Abstract

A new model is proposed for predicting the apparent dot area of simulated halftone prints on coated paper surface without requiring printing. It is based on Hotelling’s multivariate T2 statistic which is shown to provide a measure of lateral light scattering. The T2 statistic is computed from colorimetric coordinates obtained from of a knife shadow image response on the paper surface. The proposed method offers superior prediction of halftone dot area compared to current light scattering models. A method for characterising peaks on the coated paper surface is introduced in this work. The effect of the paper coating layer thickness and the surface peak height on lateral light scattering and printed dot size are shown.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gloss optical elementary representative surface

Pierre Vernhes, Jean-Francis Bloch, Anne Blayo, and Bernard Pineaux
Appl. Opt. 47(29) 5429-5435 (2008)

Lateral light scattering in paper - MTF simulation and measurement

Ludovic G. Coppel, Magnus Neuman, and Per Edström
Opt. Express 19(25) 25181-25187 (2011)

The Effect of Multiple Internal Reflections on the Densities of Half-tone Prints on Paper*

F. R. Clapper and J. A. C. Yule
J. Opt. Soc. Am. 43(7) 600-603 (1953)

References

  • View by:
  • |
  • |
  • |

  1. ISO 5 −1, “Photography and graphic technology—Density measurements—Part 1: Geometry and notation,” (2009).
  2. J. Yule and W. Neilsen, “The penetration of light into paper and its effect on halftone reproduction,” TAGA Proceedings3, 65–67 (1951).
  3. J. Arney, C. D. Arney, M. Katsube, and P. G. Engeldrum, “An MTF analysis of papers,” J. Imaging Sci. Technol. 40, 19–25 (1996).
  4. H. Wakeshima, T. Kunishi, and S. Kaneko, “Light scattering in paper and its effect on halftone reproduction,” J. Opt. Soc. Am. 58(2), 272–273 (1968).
    [Crossref]
  5. S. Inoue, N. Tsumura, and Y. Miyake, “Measuring MTF of paper by sinusoidal test pattern projection,” J. Imaging Sci. Technol. 41(6), 657–661 (1997).
  6. G. L. Rogers, “Measurement of the modulation transfer function of paper,” Appl. Opt. 37(31), 7235–7240 (1998).
    [Crossref] [PubMed]
  7. M. Ukishima, H. Kaneko, T. Nakaguchi, N. Tsumura, M. Hauta-Kasari, J. Parkkinen, and Y. Miyake, “A simple method to measure mtf of paper and its application for dot gain analysis,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92(12), 3328–3335 (2009).
    [Crossref]
  8. P. G. Engeldrum and B. Pridham, “Application of turbid medium theory to paper spread function measurements,” TAGA Proceedings1, 339–352 (1995).
  9. R. Hainzl, Light and Paper—A New Light Scattering Model for Simulating the Interaction between Light and Paper (Acreo, 1999).
  10. L. G. Coppel, M. Neuman, and P. Edström, “Lateral light scattering in paper—MTF simulation and measurement,” Opt. Express 19(25), 25181–25187 (2011).
    [Crossref] [PubMed]
  11. T. Linder, T. Löfqvist, L. G. Coppel, M. Neuman, and P. Edström, “Lateral light scattering in fibrous media,” Opt. Express 21(6), 7835–7840 (2013).
    [Crossref] [PubMed]
  12. J. R. Huntsman, “A new model of dot gain and it application to a multilayer color proof,” J. Imaging Sci. Technol. 13(5), 136–145 (1987).
  13. J. S. Arney, “A probability description of the Yule-Nielsen effect,” J. Imaging Sci. Technol. 41(6), 633–636 (1997).
  14. M. Namedanian, “Characterization of halftone prints based on microscale image analysis,” Dissertation No: 1548, Department of Science and Technology, Linköping University, ISBN 978-91-7519-499-8, 36–38 (2013).
  15. A. Bhattacharya, S. Bandhyopadhyay, and P. Green, “Characterizing unprinted paperboard surface for predicting optically induced halftone mottle,” Nord. Pulp Paper Res. J. 30(3), 497–510 (2015).
    [Crossref]
  16. A. O. Pino, J. Pladellorens, and J. F. Colon, “Method of measure of roughness of paper based in the analysis of the texture of speckle pattern,” Proc. SPIE 7387, 73871W (2010).
  17. D. Smith, M. D. Williams, J. P. Salminen, W. G. Welsch, W. Heeschen, R. N. Nicholas, and S. J. Arney, “Definition and model for primary grey scale mottle as a variation in the Yule-Nielsen Effect in offset printed coated paper, ” TAPPI Proceedings (2009).
