Abstract

We report on the experimental observation of vector and bound vector solitons in a fiber laser passively mode locked by graphene. Localized interactions between vector solitons, vector soliton with bound vector solitons, and vector soliton with a bunch of vector solitons are experimentally investigated. We show that depending on the soliton interactions, various stable and dynamic multiple vector soliton states could be formed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser

Yu Feng Song, Lei Li, Han Zhang, De Yuan Shen, Ding Yuan Tang, and Kian Ping Loh
Opt. Express 21(8) 10010-10018 (2013)

Polarization dynamic patterns of vector solitons in a graphene mode-locked fiber laser

Mengmeng Han, Shumin Zhang, Xingliang Li, Huaxing Zhang, Hong Yang, and Ting Yuan
Opt. Express 23(3) 2424-2435 (2015)

Multiple-soliton dynamic patterns in a graphene mode-locked fiber laser

Yichang Meng, Shumin Zhang, Xingliang Li, Hongfei Li, Juan Du, and Yanping Hao
Opt. Express 20(6) 6685-6692 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A 44(10), 6954–6957 (1991).
    [Crossref] [PubMed]
  2. B. A. Malomed, “Bound solitons in coupled nonlinear Schrödinger equations,” Phys. Rev. A 45(12), R8321–R8323 (1992).
    [Crossref] [PubMed]
  3. N. N. Akhmediev, A. Ankiewicz, and J. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79(21), 4047–4051 (1997).
    [Crossref]
  4. N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Stable soliton pairs in optical transmission lines and fiber lasers,” J. Opt. Soc. Am. B 15(2), 515–523 (1998).
    [Crossref]
  5. S. Latas and M. Ferreira, “Bound States of dissipative solitons in optical fiber systems,” in Proceedings of the SPIE- The International Society for Optical Engineering, 7582, p 75820P (9 pp.), 2010.
    [Crossref]
  6. P. Grelu and N. Akhmediev, “Dissipative solitons for mode locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  7. D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
    [Crossref]
  8. L. Gui, X. Xiao, and C. Yang, “Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser,” J. Opt. Soc. Am. B 30(1), 158–164 (2013).
    [Crossref]
  9. X. Wu, D. Tang, X. N. Luan, and Q. Zhang, “Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber,” Opt. Commun. 284(14), 3615–3618 (2011).
    [Crossref]
  10. C. Zeng, Y. D. Cui, and J. Guo, “Observation of dual-wavelength solitons and bound states in a nanotube/microfiber mode-locking fiber laser,” Opt. Commun. 347, 44–49 (2015).
    [Crossref]
  11. C. Mou, S. V. Sergeyev, A. G. Rozhin, and S. K. Turitsyn, “Bound state vector solitons with locked and precessing states of polarization,” Opt. Express 21(22), 26868–26875 (2013).
    [Crossref] [PubMed]
  12. H. H. Liu and K. K. Chow, “High fundamental-repetition-rate bound solitons in carbon nanotube-based fiber lasers,” IEEE Photonics Technol. Lett. 27(8), 867–870 (2015).
    [Crossref]
  13. H. R. Yang, G. W. Chen, Y. C. Kong, and W. L. Li, “Bound-state fiber laser mode-locked by a graphene-nanotube saturable absorber,” Laser Phys. 25(2), 025101 (2015).
    [Crossref]
  14. X. Li, S. Zhang, Y. Meng, Y. Hao, H. Li, J. Du, and Z. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
    [Crossref]
  15. L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, “Widely spaced bound states in a soliton fiber laser with graphene saturable absorber,” IEEE Photonics Technol. Lett. 25(12), 1184–1187 (2013).
    [Crossref]
  16. Y. Wang, D. Mao, X. Gan, L. Han, C. Ma, T. Xi, Y. Zhang, W. Shang, S. Hua, and J. Zhao, “Harmonic mode locking of bound-state solitons fiber laser based on MoS2 saturable absorber,” Opt. Express 23(1), 205–210 (2015).
    [Crossref] [PubMed]
  17. J. W. Haus, G. Shaulov, E. A. Kuzin, and J. Sanchez-Mondragon, “Vector soliton fiber lasers,” Opt. Lett. 24(6), 376–378 (1999).
    [Crossref] [PubMed]
  18. B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B 17(3), 354–365 (2000).
    [Crossref]
  19. D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
    [Crossref] [PubMed]
  20. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
    [Crossref] [PubMed]
  21. S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
    [Crossref]
  22. P. Grelu, F. Belhache, F. Gutty, and J. M. Soto-Crespo, “Phase-locked soliton pairs in a stretched-pulse fiber laser,” Opt. Lett. 27(11), 966–968 (2002).
    [Crossref] [PubMed]
  23. V. Besse, H. Leblond, D. Mihalache, and B. A. Malomed, “Pattern formation by kicked solitons in the two-dimensional Ginzburg-Landau medium with a transverse grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(1), 012916 (2013).
    [Crossref] [PubMed]
  24. V. Besse, H. Leblond, D. Mihalache, and B. A. Malomed, “Building patterns by traveling dipoles and vortices in two-dimensional periodic dissipative media,” Opt. Commun. 332, 279–291 (2014).
    [Crossref]

