Appl. Phys. Lett. 100(4), 043101 (2012).
[Crossref]

J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett. 100(12), 121121 (2012).
[Crossref]

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[Crossref]

2011 (5)

F. J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(S6Suppl 6), A1219–A1230 (2011).
[Crossref] [PubMed]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 94–96 (2011).
[Crossref]

J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress,” Adv. Mater. 23(1), 12–29 (2011).
[Crossref] [PubMed]

F. P. García de Arquer, F. J. Beck, and G. Konstantatos, “Absorption enhancement in solution processed metal-semiconductor nanocomposites,” Opt. Express 19(21), 21038–21049 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (2)

F. J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106(4), 044502 (2009).
[Crossref]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

2008 (3)

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[Crossref]

G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25(10), 1748 (2008).
[Crossref]

2007 (1)

2005 (1)

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

2001 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

1997 (1)

1982 (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar-cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Adachi, M. M.

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3, 2928 (2013).
[Crossref] [PubMed]

Amaratunga, G. A. J.

N. N. Lal, H. Zhou, M. Hawkeye, J. K. Sinha, P. N. Bartlett, G. A. J. Amaratunga, and J. J. Baumberg, “Using spacer layers to control metal and semiconductor absorption in ultrathin solar cells with plasmonic substrates,” Phys. Rev. B – Condens. Matter Mater. Phys. 85(24), 1–10 (2012).
[Crossref]

Askarov, D.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Atwater, H. A.

J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett. 100(12), 121121 (2012).
[Crossref]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[Crossref] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Ballif, C.

F. J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3Suppl 3), A335–A341 (2010).
[Crossref] [PubMed]

F. J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106(4), 044502 (2009).
[Crossref]

Barnard, E. S.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Bartlett, P. N.

N. N. Lal, H. Zhou, M. Hawkeye, J. K. Sinha, P. N. Bartlett, G. A. J. Amaratunga, and J. J. Baumberg, “Using spacer layers to control metal and semiconductor absorption in ultrathin solar cells with plasmonic substrates,” Phys. Rev. B – Condens. Matter Mater. Phys. 85(24), 1–10 (2012).
[Crossref]

Baumberg, J. J.

N. N. Lal, H. Zhou, M. Hawkeye, J. K. Sinha, P. N. Bartlett, G. A. J. Amaratunga, and J. J. Baumberg, “Using spacer layers to control metal and semiconductor absorption in ultrathin solar cells with plasmonic substrates,” Phys. Rev. B – Condens. Matter Mater. Phys. 85(24), 1–10 (2012).
[Crossref]

Beck, F. J.

A. Mihi, F. J. Beck, T. Lasanta, A. K. Rath, and G. Konstantatos, “Imprinted electrodes for enhanced light trapping in solution processed solar cells,” Adv. Mater. 26(3), 443–448 (2014).
[Crossref] [PubMed]

F. J. Beck, A. Stavrinadis, S. L. Diedenhofen, T. Lasanta, and G. Konstantatos, “Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics,” ACS Photonics 1(11), 1197–1205 (2014).
[Crossref]

F. P. García de Arquer, F. J. Beck, M. M. Bernechea, and G. Konstantatos, “Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors,” Appl. Phys. Lett. 100(4), 043101 (2012).
[Crossref]

F. P. García de Arquer, F. J. Beck, and G. Konstantatos, “Absorption enhancement in solution processed metal-semiconductor nanocomposites,” Opt. Express 19(21), 21038–21049 (2011).
[Crossref] [PubMed]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

Beckers, T.

Bermel, P.

Bernechea, M. M.

F. P. García de Arquer, F. J. Beck, M. M. Bernechea, and G. Konstantatos, “Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors,” Appl. Phys. Lett. 100(4), 043101 (2012).
[Crossref]

Bittkau, K.

Böttler, W.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 94–96 (2011).
[Crossref]

Brongersma, M. L.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Callahan, D. M.