  18. A. Andersson and K. Eklund, “A study of oriented mottle in halftone prints,” Department of Science and Technology, Linkoping University, ISRN: LITH-ITN-MT-EX-07/024—SE, 38–52 (2007).
  19. H. Hägglund, O. Norberg, and P. Edström, “Prediction of optical variations in paper from high resolution measurements of paper properties,” Nord. Pulp Paper Res. J. 28(4), 596–601 (2013).
    [Crossref]
  20. J. Aspler, L. Cormier, and T. Manfred, “Linerboard surface chemistry and structure affect flexographic print quality,” Proceedings of: International printing and graphic arts conference, Montreal, Canada. Montreal: PAPTAC, 167–177 (2004).
  21. G. G. Barros, C. M. Fahlcrantz, and P. A. Johansson, “Topographic Distribution of UnCovered Areas (UCA) in Full Tone Flexographic Prints,” TAGA Proceedings 2(1), 43–57 (2005).
  22. R. Xu, P. D. Fleming, and A. Pekarovicova, “The effect of inkjet paper roughness on print gloss,” J. Imaging Sci. Technol. 49(6), 660–666 (2005).
  23. TAPPI T555, “Roughness of paper and paperboard (Print-Surf Method),” TAPPI (1999).
  24. C. M. Fahlcrantz, On Evaluation of Print Mottle, PhD, KTH, School of Computer Science and Communication (2005).
  25. K. Happel, E. Dörsam, and P. Urban, “Measuring isotropic subsurface light transport,” Opt. Express 22(8), 9048–9062 (2014).
    [Crossref] [PubMed]
  26. L. Caucci, H. H. Barrett, N. Devaney, and J. J. Rodríguez, “Application of the Hotelling and ideal observers to detection and localization of exoplanets,” J. Opt. Soc. Am. A 24(12), B13–B24 (2007).
    [Crossref] [PubMed]
  27. L. Caucci, H. H. Barrett, and J. J. Rodríguez, “Spatio-temporal Hotelling observer for signal detection from image sequences,” Opt. Express 17(13), 10946–10958 (2009).
    [Crossref] [PubMed]
  28. M. Fairchild, Color Appearance Models (Addison Wesley Longman Inc., 1998).
  29. H. Hotelling, “The Generalization of Student’s Ratio,” Ann. Math. Stat. 2(3), 360–378 (1931).
    [Crossref]
  30. B. L. Barrentine, Concepts of R&R studies, 2nd ed. (ASQ, 2003), Chap. 2, pp. 5–10.
  31. N. Pauler, Paper Optics (AB Lorentzen and Wettre, 2002), Chap. 2, pp. 16.
  32. H. Kipphan, Handbook of Print Media (Springer, 2001), Chap. 3, pp. 460- 473.
  33. A. Murray, “Monochrome reproduction in photoengraving,” J. Franklin Inst. 221(6), 721–744 (1936).
    [Crossref]
  34. L. G. Coppel, P. Edström, and M. Lindquister, “Open source Monte Carlo simulation platform for particle level simulation of light scattering from generated paper structures,” in Proc. Papermaking Res. Symp., E. Madetoja, (2009).
  35. G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiyal, “Characterization of surface topography by confocal microscopy II: The micro and macro irregularities,” Meas. Sci. Technol. 11(3), 315–329 (2000).
    [Crossref]
  36. A. Goel, E.S. Tzanakakis, S. Huang, S. Ramaswamy, S.W. Hu, D. Choi and B.V. Ramarao, “Confocal laser scanning microscopy to visualize and characterize the structure of paper,” in AIChE Forest Products Symposium, Fundamentals and Numerical Modelling of Unit Operations in the Forest Products Industries (1999), pp. 75–79.
  37. J. Vyorykkä, T. Vuoinen, and D. W. Bousfield, “Confocal Raman microscopy: A nondestructive method to analyze depth profiles of coated and printed papers,” Nord. Pulp Paper Res. J. 19(2), 218–223 (2004).
    [Crossref]
  38. Y. Ozaki, D. W. Bousfield, and S. M. Sharer, “Observation of the ink penetration in the coated paper by confocal laser scanning microscope,” TAGA Proceedings (2005)
  39. Y. Ozaki, D. W. Bousfield, and S. M. Sharer, “Three dimensional observation of coated paper by laser scanning confocal microscopy,” Tappi J. 5(1), 1 (2006).
  40. E. J. Abbott and F. A. Firestone, “Specifying surface quality: a method based on accurate measurement and comparison,” Mech. Eng. 55, 569–572 (1933).
  41. ISO 13565–2, Height characterization using the linear material ratio curve (1996).
  42. A. R. Dickson, “Quantitative analysis of paper cross-sections,” Appita J. 53(4), 292–295 (2000).
  43. R. Holmstad, C. Antoine, P. Nygård, and T. Helle, “Quantification of the three dimensional paper structure: Methods and potential,” Pulp Paper Canada 104(7), 47–50 (2003).