2015 (4)

C. Zeng, Y. D. Cui, and J. Guo, “Observation of dual-wavelength solitons and bound states in a nanotube/microfiber mode-locking fiber laser,” Opt. Commun. 347, 44–49 (2015).
[Crossref]

H. H. Liu and K. K. Chow, “High fundamental-repetition-rate bound solitons in carbon nanotube-based fiber lasers,” IEEE Photonics Technol. Lett. 27(8), 867–870 (2015).
[Crossref]

H. R. Yang, G. W. Chen, Y. C. Kong, and W. L. Li, “Bound-state fiber laser mode-locked by a graphene-nanotube saturable absorber,” Laser Phys. 25(2), 025101 (2015).
[Crossref]

Y. Wang, D. Mao, X. Gan, L. Han, C. Ma, T. Xi, Y. Zhang, W. Shang, S. Hua, and J. Zhao, “Harmonic mode locking of bound-state solitons fiber laser based on MoS2 saturable absorber,” Opt. Express 23(1), 205–210 (2015).
[Crossref] [PubMed]

2014 (1)

V. Besse, H. Leblond, D. Mihalache, and B. A. Malomed, “Building patterns by traveling dipoles and vortices in two-dimensional periodic dissipative media,” Opt. Commun. 332, 279–291 (2014).
[Crossref]

2013 (4)

L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, “Widely spaced bound states in a soliton fiber laser with graphene saturable absorber,” IEEE Photonics Technol. Lett. 25(12), 1184–1187 (2013).
[Crossref]

V. Besse, H. Leblond, D. Mihalache, and B. A. Malomed, “Pattern formation by kicked solitons in the two-dimensional Ginzburg-Landau medium with a transverse grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(1), 012916 (2013).
[Crossref] [PubMed]

L. Gui, X. Xiao, and C. Yang, “Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser,” J. Opt. Soc. Am. B 30(1), 158–164 (2013).
[Crossref]

C. Mou, S. V. Sergeyev, A. G. Rozhin, and S. K. Turitsyn, “Bound state vector solitons with locked and precessing states of polarization,” Opt. Express 21(22), 26868–26875 (2013).
[Crossref] [PubMed]

2012 (2)

X. Li, S. Zhang, Y. Meng, Y. Hao, H. Li, J. Du, and Z. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

2011 (1)

X. Wu, D. Tang, X. N. Luan, and Q. Zhang, “Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber,” Opt. Commun. 284(14), 3615–3618 (2011).
[Crossref]

2009 (1)

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

2005 (1)

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

2002 (1)

2001 (1)

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

2000 (1)

1999 (1)

1998 (1)

1997 (1)

N. N. Akhmediev, A. Ankiewicz, and J. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79(21), 4047–4051 (1997).
[Crossref]

1992 (2)

S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

B. A. Malomed, “Bound solitons in coupled nonlinear Schrödinger equations,” Phys. Rev. A 45(12), R8321–R8323 (1992).
[Crossref] [PubMed]

1991 (1)

B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A 44(10), 6954–6957 (1991).
[Crossref] [PubMed]

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Akhmediev, N. N.

Ankiewicz, A.

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Stable soliton pairs in optical transmission lines and fiber lasers,” J. Opt. Soc. Am. B 15(2), 515–523 (1998).
[Crossref]

N. N. Akhmediev, A. Ankiewicz, and J. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79(21), 4047–4051 (1997).
[Crossref]

Belhache, F.

