Abstract

We have developed a 1 kHz regenerative amplifier using an Yb:Y2O3 ceramic thin disk as the gain medium. Furthermore, the thermal conductivity and heat generation property of Yb:Y2O3 ceramic were investigated. In the developed regenerative amplifier, a laser beam is bounced off the thin disk six times in each round trip. The output energy is over 2 mJ, spectral bandwidth is 1.8 nm at FWHM, and pulse duration after pulse compression is 0.9 ps.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
8 W 240 fs diode-pumped Yb:Y2O3 ceramic thin-rod femtosecond amplifier

Jun Wan Kim, Elena Sall, Byunghak Lee, Bosu Jeong, Seolwon Park, Chur Kim, Duchang Heo, V. E. Yashin, Juhee Yang, and Guang-Hoon Kim
Opt. Express 27(22) 31418-31424 (2019)

Continuous wave and mode-locked Yb3+:Y2O3 ceramic thin disk laser

Masaki Tokurakawa, Akira Shirakawa, Ken-ichi Ueda, Hideki Yagi, Takagimi Yanagitani, Alexander A. Kaminskii, Kolja Beil, Christian Kränkel, and Günter Huber
Opt. Express 20(10) 10847-10853 (2012)

Femtosecond Yb:YGAG ceramic slab regenerative amplifier

Jaroslav Huynh, Martin Smrž, Taisuke Miura, Ondřej Slezák, David Vojna, Miroslav Čech, Akira Endo, and Tomáš Mocek
Opt. Mater. Express 8(3) 615-621 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
    [Crossref]
  2. P. H. Haumesser, R. Gaumé, B. Viana, and D. Vivien, “Determination of laser parameters of ytterbium-doped oxide crystalline materials,” J. Opt. Soc. Am. B 19(10), 2365–2375 (2002).
    [Crossref]
  3. U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12(14), 3125–3130 (2004).
    [Crossref] [PubMed]
  4. R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
    [Crossref]
  5. T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
    [Crossref]
  6. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Y b-dope d KY(WO4)2 and KGd(WO4)2.,” Opt. Lett. 22(17), 1317–1319 (1997).
    [Crossref] [PubMed]
  7. J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 ceramics — a novel solid-state laser material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
    [Crossref]
  8. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
    [Crossref]
  9. H. Yagi, K. Takaichi, K. Hiwada, K. Ueda, and T. Yanagitani, “Side-pumped Nd3+:Y3Al5O12 composite ceramic laser,” Jpn. J. Appl. Phys. 45(7), L207–L209 (2006).
    [Crossref]
  10. A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and β-KG(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
    [Crossref]
  11. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
    [Crossref]
  12. C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
    [Crossref]
  13. T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009).
    [Crossref] [PubMed]
  14. C. Teisset, M. Schultze, R. Bessing, M. Haefner, S. Prinz, D. Sutter, and T. Metzger, “300W picosecond thin-disk regenerative amplifier at 10kHz repetition rate” in M. Ebrahim-Zadeh and I. Sorokina (eds.), Advanced Solid-State Lasers Congress Postdeadline (Optical Society of America, 2013), ch. JTh5A.1.
  15. M. Chyla, T. Miura, M. Smrz, H. Jelinkova, A. Endo, and T. Mocek, “Optimization of beam quality and optical-to-optical efficiency of Yb:YAG thin-disk regenerative amplifier by pulsed pumping,” Opt. Lett. 39(6), 1441–1444 (2014).
    [Crossref] [PubMed]
  16. W. Schneider, A. Ryabov, C. Lombosi, T. Metzger, Z. Major, J. A. Fülöp, and P. Baum, “800-fs, 330-μJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO3,” Opt. Lett. 39(23), 6604–6607 (2014).
    [Crossref] [PubMed]
  17. Y. Ochi, K. Nagashima, M. Maruyama, M. Tsubouchi, F. Yoshida, N. Kohno, M. Mori, and A. Sugiyama, “Yb:YAG thin-disk chirped pulse amplification laser system for intense terahertz pulse generation,” Opt. Express 23(11), 15057–15064 (2015).
    [Crossref] [PubMed]
  18. S. Klingebiel, M. Schultze, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, M. Gorjan, D. H. Sutter, K. Michel, H. G. Barros, Z. Major, F. Krausz, and T. Metzger, “200mJ Ultrafast Thin-Disk Regenerative Amplifier” in CLEO:2015 OSA Technical Digest (Optical Society of America, 2015), paper STu4O.2.
  19. L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
    [Crossref]
  20. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, K. Beil, C. Kränkel, and G. Huber, “Continuous wave and mode-locked Yb3+:Y2O3 ceramic thin disk laser,” Opt. Express 20(10), 10847–10852 (2012).
    [Crossref] [PubMed]
  21. A. Cezairliyan, T. Baba, and R. Taylor, “A high-temperature laser-pulse thermal diffusivity apparatus,” Int. J. Thermophys. 15(2), 317–341 (1994).
    [Crossref]
  22. J. H. Mun, A. Jouini, A. Novoselov, A. Yoshikawa, T. Kasamoto, H. Ohta, H. Shibata, M. Isshiki, Y. Waseda, G. Boulon, and T. Fukuda, “Thermal and Optical Properties of Yb3+ Doped Y2O3 Single Crystal Grown by the Micro-Pulling-Down Method,” Jpn. J. Appl. Phys. 45(7), 5885–5888 (2006).
    [Crossref]
  23. R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
    [Crossref]
  24. C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100(11), 113103 (2006).
    [Crossref]
  25. P. Z. Yang, P. Z. Deng, and Z. W. Yin, “Concentration quenching in Yb:YAG,” J. Lumin. 97(1), 51–54 (2002).
    [Crossref]
  26. C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
    [Crossref]
  27. M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Giesen, “Nonlinear Decay of the Excited State in Yb:YAG” in Advanced Solid-State Photonics Technical Digest (Optical Society of America, 2005), paper TuB49.
  28. Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).
    [Crossref]
  29. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5(10), 1550–1567 (1966).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