2015 (1)

A. Bhattacharya, S. Bandhyopadhyay, and P. Green, “Characterizing unprinted paperboard surface for predicting optically induced halftone mottle,” Nord. Pulp Paper Res. J. 30(3), 497–510 (2015).
[Crossref]

2014 (1)

2013 (2)

T. Linder, T. Löfqvist, L. G. Coppel, M. Neuman, and P. Edström, “Lateral light scattering in fibrous media,” Opt. Express 21(6), 7835–7840 (2013).
[Crossref] [PubMed]

H. Hägglund, O. Norberg, and P. Edström, “Prediction of optical variations in paper from high resolution measurements of paper properties,” Nord. Pulp Paper Res. J. 28(4), 596–601 (2013).
[Crossref]

2011 (1)

2010 (1)

A. O. Pino, J. Pladellorens, and J. F. Colon, “Method of measure of roughness of paper based in the analysis of the texture of speckle pattern,” Proc. SPIE 7387, 73871W (2010).

2009 (2)

M. Ukishima, H. Kaneko, T. Nakaguchi, N. Tsumura, M. Hauta-Kasari, J. Parkkinen, and Y. Miyake, “A simple method to measure mtf of paper and its application for dot gain analysis,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92(12), 3328–3335 (2009).
[Crossref]

L. Caucci, H. H. Barrett, and J. J. Rodríguez, “Spatio-temporal Hotelling observer for signal detection from image sequences,” Opt. Express 17(13), 10946–10958 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (1)

Y. Ozaki, D. W. Bousfield, and S. M. Sharer, “Three dimensional observation of coated paper by laser scanning confocal microscopy,” Tappi J. 5(1), 1 (2006).

2005 (1)

R. Xu, P. D. Fleming, and A. Pekarovicova, “The effect of inkjet paper roughness on print gloss,” J. Imaging Sci. Technol. 49(6), 660–666 (2005).

2004 (1)

J. Vyorykkä, T. Vuoinen, and D. W. Bousfield, “Confocal Raman microscopy: A nondestructive method to analyze depth profiles of coated and printed papers,” Nord. Pulp Paper Res. J. 19(2), 218–223 (2004).
[Crossref]

2003 (1)

R. Holmstad, C. Antoine, P. Nygård, and T. Helle, “Quantification of the three dimensional paper structure: Methods and potential,” Pulp Paper Canada 104(7), 47–50 (2003).

2000 (2)

A. R. Dickson, “Quantitative analysis of paper cross-sections,” Appita J. 53(4), 292–295 (2000).

G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiyal, “Characterization of surface topography by confocal microscopy II: The micro and macro irregularities,” Meas. Sci. Technol. 11(3), 315–329 (2000).
[Crossref]

1998 (1)

1997 (2)

S. Inoue, N. Tsumura, and Y. Miyake, “Measuring MTF of paper by sinusoidal test pattern projection,” J. Imaging Sci. Technol. 41(6), 657–661 (1997).

J. S. Arney, “A probability description of the Yule-Nielsen effect,” J. Imaging Sci. Technol. 41(6), 633–636 (1997).

1996 (1)

J. Arney, C. D. Arney, M. Katsube, and P. G. Engeldrum, “An MTF analysis of papers,” J. Imaging Sci. Technol. 40, 19–25 (1996).

1987 (1)

J. R. Huntsman, “A new model of dot gain and it application to a multilayer color proof,” J. Imaging Sci. Technol. 13(5), 136–145 (1987).

1968 (1)

1936 (1)

A. Murray, “Monochrome reproduction in photoengraving,” J. Franklin Inst. 221(6), 721–744 (1936).
[Crossref]

1933 (1)

E. J. Abbott and F. A. Firestone, “Specifying surface quality: a method based on accurate measurement and comparison,” Mech. Eng. 55, 569–572 (1933).

1931 (1)

H. Hotelling, “The Generalization of Student’s Ratio,” Ann. Math. Stat. 2(3), 360–378 (1931).
[Crossref]

Abbott, E. J.

E. J. Abbott and F. A. Firestone, “Specifying surface quality: a method based on accurate measurement and comparison,” Mech. Eng. 55, 569–572 (1933).

Antoine, C.

R. Holmstad, C. Antoine, P. Nygård, and T. Helle, “Quantification of the three dimensional paper structure: Methods and potential,” Pulp Paper Canada 104(7), 47–50 (2003).