Bergman, K.

Besse, V.

V. Besse, H. Leblond, D. Mihalache, and B. A. Malomed, “Building patterns by traveling dipoles and vortices in two-dimensional periodic dissipative media,” Opt. Commun. 332, 279–291 (2014).
[Crossref]

V. Besse, H. Leblond, D. Mihalache, and B. A. Malomed, “Pattern formation by kicked solitons in the two-dimensional Ginzburg-Landau medium with a transverse grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(1), 012916 (2013).
[Crossref] [PubMed]

Bulovic, V.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Chen, G. W.

H. R. Yang, G. W. Chen, Y. C. Kong, and W. L. Li, “Bound-state fiber laser mode-locked by a graphene-nanotube saturable absorber,” Laser Phys. 25(2), 025101 (2015).
[Crossref]

Chow, K. K.

H. H. Liu and K. K. Chow, “High fundamental-repetition-rate bound solitons in carbon nanotube-based fiber lasers,” IEEE Photonics Technol. Lett. 27(8), 867–870 (2015).
[Crossref]

Collings, B. C.

Cui, Y. D.

C. Zeng, Y. D. Cui, and J. Guo, “Observation of dual-wavelength solitons and bound states in a nanotube/microfiber mode-locking fiber laser,” Opt. Commun. 347, 44–49 (2015).
[Crossref]

Cundiff, S. T.

Dresselhaus, M. S.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Drummond, P. D.

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

Du, J.

X. Li, S. Zhang, Y. Meng, Y. Hao, H. Li, J. Du, and Z. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

Gan, X.

Grelu, P.

Gui, L.

L. Gui, X. Xiao, and C. Yang, “Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser,” J. Opt. Soc. Am. B 30(1), 158–164 (2013).
[Crossref]

L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, “Widely spaced bound states in a soliton fiber laser with graphene saturable absorber,” IEEE Photonics Technol. Lett. 25(12), 1184–1187 (2013).
[Crossref]

Guo, J.

C. Zeng, Y. D. Cui, and J. Guo, “Observation of dual-wavelength solitons and bound states in a nanotube/microfiber mode-locking fiber laser,” Opt. Commun. 347, 44–49 (2015).
[Crossref]

Gutty, F.

Han, L.

Hao, Y.

X. Li, S. Zhang, Y. Meng, Y. Hao, H. Li, J. Du, and Z. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

Haus, J. W.

Ho, J.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Hua, S.

Jia, X.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Kelly, S. M.

S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

Knox, W. H.

Kong, J.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Kong, Y. C.

H. R. Yang, G. W. Chen, Y. C. Kong, and W. L. Li, “Bound-state fiber laser mode-locked by a graphene-nanotube saturable absorber,” Laser Phys. 25(2), 025101 (2015).
[Crossref]

Kuzin, E. A.

Leblond, H.

V. Besse, H. Leblond, D. Mihalache, and B. A. Malomed, “Building patterns by traveling dipoles and vortices in two-dimensional periodic dissipative media,” Opt. Commun. 332, 279–291 (2014).
[Crossref]

V. Besse, H. Leblond, D. Mihalache, and B. A. Malomed, “Pattern formation by kicked solitons in the two-dimensional Ginzburg-Landau medium with a transverse grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(1), 012916 (2013).
[Crossref] [PubMed]

Li, H.

X. Li, S. Zhang, Y. Meng, Y. Hao, H. Li, J. Du, and Z. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

Li, W. L.

H. R. Yang, G. W. Chen, Y. C. Kong, and W. L. Li, “Bound-state fiber laser mode-locked by a graphene-nanotube saturable absorber,” Laser Phys. 25(2), 025101 (2015).
[Crossref]

Li, X.

L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, “Widely spaced bound states in a soliton fiber laser with graphene saturable absorber,” IEEE Photonics Technol. Lett. 25(12), 1184–1187 (2013).
[Crossref]

X. Li, S. Zhang, Y. Meng, Y. Hao, H. Li, J. Du, and Z. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

Liu, H. H.

H. H. Liu and K. K. Chow, “High fundamental-repetition-rate bound solitons in carbon nanotube-based fiber lasers,” IEEE Photonics Technol. Lett. 27(8), 867–870 (2015).
[Crossref]

Luan, X. N.