J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett. 100(12), 121121 (2012).
[Crossref]

Carius, R.

Catchpole, K. R.

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[Crossref]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

Chen, Z.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Choi, J. J.

B. R. Hyun, J. J. Choi, K. L. Seyler, T. Hanrath, and F. W. Wise, “Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers,” ACS Nano 7(12), 10938–10947 (2013).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cody, G. D.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar-cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[Crossref]

Cubero, O.

F. J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106(4), 044502 (2009).
[Crossref]

Cyr, P. W.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Depauw, V.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Diedenhofen, S. L.

F. J. Beck, A. Stavrinadis, S. L. Diedenhofen, T. Lasanta, and G. Konstantatos, “Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics,” ACS Photonics 1(11), 1197–1205 (2014).
[Crossref]

Dragoman, D.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[Crossref]

Dragoman, M.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[Crossref]

Enomoto, Y.

A. Ono, Y. Enomoto, Y. Matsumura, H. Satoh, and H. Inokawa, “Broadband absorption enhancement of thin SOI photodiode with high-density gold nanoparticles,” Opt. Express 2329, 5663–5666 (2014).

Fahr, S.

Fan, S.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Ferry, V. E.

García de Arquer, F. P.

F. P. García de Arquer, F. J. Beck, M. M. Bernechea, and G. Konstantatos, “Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors,” Appl. Phys. Lett. 100(4), 043101 (2012).
[Crossref]

F. P. García de Arquer, F. J. Beck, and G. Konstantatos, “Absorption enhancement in solution processed metal-semiconductor nanocomposites,” Opt. Express 19(21), 21038–21049 (2011).
[Crossref] [PubMed]

Garnett, E. C.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Hagemann, V.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 94–96 (2011).
[Crossref]

Hall, D. G.

Hanrath, T.

B. R. Hyun, J. J. Choi, K. L. Seyler, T. Hanrath, and F. W. Wise, “Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers,” ACS Nano 7(12), 10938–10947 (2013).
[Crossref] [PubMed]

Haug, F. J.

F. J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3Suppl 3), A335–A341 (2010).
[Crossref] [PubMed]

F. J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106(4), 044502 (2009).
[Crossref]

Hawkeye, M.

N. N. Lal, H. Zhou, M. Hawkeye, J. K. Sinha, P. N. Bartlett, G. A. J. Amaratunga, and J. J. Baumberg, “Using spacer layers to control metal and semiconductor absorption in ultrathin solar cells with plasmonic substrates,” Phys. Rev. B – Condens. Matter Mater. Phys. 85(24), 1–10 (2012).
[Crossref]

Hoogland, S.

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3, 2928 (2013).
[Crossref] [PubMed]

Hyun, B. R.

B. R. Hyun, J. J. Choi, K. L. Seyler, T. Hanrath, and F. W. Wise, “Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers,” ACS Nano 7(12), 10938–10947 (2013).
[Crossref] [PubMed]

Inokawa, H.

A. Ono, Y. Enomoto, Y. Matsumura, H. Satoh, and H. Inokawa, “Broadband absorption enhancement of thin SOI photodiode with high-density gold nanoparticles,” Opt. Express 2329, 5663–5666 (2014).

Joannopoulos, J. D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Khurgin, J. B.

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Kimerling, L. C.

Klem, E. J. D.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Konstantatos, G.

A. Mihi, F. J. Beck, T. Lasanta, A. K. Rath, and G. Konstantatos, “Imprinted electrodes for enhanced light trapping in solution processed solar cells,” Adv. Mater. 26(3), 443–448 (2014).
[Crossref] [PubMed]

F. J. Beck, A. Stavrinadis, S. L. Diedenhofen, T. Lasanta, and G. Konstantatos, “Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics,” ACS Photonics 1(11), 1197–1205 (2014).
[Crossref]

F. P. García de Arquer, F. J. Beck, M. M. Bernechea, and G. Konstantatos, “Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors,” Appl. Phys. Lett. 100(4), 043101 (2012).
[Crossref]

F. P. García de Arquer, F. J. Beck, and G. Konstantatos, “Absorption enhancement in solution processed metal-semiconductor nanocomposites,” Opt. Express 19(21), 21038–21049 (2011).
[Crossref] [PubMed]

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Kovalenko, M. V.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[Crossref] [PubMed]

Kozyreff, G.

