Abstract

We experimentally demonstrate a spectrally efficient direct-detection orthogonal frequency-division multiplexing (DD-OFDM) system. In addition to polarization-division multiplexing, removing the frequency gap further improves the spectral efficiency of the OFDM system. The frequency gap between a reference carrier and OFDM subcarriers avoids subcarrier-to-subcarrier beating interference (SSBI) in traditional DD-OFDM systems. Without dynamic polarization control, the resulting interference after square-law direct detection in the proposed gap-less system is polarization-dependent and composed of linear inter-carrier interference (ICI) and nonlinear SSBI. Thus, this work proposes an iterative multiple-input multiple-output detection scheme to remove the mixed polarization-dependent interference. Compared to the previous scheme, which only removes ICI, the proposed scheme can further eliminate SSBI to achieve the improvement of 7 dB in signal-to-noise ratio. Without the need for polarization control, we successfully utilize 7-GHz bandwidth to transmit a 39.5-Gbps polarization multiplexed OFDM signal over 100 km.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct detection of polarization multiplexed single sideband signals with orthogonal offset carriers

Yixiao Zhu, Mingxuan Jiang, and Fan Zhang
Opt. Express 26(12) 15887-15898 (2018)

Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique

Wei-Ren Peng, Xiaoxia Wu, Kai-Ming Feng, Vahid R. Arbab, Bishara Shamee, Jeng-Yuan Yang, Louis C. Christen, Alan E. Willner, and Sien Chi
Opt. Express 17(11) 9099-9111 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. L. Jansen, A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “132.2-Gb/s PDM-8QAM-OFDM transmission at 4-b/s/Hz spectral efficiency,” IEEE Photon. Technol. Lett. 21, 802–804 (2009).
    [Crossref]
  2. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30, 384–398 (2012).
    [Crossref]
  3. H. Takahashi, A. Al Amin, S. L. Jansen, I. Morita, and H. Tanaka, “Highly spectrally efficient DWDM transmission at 7.0 b/s/Hz using 8× 65.1-Gb/s coherent PDM-OFDM,” J. Lightwave Technol. 28, 406–414 (2010).
    [Crossref]
  4. D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, W.-Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express 19, 17546–17556 (2011).
    [Crossref] [PubMed]
  5. C.-C. Wei, “Small-signal analysis of OOFDM signal transmission with directly modulated laser and direct detection,” Opt. Lett. 36, 151–153 (2011).
    [Crossref] [PubMed]
  6. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol. 26, 196–203 (2008).
    [Crossref]
  7. W.-R. Peng, B. Zhang, K.-M. Feng, X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightwave Technol. 27, 5723–5735 (2009).
    [Crossref]
  8. B. J. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “120 Gbit/s over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightwave Technol. 28, 328–335 (2010).
    [Crossref]
  9. W.-R. Peng, K.-M. Feng, and A. E. Willner, “Direct-Detected Polarization Division Multiplexed OFDM Systems with Self-Polarization Diversity,” in IEEE Lasers and Electro-Optics Society (LEOS) 2008, paper MH3
  10. A. A. Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photon. Technol. Lett. 22, 468–470 (2010).
    [Crossref]
  11. C.-C. Wei, C.-T. Lin, and C.-Y. Wang, “PMD tolerant direct-detection polarization division multiplexed OFDM systems with MIMO processing,” Opt. Express 20, 7316–7322 (2012).
    [Crossref] [PubMed]
  12. C.-Y. Wang, C.-C. Wei, C.-T. Lin, and S. Chi, “Direct-detection polarization division multiplexed orthogonal frequency-division multiplexing transmission systems without polarization tracking,” Opt. Lett. 37, 5070–5072 (2012).
    [Crossref] [PubMed]
  13. T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790792 (2009).
  14. C.-C. Wei, C.-T. Lin, C.-Y. Wang, and F.-M. Wu, “A novel polarization division multiplexed OFDM system with a direct-detection BLAST-aided receiver,” in Proceedings of OFC 2013, JTh2A.49.

2012 (3)

2011 (2)

2010 (3)

2009 (3)

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790792 (2009).

S. L. Jansen, A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “132.2-Gb/s PDM-8QAM-OFDM transmission at 4-b/s/Hz spectral efficiency,” IEEE Photon. Technol. Lett. 21, 802–804 (2009).
[Crossref]

W.-R. Peng, B. Zhang, K.-M. Feng, X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightwave Technol. 27, 5723–5735 (2009).
[Crossref]

2008 (1)

Al Amin, A.