2013 (1)

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).
[Crossref]

2012 (1)

2011 (2)

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[Crossref]

2009 (1)

2008 (1)

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[Crossref]

2007 (1)

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

2006 (4)

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100(11), 113103 (2006).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
[Crossref]

H. Yagi, K. Takaichi, K. Hiwada, K. Ueda, and T. Yanagitani, “Side-pumped Nd3+:Y3Al5O12 composite ceramic laser,” Jpn. J. Appl. Phys. 45(7), L207–L209 (2006).
[Crossref]

J. H. Mun, A. Jouini, A. Novoselov, A. Yoshikawa, T. Kasamoto, H. Ohta, H. Shibata, M. Isshiki, Y. Waseda, G. Boulon, and T. Fukuda, “Thermal and Optical Properties of Yb3+ Doped Y2O3 Single Crystal Grown by the Micro-Pulling-Down Method,” Jpn. J. Appl. Phys. 45(7), 5885–5888 (2006).
[Crossref]

2004 (1)

2003 (1)

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

2002 (4)

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and β-KG(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

P. Z. Yang, P. Z. Deng, and Z. W. Yin, “Concentration quenching in Yb:YAG,” J. Lumin. 97(1), 51–54 (2002).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 ceramics — a novel solid-state laser material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

P. H. Haumesser, R. Gaumé, B. Viana, and D. Vivien, “Determination of laser parameters of ytterbium-doped oxide crystalline materials,” J. Opt. Soc. Am. B 19(10), 2365–2375 (2002).
[Crossref]

1999 (1)

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

1997 (2)

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Y b-dope d KY(WO4)2 and KGd(WO4)2.,” Opt. Lett. 22(17), 1317–1319 (1997).
[Crossref] [PubMed]

1994 (2)

A. Cezairliyan, T. Baba, and R. Taylor, “A high-temperature laser-pulse thermal diffusivity apparatus,” Int. J. Thermophys. 15(2), 317–341 (1994).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

1966 (1)

Baba, T.