Arney, C. D.

J. Arney, C. D. Arney, M. Katsube, and P. G. Engeldrum, “An MTF analysis of papers,” J. Imaging Sci. Technol. 40, 19–25 (1996).

Arney, J.

J. Arney, C. D. Arney, M. Katsube, and P. G. Engeldrum, “An MTF analysis of papers,” J. Imaging Sci. Technol. 40, 19–25 (1996).

Arney, J. S.

J. S. Arney, “A probability description of the Yule-Nielsen effect,” J. Imaging Sci. Technol. 41(6), 633–636 (1997).

Arney, S. J.

D. Smith, M. D. Williams, J. P. Salminen, W. G. Welsch, W. Heeschen, R. N. Nicholas, and S. J. Arney, “Definition and model for primary grey scale mottle as a variation in the Yule-Nielsen Effect in offset printed coated paper, ” TAPPI Proceedings (2009).

Bandhyopadhyay, S.

A. Bhattacharya, S. Bandhyopadhyay, and P. Green, “Characterizing unprinted paperboard surface for predicting optically induced halftone mottle,” Nord. Pulp Paper Res. J. 30(3), 497–510 (2015).
[Crossref]

Barrett, H. H.

Bhattacharya, A.

A. Bhattacharya, S. Bandhyopadhyay, and P. Green, “Characterizing unprinted paperboard surface for predicting optically induced halftone mottle,” Nord. Pulp Paper Res. J. 30(3), 497–510 (2015).
[Crossref]

Bousfield, D. W.

Y. Ozaki, D. W. Bousfield, and S. M. Sharer, “Three dimensional observation of coated paper by laser scanning confocal microscopy,” Tappi J. 5(1), 1 (2006).

J. Vyorykkä, T. Vuoinen, and D. W. Bousfield, “Confocal Raman microscopy: A nondestructive method to analyze depth profiles of coated and printed papers,” Nord. Pulp Paper Res. J. 19(2), 218–223 (2004).
[Crossref]

Caucci, L.

Colon, J. F.

A. O. Pino, J. Pladellorens, and J. F. Colon, “Method of measure of roughness of paper based in the analysis of the texture of speckle pattern,” Proc. SPIE 7387, 73871W (2010).

Coppel, L. G.

Devaney, N.

Dickson, A. R.

A. R. Dickson, “Quantitative analysis of paper cross-sections,” Appita J. 53(4), 292–295 (2000).

Dörsam, E.

Edström, P.

Engeldrum, P. G.

J. Arney, C. D. Arney, M. Katsube, and P. G. Engeldrum, “An MTF analysis of papers,” J. Imaging Sci. Technol. 40, 19–25 (1996).

P. G. Engeldrum and B. Pridham, “Application of turbid medium theory to paper spread function measurements,” TAGA Proceedings1, 339–352 (1995).

Firestone, F. A.

E. J. Abbott and F. A. Firestone, “Specifying surface quality: a method based on accurate measurement and comparison,” Mech. Eng. 55, 569–572 (1933).

Fleming, P. D.

R. Xu, P. D. Fleming, and A. Pekarovicova, “The effect of inkjet paper roughness on print gloss,” J. Imaging Sci. Technol. 49(6), 660–666 (2005).

Green, P.

A. Bhattacharya, S. Bandhyopadhyay, and P. Green, “Characterizing unprinted paperboard surface for predicting optically induced halftone mottle,” Nord. Pulp Paper Res. J. 30(3), 497–510 (2015).
[Crossref]

Hägglund, H.

H. Hägglund, O. Norberg, and P. Edström, “Prediction of optical variations in paper from high resolution measurements of paper properties,” Nord. Pulp Paper Res. J. 28(4), 596–601 (2013).
[Crossref]

Happel, K.

Hauta-Kasari, M.

M. Ukishima, H. Kaneko, T. Nakaguchi, N. Tsumura, M. Hauta-Kasari, J. Parkkinen, and Y. Miyake, “A simple method to measure mtf of paper and its application for dot gain analysis,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92(12), 3328–3335 (2009).
[Crossref]

Heeschen, W.

D. Smith, M. D. Williams, J. P. Salminen, W. G. Welsch, W. Heeschen, R. N. Nicholas, and S. J. Arney, “Definition and model for primary grey scale mottle as a variation in the Yule-Nielsen Effect in offset printed coated paper, ” TAPPI Proceedings (2009).

Helle, T.

R. Holmstad, C. Antoine, P. Nygård, and T. Helle, “Quantification of the three dimensional paper structure: Methods and potential,” Pulp Paper Canada 104(7), 47–50 (2003).