X. Wu, D. Tang, X. N. Luan, and Q. Zhang, “Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber,” Opt. Commun. 284(14), 3615–3618 (2011).
[Crossref]

Ma, C.

Malomed, B. A.

V. Besse, H. Leblond, D. Mihalache, and B. A. Malomed, “Building patterns by traveling dipoles and vortices in two-dimensional periodic dissipative media,” Opt. Commun. 332, 279–291 (2014).
[Crossref]

V. Besse, H. Leblond, D. Mihalache, and B. A. Malomed, “Pattern formation by kicked solitons in the two-dimensional Ginzburg-Landau medium with a transverse grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(1), 012916 (2013).
[Crossref] [PubMed]

B. A. Malomed, “Bound solitons in coupled nonlinear Schrödinger equations,” Phys. Rev. A 45(12), R8321–R8323 (1992).
[Crossref] [PubMed]

B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A 44(10), 6954–6957 (1991).
[Crossref] [PubMed]

Man, W. S.

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

Mao, D.

Meng, Y.

X. Li, S. Zhang, Y. Meng, Y. Hao, H. Li, J. Du, and Z. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

Mihalache, D.

V. Besse, H. Leblond, D. Mihalache, and B. A. Malomed, “Building patterns by traveling dipoles and vortices in two-dimensional periodic dissipative media,” Opt. Commun. 332, 279–291 (2014).
[Crossref]

V. Besse, H. Leblond, D. Mihalache, and B. A. Malomed, “Pattern formation by kicked solitons in the two-dimensional Ginzburg-Landau medium with a transverse grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(1), 012916 (2013).
[Crossref] [PubMed]

Mou, C.

Nezich, D.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Reina, A.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Rozhin, A. G.

Sanchez-Mondragon, J.

Sergeyev, S. V.

Shang, W.

Shaulov, G.

Son, H.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Soto-Crespo, J.

N. N. Akhmediev, A. Ankiewicz, and J. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79(21), 4047–4051 (1997).
[Crossref]

Soto-Crespo, J. M.

Tam, H. Y.

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

Tang, D.

X. Wu, D. Tang, X. N. Luan, and Q. Zhang, “Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber,” Opt. Commun. 284(14), 3615–3618 (2011).
[Crossref]

Tang, D. Y.

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

Turitsyn, S. K.

Wang, Y.

Wu, X.

X. Wu, D. Tang, X. N. Luan, and Q. Zhang, “Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber,” Opt. Commun. 284(14), 3615–3618 (2011).
[Crossref]

Xi, T.

Xiao, X.

L. Gui, X. Xiao, and C. Yang, “Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser,” J. Opt. Soc. Am. B 30(1), 158–164 (2013).
[Crossref]

L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, “Widely spaced bound states in a soliton fiber laser with graphene saturable absorber,” IEEE Photonics Technol. Lett. 25(12), 1184–1187 (2013).
[Crossref]

Yang, C.

L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, “Widely spaced bound states in a soliton fiber laser with graphene saturable absorber,” IEEE Photonics Technol. Lett. 25(12), 1184–1187 (2013).
[Crossref]

L. Gui, X. Xiao, and C. Yang, “Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser,” J. Opt. Soc. Am. B 30(1), 158–164 (2013).
[Crossref]

Yang, H. R.

H. R. Yang, G. W. Chen, Y. C. Kong, and W. L. Li, “Bound-state fiber laser mode-locked by a graphene-nanotube saturable absorber,” Laser Phys. 25(2), 025101 (2015).
[Crossref]

Yang, Z.

X. Li, S. Zhang, Y. Meng, Y. Hao, H. Li, J. Du, and Z. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

Zeng, C.

C. Zeng, Y. D. Cui, and J. Guo, “Observation of dual-wavelength solitons and bound states in a nanotube/microfiber mode-locking fiber laser,” Opt. Commun. 347, 44–49 (2015).
[Crossref]

Zhang, Q.

X. Wu, D. Tang, X. N. Luan, and Q. Zhang, “Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber,” Opt. Commun. 284(14), 3615–3618 (2011).
[Crossref]

Zhang, S.

X. Li, S. Zhang, Y. Meng, Y. Hao, H. Li, J. Du, and Z. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

Zhang, Y.

Zhao, B.

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

Zhao, J.

Zhao, L. M.

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

Zhu, H.