A. Cezairliyan, T. Baba, and R. Taylor, “A high-temperature laser-pulse thermal diffusivity apparatus,” Int. J. Thermophys. 15(2), 317–341 (1994).
[Crossref]

Baer, C. R. E.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

Bagaev, S. N.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and β-KG(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Baum, P.

Beil, K.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, K. Beil, C. Kränkel, and G. Huber, “Continuous wave and mode-locked Yb3+:Y2O3 ceramic thin disk laser,” Opt. Express 20(10), 10847–10852 (2012).
[Crossref] [PubMed]

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

Bell, M. J. V.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100(11), 113103 (2006).
[Crossref]

Biswal, S.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Boulon, G.

J. H. Mun, A. Jouini, A. Novoselov, A. Yoshikawa, T. Kasamoto, H. Ohta, H. Shibata, M. Isshiki, Y. Waseda, G. Boulon, and T. Fukuda, “Thermal and Optical Properties of Yb3+ Doped Y2O3 Single Crystal Grown by the Micro-Pulling-Down Method,” Jpn. J. Appl. Phys. 45(7), 5885–5888 (2006).
[Crossref]

Brandt, C.

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[Crossref]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Braun, A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Catunda, T.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100(11), 113103 (2006).
[Crossref]

Cezairliyan, A.

A. Cezairliyan, T. Baba, and R. Taylor, “A high-temperature laser-pulse thermal diffusivity apparatus,” Int. J. Thermophys. 15(2), 317–341 (1994).
[Crossref]

Chyla, M.

Deng, P. Z.

P. Z. Yang, P. Z. Deng, and Z. W. Yin, “Concentration quenching in Yb:YAG,” J. Lumin. 97(1), 51–54 (2002).
[Crossref]

Dong, J.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
[Crossref]

Dubinskii, M.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[Crossref]

Dunina, E. B.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and β-KG(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Endo, A.

Fournier, D.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Fredrich-Thornton, S. T.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[Crossref]

Fukuda, T.

J. H. Mun, A. Jouini, A. Novoselov, A. Yoshikawa, T. Kasamoto, H. Ohta, H. Shibata, M. Isshiki, Y. Waseda, G. Boulon, and T. Fukuda, “Thermal and Optical Properties of Yb3+ Doped Y2O3 Single Crystal Grown by the Micro-Pulling-Down Method,” Jpn. J. Appl. Phys. 45(7), 5885–5888 (2006).
[Crossref]

Fülöp, J. A.

Furukawa, Y.

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).
[Crossref]

Gaumé, R.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

P. H. Haumesser, R. Gaumé, B. Viana, and D. Vivien, “Determination of laser parameters of ytterbium-doped oxide crystalline materials,” J. Opt. Soc. Am. B 19(10), 2365–2375 (2002).
[Crossref]

Giesen, A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Graf, M.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Griebner, U.

Gruber, J. B.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and β-KG(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Haumesser, P. H.

Heckl, O. H.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

Hiwada, K.

H. Yagi, K. Takaichi, K. Hiwada, K. Ueda, and T. Yanagitani, “Side-pumped Nd3+:Y3Al5O12 composite ceramic laser,” Jpn. J. Appl. Phys. 45(7), L207–L209 (2006).
[Crossref]

Hömmerich, U.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and β-KG(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Hönninger, C.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Huber, G.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, K. Beil, C. Kränkel, and G. Huber, “Continuous wave and mode-locked Yb3+:Y2O3 ceramic thin disk laser,” Opt. Express 20(10), 10847–10852 (2012).
[Crossref] [PubMed]

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[Crossref]

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Y b-dope d KY(WO4)2 and KGd(WO4)2.,” Opt. Lett. 22(17), 1317–1319 (1997).
[Crossref] [PubMed]

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Isshiki, M.

J. H. Mun, A. Jouini, A. Novoselov, A. Yoshikawa, T. Kasamoto, H. Ohta, H. Shibata, M. Isshiki, Y. Waseda, G. Boulon, and T. Fukuda, “Thermal and Optical Properties of Yb3+ Doped Y2O3 Single Crystal Grown by the Micro-Pulling-Down Method,” Jpn. J. Appl. Phys. 45(7), 5885–5888 (2006).
[Crossref]

Jacinto, C.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100(11), 113103 (2006).
[Crossref]

Jelinkova, H.