M. Mariano, F. J. Rodríguez, P. Romero-Gomez, G. Kozyreff, and J. Martorell, “Light coupling into the whispering gallery modes of a fiber array solar cell for mechanically fixed sun tracking,” (in preparation).
[Crossref] [PubMed]

Krauss, T. F.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Labelle, A. J.

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3, 2928 (2013).
[Crossref] [PubMed]

Lal, N. N.

N. N. Lal, H. Zhou, M. Hawkeye, J. K. Sinha, P. N. Bartlett, G. A. J. Amaratunga, and J. J. Baumberg, “Using spacer layers to control metal and semiconductor absorption in ultrathin solar cells with plasmonic substrates,” Phys. Rev. B – Condens. Matter Mater. Phys. 85(24), 1–10 (2012).
[Crossref]

Lan, X.

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3, 2928 (2013).
[Crossref] [PubMed]

Lasanta, T.

F. J. Beck, A. Stavrinadis, S. L. Diedenhofen, T. Lasanta, and G. Konstantatos, “Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics,” ACS Photonics 1(11), 1197–1205 (2014).
[Crossref]

A. Mihi, F. J. Beck, T. Lasanta, A. K. Rath, and G. Konstantatos, “Imprinted electrodes for enhanced light trapping in solution processed solar cells,” Adv. Mater. 26(3), 443–448 (2014).
[Crossref] [PubMed]

Lederer, F.

Lee, J.-S.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[Crossref] [PubMed]

Levina, L.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Li, H. B. T.

Li, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Liu, J. S. Q.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Liu, Y.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Luo, C.

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Mariano, M.

M. Mariano, F. J. Rodríguez, P. Romero-Gomez, G. Kozyreff, and J. Martorell, “Light coupling into the whispering gallery modes of a fiber array solar cell for mechanically fixed sun tracking,” (in preparation).
[Crossref] [PubMed]

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Martorell, J.

M. Mariano, F. J. Rodríguez, P. Romero-Gomez, G. Kozyreff, and J. Martorell, “Light coupling into the whispering gallery modes of a fiber array solar cell for mechanically fixed sun tracking,” (in preparation).
[Crossref] [PubMed]

Matsumura, Y.

A. Ono, Y. Enomoto, Y. Matsumura, H. Satoh, and H. Inokawa, “Broadband absorption enhancement of thin SOI photodiode with high-density gold nanoparticles,” Opt. Express 2329, 5663–5666 (2014).

McDonald, S. A.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Meier, M.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 94–96 (2011).
[Crossref]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Michaelis, D.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 94–96 (2011).
[Crossref]

Mihi, A.

A. Mihi, F. J. Beck, T. Lasanta, A. K. Rath, and G. Konstantatos, “Imprinted electrodes for enhanced light trapping in solution processed solar cells,” Adv. Mater. 26(3), 443–448 (2014).
[Crossref] [PubMed]

Mokkapati, S.

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[Crossref]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

Moulin, E.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 94–96 (2011).
[Crossref]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(S6Suppl 6), A1219–A1230 (2011).
[Crossref] [PubMed]

Munday, J. N.

J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett. 100(12), 121121 (2012).
[Crossref]

Naqavi, A.

F. J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

Ono, A.

A. Ono, Y. Enomoto, Y. Matsumura, H. Satoh, and H. Inokawa, “Broadband absorption enhancement of thin SOI photodiode with high-density gold nanoparticles,” Opt. Express 2329, 5663–5666 (2014).