H. Takahashi, A. Al Amin, S. L. Jansen, I. Morita, and H. Tanaka, “Highly spectrally efficient DWDM transmission at 7.0 b/s/Hz using 8× 65.1-Gb/s coherent PDM-OFDM,” J. Lightwave Technol. 28, 406–414 (2010).
[Crossref]

S. L. Jansen, A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “132.2-Gb/s PDM-8QAM-OFDM transmission at 4-b/s/Hz spectral efficiency,” IEEE Photon. Technol. Lett. 21, 802–804 (2009).
[Crossref]

Amin, A. A.

A. A. Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photon. Technol. Lett. 22, 468–470 (2010).
[Crossref]

Armstrong, J.

Chanclou, P.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790792 (2009).

Charbonnier, B.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790792 (2009).

Chen, H.-Y.

Chen, J.

Chi, S.

Cvijetic, N.

Du, L. B.

Duong, T. N.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790792 (2009).

Feng, K.-M.

W.-R. Peng, B. Zhang, K.-M. Feng, X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightwave Technol. 27, 5723–5735 (2009).
[Crossref]

W.-R. Peng, K.-M. Feng, and A. E. Willner, “Direct-Detected Polarization Division Multiplexed OFDM Systems with Self-Polarization Diversity,” in IEEE Lasers and Electro-Optics Society (LEOS) 2008, paper MH3

Genay, N.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790792 (2009).

Hsu, D.-Z.

Jansen, S. L.

H. Takahashi, A. Al Amin, S. L. Jansen, I. Morita, and H. Tanaka, “Highly spectrally efficient DWDM transmission at 7.0 b/s/Hz using 8× 65.1-Gb/s coherent PDM-OFDM,” J. Lightwave Technol. 28, 406–414 (2010).
[Crossref]

S. L. Jansen, A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “132.2-Gb/s PDM-8QAM-OFDM transmission at 4-b/s/Hz spectral efficiency,” IEEE Photon. Technol. Lett. 21, 802–804 (2009).
[Crossref]

Le Masson, J.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790792 (2009).

Li, W.-Y.

Lin, C.-T.

Lowery, A. J.

Morita, I.

H. Takahashi, A. Al Amin, S. L. Jansen, I. Morita, and H. Tanaka, “Highly spectrally efficient DWDM transmission at 7.0 b/s/Hz using 8× 65.1-Gb/s coherent PDM-OFDM,” J. Lightwave Technol. 28, 406–414 (2010).
[Crossref]

A. A. Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photon. Technol. Lett. 22, 468–470 (2010).
[Crossref]

S. L. Jansen, A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “132.2-Gb/s PDM-8QAM-OFDM transmission at 4-b/s/Hz spectral efficiency,” IEEE Photon. Technol. Lett. 21, 802–804 (2009).
[Crossref]

Ouzzif, M.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790792 (2009).

Peng, W.-R.

W.-R. Peng, B. Zhang, K.-M. Feng, X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightwave Technol. 27, 5723–5735 (2009).
[Crossref]

W.-R. Peng, K.-M. Feng, and A. E. Willner, “Direct-Detected Polarization Division Multiplexed OFDM Systems with Self-Polarization Diversity,” in IEEE Lasers and Electro-Optics Society (LEOS) 2008, paper MH3

Schmidt, B. J.

Schmidt, B. J. C.

Simon, J. C.

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790792 (2009).

Takahashi, H.

A. A. Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photon. Technol. Lett. 22, 468–470 (2010).
[Crossref]

H. Takahashi, A. Al Amin, S. L. Jansen, I. Morita, and H. Tanaka, “Highly spectrally efficient DWDM transmission at 7.0 b/s/Hz using 8× 65.1-Gb/s coherent PDM-OFDM,” J. Lightwave Technol. 28, 406–414 (2010).
[Crossref]

S. L. Jansen, A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “132.2-Gb/s PDM-8QAM-OFDM transmission at 4-b/s/Hz spectral efficiency,” IEEE Photon. Technol. Lett. 21, 802–804 (2009).
[Crossref]

Tanaka, H.