Johannsen, I.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Jouini, A.

J. H. Mun, A. Jouini, A. Novoselov, A. Yoshikawa, T. Kasamoto, H. Ohta, H. Shibata, M. Isshiki, Y. Waseda, G. Boulon, and T. Fukuda, “Thermal and Optical Properties of Yb3+ Doped Y2O3 Single Crystal Grown by the Micro-Pulling-Down Method,” Jpn. J. Appl. Phys. 45(7), 5885–5888 (2006).
[Crossref]

Kaminskii, A. A.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, K. Beil, C. Kränkel, and G. Huber, “Continuous wave and mode-locked Yb3+:Y2O3 ceramic thin disk laser,” Opt. Express 20(10), 10847–10852 (2012).
[Crossref] [PubMed]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
[Crossref]

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and β-KG(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 ceramics — a novel solid-state laser material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

Kasamoto, T.

J. H. Mun, A. Jouini, A. Novoselov, A. Yoshikawa, T. Kasamoto, H. Ohta, H. Shibata, M. Isshiki, Y. Waseda, G. Boulon, and T. Fukuda, “Thermal and Optical Properties of Yb3+ Doped Y2O3 Single Crystal Grown by the Micro-Pulling-Down Method,” Jpn. J. Appl. Phys. 45(7), 5885–5888 (2006).
[Crossref]

Keller, U.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Kienberger, R.

Killi, A.

Klevtsova, R. F.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and β-KG(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Kogelnik, H.

Kohno, N.

Kornienko, A. A.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and β-KG(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Kränkel, C.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, K. Beil, C. Kränkel, and G. Huber, “Continuous wave and mode-locked Yb3+:Y2O3 ceramic thin disk laser,” Opt. Express 20(10), 10847–10852 (2012).
[Crossref] [PubMed]

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

Krausz, F.

Kuleshov, N. V.

Kuznetsov, F. A.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and β-KG(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Lagatsky, A. A.

Li, T.

Lombosi, C.

Lu, J.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 ceramics — a novel solid-state laser material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

Major, Z.

Maruyama, M.

Merkle, L. D.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[Crossref]

Metzger, T.

Michael, A.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[Crossref]

Mikhailov, V. P.

Miura, T.

Mocek, T.

Mori, M.

Morier-Genoud, F.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Moser, M.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Mourou, G. A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Mun, J. H.

J. H. Mun, A. Jouini, A. Novoselov, A. Yoshikawa, T. Kasamoto, H. Ohta, H. Shibata, M. Isshiki, Y. Waseda, G. Boulon, and T. Fukuda, “Thermal and Optical Properties of Yb3+ Doped Y2O3 Single Crystal Grown by the Micro-Pulling-Down Method,” Jpn. J. Appl. Phys. 45(7), 5885–5888 (2006).
[Crossref]

Musha, M.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 ceramics — a novel solid-state laser material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

Nagashima, K.

Y. Ochi, K. Nagashima, M. Maruyama, M. Tsubouchi, F. Yoshida, N. Kohno, M. Mori, and A. Sugiyama, “Yb:YAG thin-disk chirped pulse amplification laser system for intense terahertz pulse generation,” Opt. Express 23(11), 15057–15064 (2015).
[Crossref] [PubMed]

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).
[Crossref]

Nees, J.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Newburgh, G. A.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[Crossref]

Novoselov, A.

J. H. Mun, A. Jouini, A. Novoselov, A. Yoshikawa, T. Kasamoto, H. Ohta, H. Shibata, M. Isshiki, Y. Waseda, G. Boulon, and T. Fukuda, “Thermal and Optical Properties of Yb3+ Doped Y2O3 Single Crystal Grown by the Micro-Pulling-Down Method,” Jpn. J. Appl. Phys. 45(7), 5885–5888 (2006).
[Crossref]

Nunes, L. A. O.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100(11), 113103 (2006).
[Crossref]

Ochi, Y.