L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, “Widely spaced bound states in a soliton fiber laser with graphene saturable absorber,” IEEE Photonics Technol. Lett. 25(12), 1184–1187 (2013).
[Crossref]

Electron. Lett. (1)

S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. H. Liu and K. K. Chow, “High fundamental-repetition-rate bound solitons in carbon nanotube-based fiber lasers,” IEEE Photonics Technol. Lett. 27(8), 867–870 (2015).
[Crossref]

L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, “Widely spaced bound states in a soliton fiber laser with graphene saturable absorber,” IEEE Photonics Technol. Lett. 25(12), 1184–1187 (2013).
[Crossref]

J. Opt. Soc. Am. B (3)

Laser Phys. (2)

H. R. Yang, G. W. Chen, Y. C. Kong, and W. L. Li, “Bound-state fiber laser mode-locked by a graphene-nanotube saturable absorber,” Laser Phys. 25(2), 025101 (2015).
[Crossref]

X. Li, S. Zhang, Y. Meng, Y. Hao, H. Li, J. Du, and Z. Yang, “Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser,” Laser Phys. 22(4), 774–777 (2012).
[Crossref]

Nano Lett. (1)

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Opt. Commun. (3)

X. Wu, D. Tang, X. N. Luan, and Q. Zhang, “Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber,” Opt. Commun. 284(14), 3615–3618 (2011).
[Crossref]

C. Zeng, Y. D. Cui, and J. Guo, “Observation of dual-wavelength solitons and bound states in a nanotube/microfiber mode-locking fiber laser,” Opt. Commun. 347, 44–49 (2015).
[Crossref]

V. Besse, H. Leblond, D. Mihalache, and B. A. Malomed, “Building patterns by traveling dipoles and vortices in two-dimensional periodic dissipative media,” Opt. Commun. 332, 279–291 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (3)

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A 44(10), 6954–6957 (1991).
[Crossref] [PubMed]

B. A. Malomed, “Bound solitons in coupled nonlinear Schrödinger equations,” Phys. Rev. A 45(12), R8321–R8323 (1992).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

V. Besse, H. Leblond, D. Mihalache, and B. A. Malomed, “Pattern formation by kicked solitons in the two-dimensional Ginzburg-Landau medium with a transverse grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(1), 012916 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

N. N. Akhmediev, A. Ankiewicz, and J. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79(21), 4047–4051 (1997).
[Crossref]

Other (1)

S. Latas and M. Ferreira, “Bound States of dissipative solitons in optical fiber systems,” in Proceedings of the SPIE- The International Society for Optical Engineering, 7582, p 75820P (9 pp.), 2010.
[Crossref]

Supplementary Material (3)

NameDescription
» Visualization 1: MOV (10325 KB)      Visualization 1
» Visualization 2: MOV (4110 KB)      Visualization 2
» Visualization 3: MOV (5637 KB)      Visualization 3

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A schematic diagram of the fiber laser setup. SMF: Single-mode fiber, PC: Polarization controller, EDF: Erbium doped fiber, WDM: Wavelength-division multiplexer, OC: Optical coupler, ISO: Isolator, OSA: Optical spectrum analyser.
Fig. 2
Fig. 2 A typical state of vector soliton operation of the mode locked fiber laser. (a) Oscilloscope trace; (b) Optical spectrum; (c) Autocorrelation trace.
Fig. 3
Fig. 3 A state of bound vector solitons of the fiber laser. (a) Optical spectra. Blue line: the total output; Green line: output along the horizontal axis; Red line: output along the vertical axis. (b) Autocorrelation trace; (c) the polarization resolved oscilloscope traces.
Fig. 4
Fig. 4 Coexistence of single soliton and bound solitons. (a) the polarization resolved oscilloscope trace; (b) Autocorrelation trace; (c) Optical spectra.
Fig. 5
Fig. 5 Interactions between vector soliton and bound vector solitons. (a) Snapshot of the moving solitons and the bound solitons (200 ps/div, see Visualization 1). (b) Snapshot of vector soliton move through a bound vector solitons (1 ns/div, see Visualization 2). (c) Snapshot of vector solitons moving into a soliton bunch (500 ps/div, see Visualization 3).
Fig. 6
Fig. 6 A bound state of bound vector solitons. (a) Optical spectra; (b) Autocorrelation trace.

Metrics