H. Takahashi, A. Al Amin, S. L. Jansen, I. Morita, and H. Tanaka, “Highly spectrally efficient DWDM transmission at 7.0 b/s/Hz using 8× 65.1-Gb/s coherent PDM-OFDM,” J. Lightwave Technol. 28, 406–414 (2010).
[Crossref]

A. A. Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photon. Technol. Lett. 22, 468–470 (2010).
[Crossref]

S. L. Jansen, A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “132.2-Gb/s PDM-8QAM-OFDM transmission at 4-b/s/Hz spectral efficiency,” IEEE Photon. Technol. Lett. 21, 802–804 (2009).
[Crossref]

Wang, C.-Y.

Wei, C.-C.

Willner, A. E.

W.-R. Peng, B. Zhang, K.-M. Feng, X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightwave Technol. 27, 5723–5735 (2009).
[Crossref]

W.-R. Peng, K.-M. Feng, and A. E. Willner, “Direct-Detected Polarization Division Multiplexed OFDM Systems with Self-Polarization Diversity,” in IEEE Lasers and Electro-Optics Society (LEOS) 2008, paper MH3

Wu, F.-M.

C.-C. Wei, C.-T. Lin, C.-Y. Wang, and F.-M. Wu, “A novel polarization division multiplexed OFDM system with a direct-detection BLAST-aided receiver,” in Proceedings of OFC 2013, JTh2A.49.

Wu, X.

Zan, Z.

Zhang, B.

IEEE Photon. Technol. Lett. (3)

S. L. Jansen, A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “132.2-Gb/s PDM-8QAM-OFDM transmission at 4-b/s/Hz spectral efficiency,” IEEE Photon. Technol. Lett. 21, 802–804 (2009).
[Crossref]

A. A. Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gb/s direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photon. Technol. Lett. 22, 468–470 (2010).
[Crossref]

T. N. Duong, N. Genay, M. Ouzzif, J. Le Masson, B. Charbonnier, P. Chanclou, and J. C. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790792 (2009).

J. Lightwave Technol. (5)

Opt. Express (2)

Opt. Lett. (2)

Other (2)

C.-C. Wei, C.-T. Lin, C.-Y. Wang, and F.-M. Wu, “A novel polarization division multiplexed OFDM system with a direct-detection BLAST-aided receiver,” in Proceedings of OFC 2013, JTh2A.49.

W.-R. Peng, K.-M. Feng, and A. E. Willner, “Direct-Detected Polarization Division Multiplexed OFDM Systems with Self-Polarization Diversity,” in IEEE Lasers and Electro-Optics Society (LEOS) 2008, paper MH3

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The origin of linear and nonlinear interference (PBC: polarization beam combiner).
Fig. 2
Fig. 2 Experiment setup (OBPF: optical bandpass filter).
Fig. 3
Fig. 3 (a) Average SNRs of all subcarriers as functions of CSPR. At the CSPR of 7 dB, the average SNR of each subcarrier with the SoP of (b) 0 and (c) 45°.
Fig. 4
Fig. 4 Measured SNR of the bit-loaded signal with SoP of (a) 0 and (b) 45°.
Fig. 5
Fig. 5 (a) BER curves at BtB with different SSBI cancellation, (b) BER curves at BtB and after 100-km fiber, and (c) selected constelations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ α β β α ] unitary : | α | 2 + | β | 2 = 1 ( [ 0 c 2 ] + [ c 1 0 ] + [ x 1 x 2 ] ) = [ α c 1 + β c 2 β c 1 + α c 2 ] carriers + [ α x 1 + β x 2 β x 1 + α x 2 ] [ r 1 r 2 ] .
| α c 1 + β c 2 | 2 carrier-to-carrier + r 1 ( β c 2 + α c 1 ) linear signal y 1 + r 1 ( β c 2 + α c 1 ) = y 1 + | r 1 | 2 S S B I ,
[ Y 1 , i Y 2 , i ] = [ α β | β | 2 | α | 2 α β α β | α | 2 | β | 2 α β ] [ X 1 , i 1 X 2 , i 1 X 1 , i X 2 , i ] [ h 11 h 12 h 13 h 14 h 21 h 22 h 23 h 24 ] MIMO matrix: H i + [ X 1 , i 1 X 2 , i 1 X 1 , i X 2 , i ] .
| r 1 | 2 = | α ( x 1 + β α x 2 ) | 2 = | α | 2 × | x 1 + x 2 e j ( ϕ α ϕ β ) tan θ | 2 , | r 2 | 2 = | α * ( β * α * x 1 x 2 ) | 2 = | α | 2 × | x 1 e j ( ϕ α ϕ β ) tan θ x 2 | 2 ,

Metrics