Y. Ochi, K. Nagashima, M. Maruyama, M. Tsubouchi, F. Yoshida, N. Kohno, M. Mori, and A. Sugiyama, “Yb:YAG thin-disk chirped pulse amplification laser system for intense terahertz pulse generation,” Opt. Express 23(11), 15057–15064 (2015).
[Crossref] [PubMed]

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).
[Crossref]

Ohta, H.

J. H. Mun, A. Jouini, A. Novoselov, A. Yoshikawa, T. Kasamoto, H. Ohta, H. Shibata, M. Isshiki, Y. Waseda, G. Boulon, and T. Fukuda, “Thermal and Optical Properties of Yb3+ Doped Y2O3 Single Crystal Grown by the Micro-Pulling-Down Method,” Jpn. J. Appl. Phys. 45(7), 5885–5888 (2006).
[Crossref]

Okada, H.

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).
[Crossref]

Oliveira, S. L.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100(11), 113103 (2006).
[Crossref]

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Paschotta, R.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Pavlyuk, A. A.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and β-KG(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Petermann, K.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[Crossref]

U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12(14), 3125–3130 (2004).
[Crossref] [PubMed]

Peters, R.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

Peters, V.

Petrov, V.

Podlipensky, A. V.

Roger, J.-P.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

Ryabov, A.

Saraceno, C. J.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

Schneider, W.

Schwarz, A.

Seeber, W.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Seo, J. T.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and β-KG(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Shibata, H.

J. H. Mun, A. Jouini, A. Novoselov, A. Yoshikawa, T. Kasamoto, H. Ohta, H. Shibata, M. Isshiki, Y. Waseda, G. Boulon, and T. Fukuda, “Thermal and Optical Properties of Yb3+ Doped Y2O3 Single Crystal Grown by the Micro-Pulling-Down Method,” Jpn. J. Appl. Phys. 45(7), 5885–5888 (2006).
[Crossref]

Shirakawa, A.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, K. Beil, C. Kränkel, and G. Huber, “Continuous wave and mode-locked Yb3+:Y2O3 ceramic thin disk laser,” Opt. Express 20(10), 10847–10852 (2012).
[Crossref] [PubMed]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 ceramics — a novel solid-state laser material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

Smrz, M.

Südmeyer, T.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

Sugiyama, A.

Y. Ochi, K. Nagashima, M. Maruyama, M. Tsubouchi, F. Yoshida, N. Kohno, M. Mori, and A. Sugiyama, “Yb:YAG thin-disk chirped pulse amplification laser system for intense terahertz pulse generation,” Opt. Express 23(11), 15057–15064 (2015).
[Crossref] [PubMed]

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).
[Crossref]

Sutter, D.

Taira, T.

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

Takaichi, K.

H. Yagi, K. Takaichi, K. Hiwada, K. Ueda, and T. Yanagitani, “Side-pumped Nd3+:Y3Al5O12 composite ceramic laser,” Jpn. J. Appl. Phys. 45(7), L207–L209 (2006).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 ceramics — a novel solid-state laser material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

Tanaka, M.

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).
[Crossref]

Tateno, R.

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).
[Crossref]

Taylor, R.

A. Cezairliyan, T. Baba, and R. Taylor, “A high-temperature laser-pulse thermal diffusivity apparatus,” Int. J. Thermophys. 15(2), 317–341 (1994).
[Crossref]

Teisset, C. Y.

Temple, D.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and β-KG(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Ter-Gabrielyan, N.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[Crossref]

Tokurakawa, M.

Tsubouchi, M.