Paetzold, U. W.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 94–96 (2011).
[Crossref]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(S6Suppl 6), A1219–A1230 (2011).
[Crossref] [PubMed]

Pala, R. A.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Pieters, B. E.

Polman, A.

M.-C. van Lare and A. Polman, “Optimized scattering power spectral density of photovoltaic light trapping patterns,” ACS Photonics 2, 822–831 (2015).

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[Crossref] [PubMed]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Rath, A. K.

A. Mihi, F. J. Beck, T. Lasanta, A. K. Rath, and G. Konstantatos, “Imprinted electrodes for enhanced light trapping in solution processed solar cells,” Adv. Mater. 26(3), 443–448 (2014).
[Crossref] [PubMed]

Rau, U.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 94–96 (2011).
[Crossref]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(S6Suppl 6), A1219–A1230 (2011).
[Crossref] [PubMed]

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Rockstuhl, C.

Rodríguez, F. J.

M. Mariano, F. J. Rodríguez, P. Romero-Gomez, G. Kozyreff, and J. Martorell, “Light coupling into the whispering gallery modes of a fiber array solar cell for mechanically fixed sun tracking,” (in preparation).
[Crossref] [PubMed]

Romero-Gomez, P.

M. Mariano, F. J. Rodríguez, P. Romero-Gomez, G. Kozyreff, and J. Martorell, “Light coupling into the whispering gallery modes of a fiber array solar cell for mechanically fixed sun tracking,” (in preparation).
[Crossref] [PubMed]

Sargent, E. H.

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3, 2928 (2013).
[Crossref] [PubMed]

J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress,” Adv. Mater. 23(1), 12–29 (2011).
[Crossref] [PubMed]

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Satoh, H.

A. Ono, Y. Enomoto, Y. Matsumura, H. Satoh, and H. Inokawa, “Broadband absorption enhancement of thin SOI photodiode with high-density gold nanoparticles,” Opt. Express 2329, 5663–5666 (2014).

Schropp, R. E. I.

Seyler, K. L.

B. R. Hyun, J. J. Choi, K. L. Seyler, T. Hanrath, and F. W. Wise, “Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers,” ACS Nano 7(12), 10938–10947 (2013).
[Crossref] [PubMed]

Shevchenko, E. V.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[Crossref] [PubMed]

Sinha, J. K.

N. N. Lal, H. Zhou, M. Hawkeye, J. K. Sinha, P. N. Bartlett, G. A. J. Amaratunga, and J. J. Baumberg, “Using spacer layers to control metal and semiconductor absorption in ultrathin solar cells with plasmonic substrates,” Phys. Rev. B – Condens. Matter Mater. Phys. 85(24), 1–10 (2012).
[Crossref]

Söderström, K.

F. J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

Söderström, T.

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. J. Haug, T. Söderström, C. Ballif, and F. Lederer, “Comparison and optimization of randomly textured surfaces in thin-film solar cells,” Opt. Express 18(S3Suppl 3), A335–A341 (2010).
[Crossref] [PubMed]

F. J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106(4), 044502 (2009).
[Crossref]

Soref, R. A.

Stavrinadis, A.

F. J. Beck, A. Stavrinadis, S. L. Diedenhofen, T. Lasanta, and G. Konstantatos, “Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics,” ACS Photonics 1(11), 1197–1205 (2014).
[Crossref]

Stuart, H. R.

Sun, G.

Talapin, D. V.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[Crossref] [PubMed]

Tang, J.

J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress,” Adv. Mater. 23(1), 12–29 (2011).
[Crossref] [PubMed]

Terrazzoni-Daudrix, V.

F. J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106(4), 044502 (2009).
[Crossref]

Thon, S. M.

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3, 2928 (2013).
[Crossref] [PubMed]

van Lare, M.-C.

M.-C. van Lare and A. Polman, “Optimized scattering power spectral density of photovoltaic light trapping patterns,” ACS Photonics 2, 822–831 (2015).

Verhagen, E.

Verschuuren, M. A.