Holmstad, R.

R. Holmstad, C. Antoine, P. Nygård, and T. Helle, “Quantification of the three dimensional paper structure: Methods and potential,” Pulp Paper Canada 104(7), 47–50 (2003).

Hotelling, H.

H. Hotelling, “The Generalization of Student’s Ratio,” Ann. Math. Stat. 2(3), 360–378 (1931).
[Crossref]

Huntsman, J. R.

J. R. Huntsman, “A new model of dot gain and it application to a multilayer color proof,” J. Imaging Sci. Technol. 13(5), 136–145 (1987).

Inoue, S.

S. Inoue, N. Tsumura, and Y. Miyake, “Measuring MTF of paper by sinusoidal test pattern projection,” J. Imaging Sci. Technol. 41(6), 657–661 (1997).

Kaneko, H.

M. Ukishima, H. Kaneko, T. Nakaguchi, N. Tsumura, M. Hauta-Kasari, J. Parkkinen, and Y. Miyake, “A simple method to measure mtf of paper and its application for dot gain analysis,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92(12), 3328–3335 (2009).
[Crossref]

Kaneko, S.

Katsube, M.

J. Arney, C. D. Arney, M. Katsube, and P. G. Engeldrum, “An MTF analysis of papers,” J. Imaging Sci. Technol. 40, 19–25 (1996).

Kothiyal, M. P.

G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiyal, “Characterization of surface topography by confocal microscopy II: The micro and macro irregularities,” Meas. Sci. Technol. 11(3), 315–329 (2000).
[Crossref]

Kunishi, T.

Linder, T.

Löfqvist, T.

Miyake, Y.

M. Ukishima, H. Kaneko, T. Nakaguchi, N. Tsumura, M. Hauta-Kasari, J. Parkkinen, and Y. Miyake, “A simple method to measure mtf of paper and its application for dot gain analysis,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92(12), 3328–3335 (2009).
[Crossref]

S. Inoue, N. Tsumura, and Y. Miyake, “Measuring MTF of paper by sinusoidal test pattern projection,” J. Imaging Sci. Technol. 41(6), 657–661 (1997).

Murray, A.

A. Murray, “Monochrome reproduction in photoengraving,” J. Franklin Inst. 221(6), 721–744 (1936).
[Crossref]

Nakaguchi, T.

M. Ukishima, H. Kaneko, T. Nakaguchi, N. Tsumura, M. Hauta-Kasari, J. Parkkinen, and Y. Miyake, “A simple method to measure mtf of paper and its application for dot gain analysis,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92(12), 3328–3335 (2009).
[Crossref]

Neilsen, W.

J. Yule and W. Neilsen, “The penetration of light into paper and its effect on halftone reproduction,” TAGA Proceedings3, 65–67 (1951).

Neuman, M.

Nicholas, R. N.

D. Smith, M. D. Williams, J. P. Salminen, W. G. Welsch, W. Heeschen, R. N. Nicholas, and S. J. Arney, “Definition and model for primary grey scale mottle as a variation in the Yule-Nielsen Effect in offset printed coated paper, ” TAPPI Proceedings (2009).

Norberg, O.

H. Hägglund, O. Norberg, and P. Edström, “Prediction of optical variations in paper from high resolution measurements of paper properties,” Nord. Pulp Paper Res. J. 28(4), 596–601 (2013).
[Crossref]

Nygård, P.

R. Holmstad, C. Antoine, P. Nygård, and T. Helle, “Quantification of the three dimensional paper structure: Methods and potential,” Pulp Paper Canada 104(7), 47–50 (2003).

Ozaki, Y.

Y. Ozaki, D. W. Bousfield, and S. M. Sharer, “Three dimensional observation of coated paper by laser scanning confocal microscopy,” Tappi J. 5(1), 1 (2006).

Parkkinen, J.

M. Ukishima, H. Kaneko, T. Nakaguchi, N. Tsumura, M. Hauta-Kasari, J. Parkkinen, and Y. Miyake, “A simple method to measure mtf of paper and its application for dot gain analysis,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92(12), 3328–3335 (2009).
[Crossref]

Pekarovicova, A.

R. Xu, P. D. Fleming, and A. Pekarovicova, “The effect of inkjet paper roughness on print gloss,” J. Imaging Sci. Technol. 49(6), 660–666 (2005).

Pino, A. O.

A. O. Pino, J. Pladellorens, and J. F. Colon, “Method of measure of roughness of paper based in the analysis of the texture of speckle pattern,” Proc. SPIE 7387, 73871W (2010).

Pladellorens, J.