Ueda, K.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, K. Beil, C. Kränkel, and G. Huber, “Continuous wave and mode-locked Yb3+:Y2O3 ceramic thin disk laser,” Opt. Express 20(10), 10847–10852 (2012).
[Crossref] [PubMed]

H. Yagi, K. Takaichi, K. Hiwada, K. Ueda, and T. Yanagitani, “Side-pumped Nd3+:Y3Al5O12 composite ceramic laser,” Jpn. J. Appl. Phys. 45(7), L207–L209 (2006).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
[Crossref]

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and β-KG(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 ceramics — a novel solid-state laser material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

Uematsu, T.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 ceramics — a novel solid-state laser material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

Viana, B.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

P. H. Haumesser, R. Gaumé, B. Viana, and D. Vivien, “Determination of laser parameters of ytterbium-doped oxide crystalline materials,” J. Opt. Soc. Am. B 19(10), 2365–2375 (2002).
[Crossref]

Vivien, D.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

P. H. Haumesser, R. Gaumé, B. Viana, and D. Vivien, “Determination of laser parameters of ytterbium-doped oxide crystalline materials,” J. Opt. Soc. Am. B 19(10), 2365–2375 (2002).
[Crossref]

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Waseda, Y.

J. H. Mun, A. Jouini, A. Novoselov, A. Yoshikawa, T. Kasamoto, H. Ohta, H. Shibata, M. Isshiki, Y. Waseda, G. Boulon, and T. Fukuda, “Thermal and Optical Properties of Yb3+ Doped Y2O3 Single Crystal Grown by the Micro-Pulling-Down Method,” Jpn. J. Appl. Phys. 45(7), 5885–5888 (2006).
[Crossref]

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Yagi, H.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, K. Beil, C. Kränkel, and G. Huber, “Continuous wave and mode-locked Yb3+:Y2O3 ceramic thin disk laser,” Opt. Express 20(10), 10847–10852 (2012).
[Crossref] [PubMed]

H. Yagi, K. Takaichi, K. Hiwada, K. Ueda, and T. Yanagitani, “Side-pumped Nd3+:Y3Al5O12 composite ceramic laser,” Jpn. J. Appl. Phys. 45(7), L207–L209 (2006).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 ceramics — a novel solid-state laser material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

Yanagitani, T.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, K. Beil, C. Kränkel, and G. Huber, “Continuous wave and mode-locked Yb3+:Y2O3 ceramic thin disk laser,” Opt. Express 20(10), 10847–10852 (2012).
[Crossref] [PubMed]

H. Yagi, K. Takaichi, K. Hiwada, K. Ueda, and T. Yanagitani, “Side-pumped Nd3+:Y3Al5O12 composite ceramic laser,” Jpn. J. Appl. Phys. 45(7), L207–L209 (2006).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 ceramics — a novel solid-state laser material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

Yang, P. Z.

P. Z. Yang, P. Z. Deng, and Z. W. Yin, “Concentration quenching in Yb:YAG,” J. Lumin. 97(1), 51–54 (2002).
[Crossref]

Yin, Z. W.

P. Z. Yang, P. Z. Deng, and Z. W. Yin, “Concentration quenching in Yb:YAG,” J. Lumin. 97(1), 51–54 (2002).
[Crossref]

Yoshida, F.

Yoshikawa, A.

J. H. Mun, A. Jouini, A. Novoselov, A. Yoshikawa, T. Kasamoto, H. Ohta, H. Shibata, M. Isshiki, Y. Waseda, G. Boulon, and T. Fukuda, “Thermal and Optical Properties of Yb3+ Doped Y2O3 Single Crystal Grown by the Micro-Pulling-Down Method,” Jpn. J. Appl. Phys. 45(7), 5885–5888 (2006).
[Crossref]

Zandi, B.

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and β-KG(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Zhang, G.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (5)

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B 102(3), 509–514 (2011).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[Crossref]

Appl. Phys. Lett. (2)

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89(9), 091114 (2006).
[Crossref]

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

Int. J. Thermophys. (1)

A. Cezairliyan, T. Baba, and R. Taylor, “A high-temperature laser-pulse thermal diffusivity apparatus,” Int. J. Thermophys. 15(2), 317–341 (1994).
[Crossref]

J. Appl. Phys. (1)

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100(11), 113103 (2006).
[Crossref]

J. Lumin. (1)

P. Z. Yang, P. Z. Deng, and Z. W. Yin, “Concentration quenching in Yb:YAG,” J. Lumin. 97(1), 51–54 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (3)

H. Yagi, K. Takaichi, K. Hiwada, K. Ueda, and T. Yanagitani, “Side-pumped Nd3+:Y3Al5O12 composite ceramic laser,” Jpn. J. Appl. Phys. 45(7), L207–L209 (2006).
[Crossref]