Wächter, C.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 94–96 (2011).
[Crossref]

Walters, R. J.

Wise, F. W.

B. R. Hyun, J. J. Choi, K. L. Seyler, T. Hanrath, and F. W. Wise, “Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers,” ACS Nano 7(12), 10938–10947 (2013).
[Crossref] [PubMed]

Yablonovitch, E.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar-cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[Crossref]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Zeng, L.

Zhang, S.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Zhou, H.

N. N. Lal, H. Zhou, M. Hawkeye, J. K. Sinha, P. N. Bartlett, G. A. J. Amaratunga, and J. J. Baumberg, “Using spacer layers to control metal and semiconductor absorption in ultrathin solar cells with plasmonic substrates,” Phys. Rev. B – Condens. Matter Mater. Phys. 85(24), 1–10 (2012).
[Crossref]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

ACS Nano (1)

B. R. Hyun, J. J. Choi, K. L. Seyler, T. Hanrath, and F. W. Wise, “Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers,” ACS Nano 7(12), 10938–10947 (2013).
[Crossref] [PubMed]

ACS Photonics (2)

F. J. Beck, A. Stavrinadis, S. L. Diedenhofen, T. Lasanta, and G. Konstantatos, “Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics,” ACS Photonics 1(11), 1197–1205 (2014).
[Crossref]

M.-C. van Lare and A. Polman, “Optimized scattering power spectral density of photovoltaic light trapping patterns,” ACS Photonics 2, 822–831 (2015).

Adv. Mater. (3)

A. Mihi, F. J. Beck, T. Lasanta, A. K. Rath, and G. Konstantatos, “Imprinted electrodes for enhanced light trapping in solution processed solar cells,” Adv. Mater. 26(3), 443–448 (2014).
[Crossref] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress,” Adv. Mater. 23(1), 12–29 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

F. P. García de Arquer, F. J. Beck, M. M. Bernechea, and G. Konstantatos, “Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors,” Appl. Phys. Lett. 100(4), 043101 (2012).
[Crossref]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 94–96 (2011).
[Crossref]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

J. N. Munday, D. M. Callahan, and H. A. Atwater, “Light trapping beyond the 4n2 limit in thin waveguides,” Appl. Phys. Lett. 100(12), 121121 (2012).
[Crossref]

Chem. Rev. (1)

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[Crossref] [PubMed]

IEEE Trans. Electron. Dev. (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar-cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[Crossref]

J. Appl. Phys. (3)

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[Crossref]

F. J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers,” J. Appl. Phys. 106(4), 044502 (2009).
[Crossref]

F. J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Commun. (2)

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Opt. Express (6)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B – Condens. Matter Mater. Phys. (1)

N. N. Lal, H. Zhou, M. Hawkeye, J. K. Sinha, P. N. Bartlett, G. A. J. Amaratunga, and J. J. Baumberg, “Using spacer layers to control metal and semiconductor absorption in ultrathin solar cells with plasmonic substrates,” Phys. Rev. B – Condens. Matter Mater. Phys. 85(24), 1–10 (2012).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008).
[Crossref]

Sci. Rep. (1)

M. M. Adachi, A. J. Labelle, S. M. Thon, X. Lan, S. Hoogland, and E. H. Sargent, “Broadband solar absorption enhancement via periodic nanostructuring of electrodes,” Sci. Rep. 3, 2928 (2013).
[Crossref] [PubMed]

Other (2)

M. Mariano, F. J. Rodríguez, P. Romero-Gomez, G. Kozyreff, and J. Martorell, “Light coupling into the whispering gallery modes of a fiber array solar cell for mechanically fixed sun tracking,” (in preparation).
[Crossref] [PubMed]

Lumerical FDTD Solutions, version 6.0.3, www.lumerical.com , (Lumerical Solutions Inc. 2008), Vancouver.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the conceptual model showing the different processes occurring: light scattering into diffraction orders (DO); coupling to guided modes (GM); and absorption in the active layer. (b) Schematic of the simulation set up, illustrating the grating geometry and the definition of the surface coverage fractions, F. (c-e) Integrated absorption enhancement factor,FXEnh, (as defined in the text below) calculated from FDTD simulations of the multilayer structure shown in part (b), and integrated over the wavelength range simulated (400 < λ < 1100 nm), for gratings with different periodicities, L, and surface coverage fractions, F. Data is given for (c) total absorption enhancement, (d) absorption enhancement in the PbS layer, and (e) enhancement of the parasitic absorption in the metal and ITO layers.