A. O. Pino, J. Pladellorens, and J. F. Colon, “Method of measure of roughness of paper based in the analysis of the texture of speckle pattern,” Proc. SPIE 7387, 73871W (2010).

Pridham, B.

P. G. Engeldrum and B. Pridham, “Application of turbid medium theory to paper spread function measurements,” TAGA Proceedings1, 339–352 (1995).

Rodríguez, J. J.

Rogers, G. L.

Salminen, J. P.

D. Smith, M. D. Williams, J. P. Salminen, W. G. Welsch, W. Heeschen, R. N. Nicholas, and S. J. Arney, “Definition and model for primary grey scale mottle as a variation in the Yule-Nielsen Effect in offset printed coated paper, ” TAPPI Proceedings (2009).

Sharer, S. M.

Y. Ozaki, D. W. Bousfield, and S. M. Sharer, “Three dimensional observation of coated paper by laser scanning confocal microscopy,” Tappi J. 5(1), 1 (2006).

Singaperumal, M.

G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiyal, “Characterization of surface topography by confocal microscopy II: The micro and macro irregularities,” Meas. Sci. Technol. 11(3), 315–329 (2000).
[Crossref]

Sirohi, R. S.

G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiyal, “Characterization of surface topography by confocal microscopy II: The micro and macro irregularities,” Meas. Sci. Technol. 11(3), 315–329 (2000).
[Crossref]

Smith, D.

D. Smith, M. D. Williams, J. P. Salminen, W. G. Welsch, W. Heeschen, R. N. Nicholas, and S. J. Arney, “Definition and model for primary grey scale mottle as a variation in the Yule-Nielsen Effect in offset printed coated paper, ” TAPPI Proceedings (2009).

Tsumura, N.

M. Ukishima, H. Kaneko, T. Nakaguchi, N. Tsumura, M. Hauta-Kasari, J. Parkkinen, and Y. Miyake, “A simple method to measure mtf of paper and its application for dot gain analysis,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92(12), 3328–3335 (2009).
[Crossref]

S. Inoue, N. Tsumura, and Y. Miyake, “Measuring MTF of paper by sinusoidal test pattern projection,” J. Imaging Sci. Technol. 41(6), 657–661 (1997).

Udupa, G.

G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiyal, “Characterization of surface topography by confocal microscopy II: The micro and macro irregularities,” Meas. Sci. Technol. 11(3), 315–329 (2000).
[Crossref]

Ukishima, M.

M. Ukishima, H. Kaneko, T. Nakaguchi, N. Tsumura, M. Hauta-Kasari, J. Parkkinen, and Y. Miyake, “A simple method to measure mtf of paper and its application for dot gain analysis,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92(12), 3328–3335 (2009).
[Crossref]

Urban, P.

Vuoinen, T.

J. Vyorykkä, T. Vuoinen, and D. W. Bousfield, “Confocal Raman microscopy: A nondestructive method to analyze depth profiles of coated and printed papers,” Nord. Pulp Paper Res. J. 19(2), 218–223 (2004).
[Crossref]

Vyorykkä, J.

J. Vyorykkä, T. Vuoinen, and D. W. Bousfield, “Confocal Raman microscopy: A nondestructive method to analyze depth profiles of coated and printed papers,” Nord. Pulp Paper Res. J. 19(2), 218–223 (2004).
[Crossref]

Wakeshima, H.

Welsch, W. G.

D. Smith, M. D. Williams, J. P. Salminen, W. G. Welsch, W. Heeschen, R. N. Nicholas, and S. J. Arney, “Definition and model for primary grey scale mottle as a variation in the Yule-Nielsen Effect in offset printed coated paper, ” TAPPI Proceedings (2009).

Williams, M. D.

D. Smith, M. D. Williams, J. P. Salminen, W. G. Welsch, W. Heeschen, R. N. Nicholas, and S. J. Arney, “Definition and model for primary grey scale mottle as a variation in the Yule-Nielsen Effect in offset printed coated paper, ” TAPPI Proceedings (2009).

Xu, R.

R. Xu, P. D. Fleming, and A. Pekarovicova, “The effect of inkjet paper roughness on print gloss,” J. Imaging Sci. Technol. 49(6), 660–666 (2005).

Yule, J.

J. Yule and W. Neilsen, “The penetration of light into paper and its effect on halftone reproduction,” TAGA Proceedings3, 65–67 (1951).