J. H. Mun, A. Jouini, A. Novoselov, A. Yoshikawa, T. Kasamoto, H. Ohta, H. Shibata, M. Isshiki, Y. Waseda, G. Boulon, and T. Fukuda, “Thermal and Optical Properties of Yb3+ Doped Y2O3 Single Crystal Grown by the Micro-Pulling-Down Method,” Jpn. J. Appl. Phys. 45(7), 5885–5888 (2006).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 ceramics — a novel solid-state laser material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

Opt. Commun. (1)

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. B (1)

A. A. Kaminskii, J. B. Gruber, S. N. Bagaev, K. Ueda, U. Hömmerich, J. T. Seo, D. Temple, B. Zandi, A. A. Kornienko, E. B. Dunina, A. A. Pavlyuk, R. F. Klevtsova, and F. A. Kuznetsov, “Optical spectroscopy and visible stimulated emission of Dy3+ ions in monoclinic α-KY(WO4)2 and β-KG(WO4)2 crystals,” Phys. Rev. B 65(12), 125108 (2002).
[Crossref]

Proc. SPIE (1)

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).
[Crossref]

Other (3)

C. Teisset, M. Schultze, R. Bessing, M. Haefner, S. Prinz, D. Sutter, and T. Metzger, “300W picosecond thin-disk regenerative amplifier at 10kHz repetition rate” in M. Ebrahim-Zadeh and I. Sorokina (eds.), Advanced Solid-State Lasers Congress Postdeadline (Optical Society of America, 2013), ch. JTh5A.1.

S. Klingebiel, M. Schultze, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, M. Gorjan, D. H. Sutter, K. Michel, H. G. Barros, Z. Major, F. Krausz, and T. Metzger, “200mJ Ultrafast Thin-Disk Regenerative Amplifier” in CLEO:2015 OSA Technical Digest (Optical Society of America, 2015), paper STu4O.2.

M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Giesen, “Nonlinear Decay of the Excited State in Yb:YAG” in Advanced Solid-State Photonics Technical Digest (Optical Society of America, 2005), paper TuB49.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Thermal conductivities of Yb:Y2O3 ceramics and crystals.
Fig. 2
Fig. 2 Surface temperature in pumped area of 5 at%-doped Yb:Y2O3 thin disk bonded to water-cooled heatsink. The circles indicate experimental results, and the solid line shows the calcurated temperature. The inset shows an image of thermography at pump flux of 2.5 kW/cm2.
Fig. 3
Fig. 3 Pumping system of thin disk device.
Fig. 4
Fig. 4 (a) Schematic layout of developed regenerative amplifier. Solid line: 1st bounce; dashed line: 2nd bounce; dotted line: 3rd bounce; TFP: thin film polarizer; HWP: half wave plate; FR: Faraday rotator; PC: Pockels cell; QWP: quarter wave plate; EM: end mirror; CC: concave mirror; CX: convex mirror; TD: thin disk. The others are flat mirrors for folding. (b) Position of optical components and beam size in the cavity for regenerative amplifier. The solid line is the calculated beam diameter in the Gauss mode and the marks indicate observed diameter. The diameter of CW operation is observed at pump power of threshold of oscillation.
Fig. 5
Fig. 5 Output power of developed regenerative amplifier vs (a) pump power, (b) number of round trips (the inset shows the decrease in power of the seed laser under the non-pumped condition). (c) Long-term stability; the inset shows the energy stability of each pulses.
Fig. 6
Fig. 6 Beam radius after regenerative amplifier focused with an f = 300 mm lens. The inset shows the beam profile at the focal spot.
Fig. 7
Fig. 7 (a) Spectrum (b) autocorrelation trace after compressor. The solid lines indicate the observed profile and the dotted lines indicate fitting curve with Gaussian.

Tables (2)

Tables Icon

Table 1 Characteristics of Yb-doped laser crystals

Tables Icon

Table 2 Thermal properties of Yb:Y2O3 ceramics

Metrics