Fig. 2
Fig. 2

(a) and (c) Absorption enhancement factors, FAbsEnh, for different periodicities, L, and corresponding, reciprocal lattice vectors, G, calculated from FDTD simulations of the multilayer structure shown in Fig. 1(b) and in the insert in part Fig. 2(c), respectively. The surface coverage fraction is F = 50%. Simulations were performed for 200 nm < L < 650 nm in steps of 50 nm and the results were interpolated for clarity, without distorting the overall trends. Also plotted are the resonant coupling conditions, Rm,[pxpy], for different guided modes: TE dashed lines, TM dotted lines. (b) and (d) Absorption enhancement factors from (a) and (b) respectively, integrated over the wavelength range simulated (400 < λ < 1100 nm). Data is given for absorption enhancement in the PbS layer, total absorption enhancement, enhancement of the parasitic absorption, as well as the maximum short circuit enhancement, which is calculated by convoluting APbS with the number of above bandgap photons in the solar spectrum.

Fig. 3
Fig. 3

(a,b) Calculated absorption spectra from simulations for (a) case 1 with no buffer layer (s = 0 nm), and (b) for case 2 with a buffer layer s = 50 nm. Data is shown for different grating parameters with F = 50% and L as shown in the legends. Resonant coupling conditions are indicated in the figures by labelled arrows. (c,d) Calculated mode profiles for the TM0 (red) and TE0 (blue) modes for (c) s = 0 nm and (d) s = 50 nm. (e) The fraction of light dissipated in the mode m that is absorbed in the PbS, P m Frac , for TE0 (blue squares) and TM0 (red, circles) and for s = 0 nm (filled markers), and s = 50 nm (open markers).

Fig. 4
Fig. 4

(a) Schematic of the geometry of the PbS|ZnO photodiodes. (b,c) Cross sectional scanning electron microscope (SEM) images of the (b) planar and (c) nanostructured photodiodes (The layer visible on top of the ITO is the Pt deposited for milling in by focussed ion beam). (d-h) SEM images of the nanoparticle gratings. Scale given by the periodicity of the grating that is given for each image. (i) Predicted resonant coupling conditions, Rm,[pxpy], for the two lowest order modes supported by the thin film devices, TM0 and TE0, and for the first three diffraction orders [01] [11], [02].

Fig. 5
Fig. 5

(a,c,e,g) EQE of the PbS|ZnO photodiodes measured under a small reverse bias, V = −0.5 V, for different grating parameters, with F = 50% (red circles) and (a) L = 300 nm (GL300r120), (c) L = 400 nm (GL400r160), (e) L = 500 nm (GL500r200), (g) L = 600 nm (GL600r240). Data for planar references (Planar, black dashed lines), and the reference grating with F = 5%, L = 300 nm and r = 40 nm (GL300r40, blue squares) is also shown on each graph. (d,b,f,h) Calculated absorption in the PbS from FDTD simulations of the experimental geometry shown schematically in Fig. 4(a), with the same grating parameters and labelling conventions as in (a,c,e,g).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P m Frac = P m,Active P m,Total ,
P m,j = j 2ω ε 0 Im( ε j ) | E ¯ m | 2 dz.
A Tot =1R; A PbS =T1T2 A MNP ; A Para =1R A PbS ; .
F XEnh = ( A X Grating A X Ref ) A X Ref ,

Metrics