Ann. Math. Stat. (1)

H. Hotelling, “The Generalization of Student’s Ratio,” Ann. Math. Stat. 2(3), 360–378 (1931).
[Crossref]

Appita J. (1)

A. R. Dickson, “Quantitative analysis of paper cross-sections,” Appita J. 53(4), 292–295 (2000).

Appl. Opt. (1)

IEICE Trans. Fundam. Electron. Commun. Comput. Sci. (1)

M. Ukishima, H. Kaneko, T. Nakaguchi, N. Tsumura, M. Hauta-Kasari, J. Parkkinen, and Y. Miyake, “A simple method to measure mtf of paper and its application for dot gain analysis,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92(12), 3328–3335 (2009).
[Crossref]

J. Franklin Inst. (1)

A. Murray, “Monochrome reproduction in photoengraving,” J. Franklin Inst. 221(6), 721–744 (1936).
[Crossref]

J. Imaging Sci. Technol. (5)

R. Xu, P. D. Fleming, and A. Pekarovicova, “The effect of inkjet paper roughness on print gloss,” J. Imaging Sci. Technol. 49(6), 660–666 (2005).

S. Inoue, N. Tsumura, and Y. Miyake, “Measuring MTF of paper by sinusoidal test pattern projection,” J. Imaging Sci. Technol. 41(6), 657–661 (1997).

J. Arney, C. D. Arney, M. Katsube, and P. G. Engeldrum, “An MTF analysis of papers,” J. Imaging Sci. Technol. 40, 19–25 (1996).

J. R. Huntsman, “A new model of dot gain and it application to a multilayer color proof,” J. Imaging Sci. Technol. 13(5), 136–145 (1987).

J. S. Arney, “A probability description of the Yule-Nielsen effect,” J. Imaging Sci. Technol. 41(6), 633–636 (1997).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

G. Udupa, M. Singaperumal, R. S. Sirohi, and M. P. Kothiyal, “Characterization of surface topography by confocal microscopy II: The micro and macro irregularities,” Meas. Sci. Technol. 11(3), 315–329 (2000).
[Crossref]

Mech. Eng. (1)

E. J. Abbott and F. A. Firestone, “Specifying surface quality: a method based on accurate measurement and comparison,” Mech. Eng. 55, 569–572 (1933).

Nord. Pulp Paper Res. J. (3)

J. Vyorykkä, T. Vuoinen, and D. W. Bousfield, “Confocal Raman microscopy: A nondestructive method to analyze depth profiles of coated and printed papers,” Nord. Pulp Paper Res. J. 19(2), 218–223 (2004).
[Crossref]

H. Hägglund, O. Norberg, and P. Edström, “Prediction of optical variations in paper from high resolution measurements of paper properties,” Nord. Pulp Paper Res. J. 28(4), 596–601 (2013).
[Crossref]

A. Bhattacharya, S. Bandhyopadhyay, and P. Green, “Characterizing unprinted paperboard surface for predicting optically induced halftone mottle,” Nord. Pulp Paper Res. J. 30(3), 497–510 (2015).
[Crossref]

Opt. Express (4)

Proc. SPIE (1)

A. O. Pino, J. Pladellorens, and J. F. Colon, “Method of measure of roughness of paper based in the analysis of the texture of speckle pattern,” Proc. SPIE 7387, 73871W (2010).

Pulp Paper Canada (1)

R. Holmstad, C. Antoine, P. Nygård, and T. Helle, “Quantification of the three dimensional paper structure: Methods and potential,” Pulp Paper Canada 104(7), 47–50 (2003).

Tappi J. (1)

Y. Ozaki, D. W. Bousfield, and S. M. Sharer, “Three dimensional observation of coated paper by laser scanning confocal microscopy,” Tappi J. 5(1), 1 (2006).

Other (19)

Y. Ozaki, D. W. Bousfield, and S. M. Sharer, “Observation of the ink penetration in the coated paper by confocal laser scanning microscope,” TAGA Proceedings (2005)

ISO 13565–2, Height characterization using the linear material ratio curve (1996).

D. Smith, M. D. Williams, J. P. Salminen, W. G. Welsch, W. Heeschen, R. N. Nicholas, and S. J. Arney, “Definition and model for primary grey scale mottle as a variation in the Yule-Nielsen Effect in offset printed coated paper, ” TAPPI Proceedings (2009).

A. Andersson and K. Eklund, “A study of oriented mottle in halftone prints,” Department of Science and Technology, Linkoping University, ISRN: LITH-ITN-MT-EX-07/024—SE, 38–52 (2007).

M. Namedanian, “Characterization of halftone prints based on microscale image analysis,” Dissertation No: 1548, Department of Science and Technology, Linköping University, ISBN 978-91-7519-499-8, 36–38 (2013).

ISO 5 −1, “Photography and graphic technology—Density measurements—Part 1: Geometry and notation,” (2009).

J. Yule and W. Neilsen, “The penetration of light into paper and its effect on halftone reproduction,” TAGA Proceedings3, 65–67 (1951).

P. G. Engeldrum and B. Pridham, “Application of turbid medium theory to paper spread function measurements,” TAGA Proceedings1, 339–352 (1995).

R. Hainzl, Light and Paper—A New Light Scattering Model for Simulating the Interaction between Light and Paper (Acreo, 1999).

M. Fairchild, Color Appearance Models (Addison Wesley Longman Inc., 1998).

J. Aspler, L. Cormier, and T. Manfred, “Linerboard surface chemistry and structure affect flexographic print quality,” Proceedings of: International printing and graphic arts conference, Montreal, Canada. Montreal: PAPTAC, 167–177 (2004).

G. G. Barros, C. M. Fahlcrantz, and P. A. Johansson, “Topographic Distribution of UnCovered Areas (UCA) in Full Tone Flexographic Prints,” TAGA Proceedings 2(1), 43–57 (2005).

TAPPI T555, “Roughness of paper and paperboard (Print-Surf Method),” TAPPI (1999).

C. M. Fahlcrantz, On Evaluation of Print Mottle, PhD, KTH, School of Computer Science and Communication (2005).

A. Goel, E.S. Tzanakakis, S. Huang, S. Ramaswamy, S.W. Hu, D. Choi and B.V. Ramarao, “Confocal laser scanning microscopy to visualize and characterize the structure of paper,” in AIChE Forest Products Symposium, Fundamentals and Numerical Modelling of Unit Operations in the Forest Products Industries (1999), pp. 75–79.

L. G. Coppel, P. Edström, and M. Lindquister, “Open source Monte Carlo simulation platform for particle level simulation of light scattering from generated paper structures,” in Proc. Papermaking Res. Symp., E. Madetoja, (2009).

B. L. Barrentine, Concepts of R&R studies, 2nd ed. (ASQ, 2003), Chap. 2, pp. 5–10.

N. Pauler, Paper Optics (AB Lorentzen and Wettre, 2002), Chap. 2, pp. 16.

H. Kipphan, Handbook of Print Media (Springer, 2001), Chap. 3, pp. 460- 473.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic representation of the knife edge shadow imaging system.
Fig. 2
Fig. 2 (a) Microscopic image of the knife edge shadow projection on the paper surface. RGB data is recorded for large number of pixels across colinearly paired lines denoted as L1 and L2 respectively. (b) Microscopic image of the knife edge shadow projection on a front surface (FS) mirror surface. Compared to the paper surface the FS mirror exhibits sharper knife edge shadow boundary.
Fig. 3
Fig. 3 (a) Transparent film containing 40% halftone screen. (b) Vacuum printing down frame used for contacting the film onto the paper surface for simulating halftone printing. (c) Digital image of the simulated halftone print. (d) Digital image of the real halftone print. (e) Prufbau printability tester used for the real halftone printing.
Fig. 4
Fig. 4 (a) Surface height map rendered by CLSM imaging. b) The material ratio curve together with an illustration of surface peak height parameter Spk is shown.
Fig. 5
Fig. 5 Three dimensional CLSM surface height maps for (a) Lightweight coated paper (LWC) showing the presence of large number of surface peaks. The Spk value is 7.12 µm; (b) White Line Chip Coated Paperboard (WLC) showing a smoother surface. The Spk value is 0.875 µm.
Fig. 6
Fig. 6 Paper coating layer cross section (a) SEM images for LWC paper (b) SEM images for WLC paper (c) Binary images for LWC paper coating cross section (d) Binary images for WLC paper coating cross section.
Fig. 7
Fig. 7 Lateral light scattering measures for the four types of coated paper and board samples. (a) Mean BBG values (b) Mean kp values. kp-A denotes the values derived using Arney’s model, kp-U denotes the values derived using Ukishima’s model and kp-Y denoted the values derived from the Y tristimulus value.
Fig. 8
Fig. 8 Linear least square regression (a) BBG versus dot area (R2 = 96.9%), (b) kp-A versus dot area (R2 = 68.9%) and kp-A versus dot area (R2 = 69.1%).
Fig. 9
Fig. 9 Mean dot area of 40% halftone screen with 95% confidence interval for the two different sets of simulated prints.
Fig. 10
Fig. 10 Linear least square regression (a) PPS versus dot area (R2 = 13.8%), (b) Spk versus dot area (R2 = 90.0%).
Fig. 11
Fig. 11 Linear least square regression, Ct vs dot area (R2 = −94.6%).

Tables (1)

Tables Icon

Table 1 Substrate Details

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T 2 =n ( L ¯ 1 L ¯ 2 ) T S 1 ( L ¯ 1 L ¯ 2 )

Metrics