Abstract

We report a switchable lens in which a twisted nematic (TN) liquid crystal cell is utilized to control the input polarization. Different polarization state leads to different path length in the proposed optical system, which in turn results in different focal length. This type of switchable lens has advantages in fast response time, low operation voltage, and inherently lower chromatic aberration. Using a pixelated TN panel, we can create depth information to the selected pixels and thus add depth information to a 2D image. By cascading three such device structures together, we can generate 8 different focuses for 3D displays, wearable virtual/augmented reality, and other head mounted display devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution additive light field near-eye display by switchable Pancharatnam–Berry phase lenses

Tao Zhan, Yun-Han Lee, and Shin-Tson Wu
Opt. Express 26(4) 4863-4872 (2018)

Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate

Haiwei Chen, Yishi Weng, Daming Xu, Nelson V. Tabiryan, and Shin-Tson Wu
Opt. Express 24(7) 7287-7298 (2016)

References

  • View by:
  • |
  • |
  • |

  1. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Display Technol. 2(3), 199–216 (2006).
    [Crossref]
  2. B. Furht, Handbook of Augmented Reality (Springer, 2011).
  3. H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).
  4. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
    [Crossref]
  5. S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
    [Crossref] [PubMed]
  6. S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19(21), 20940–20952 (2011).
    [Crossref] [PubMed]
  7. B. T. Schowengerdt and E. J. Seibel, “True 3-D scanned voxel displays using single or multiple light sources,” J. Soc. Inf. Disp. 14(2), 135 (2006).
    [Crossref]
  8. S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
    [Crossref]
  9. U. Efron, Spatial Light Modulator Technology: Materials, Devices, and Applications (Marcel Dekker, 1994).
  10. E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
    [Crossref] [PubMed]
  11. M. B. North-Morris, J. VanDelden, and J. C. Wyant, “Phase-shifting birefringent scatterplate interferometer,” Appl. Opt. 41(4), 668–677 (2002).
    [Crossref] [PubMed]
  12. H. O. Saldner and J. M. Huntley, “Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector,” Opt. Eng. 36(2), 610–615 (1997).
    [Crossref]
  13. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127 (1971).
    [Crossref]
  14. H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21(7), 7916–7925 (2013).
    [Crossref] [PubMed]
  15. R. Zhu, S. Xu, Q. Hong, S. T. Wu, C. Lee, C. M. Yang, C. C. Lo, and A. Lien, “Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk,” Appl. Opt. 53(7), 1388–1395 (2014).
    [Crossref] [PubMed]
  16. A. Chao, K. T. Huang, C. W. Tsai, Y. W. Hung, H. F. Cheng, W. Yeh, C. H. Yu, and H. H. Wu, “The fastest response TN-Type TFT LCD of the world likes OCB level,” SID Int. Symp. Digest Tech. Papers38(1), 603–606 (2007).
    [Crossref]
  17. S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Display Technol. 3(3), 250–252 (2007).
    [Crossref]
  18. Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
    [Crossref]
  19. C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twisted angles ≤90°,” J. Phys. D. 8(13), 1575–1584 (1975).
    [Crossref]
  20. P. Mouroulis and J. MacDonald, Geometrical Optics and Optical Design (Oxford, 1997).

2014 (1)

2013 (1)

2011 (1)

2010 (1)

2007 (2)

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Display Technol. 3(3), 250–252 (2007).
[Crossref]

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

2006 (3)

B. T. Schowengerdt and E. J. Seibel, “True 3-D scanned voxel displays using single or multiple light sources,” J. Soc. Inf. Disp. 14(2), 135 (2006).
[Crossref]

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Display Technol. 2(3), 199–216 (2006).
[Crossref]

Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

2005 (1)

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

2004 (1)

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

2002 (1)

1997 (1)

H. O. Saldner and J. M. Huntley, “Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector,” Opt. Eng. 36(2), 610–615 (1997).
[Crossref]

1975 (1)

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twisted angles ≤90°,” J. Phys. D. 8(13), 1575–1584 (1975).
[Crossref]

1971 (1)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127 (1971).
[Crossref]

Ahnelt, P.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

Akeley, K.

S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19(21), 20940–20952 (2011).
[Crossref] [PubMed]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Artal, P.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

Banks, M. S.

S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19(21), 20940–20952 (2011).
[Crossref] [PubMed]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Cakmakci, O.

Chao, A.

A. Chao, K. T. Huang, C. W. Tsai, Y. W. Hung, H. F. Cheng, W. Yeh, C. H. Yu, and H. H. Wu, “The fastest response TN-Type TFT LCD of the world likes OCB level,” SID Int. Symp. Digest Tech. Papers38(1), 603–606 (2007).
[Crossref]

Cheng, H. F.

A. Chao, K. T. Huang, C. W. Tsai, Y. W. Hung, H. F. Cheng, W. Yeh, C. H. Yu, and H. H. Wu, “The fastest response TN-Type TFT LCD of the world likes OCB level,” SID Int. Symp. Digest Tech. Papers38(1), 603–606 (2007).
[Crossref]

Dabrowski, R.

Drexler, W.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

Fernández, E. J.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

Gauza, S.

Girshick, A. R.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Gooch, C. H.

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twisted angles ≤90°,” J. Phys. D. 8(13), 1575–1584 (1975).
[Crossref]

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127 (1971).
[Crossref]

Hermann, B.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

Hong, Q.

Hua, H.

Huang, K. T.

A. Chao, K. T. Huang, C. W. Tsai, Y. W. Hung, H. F. Cheng, W. Yeh, C. H. Yu, and H. H. Wu, “The fastest response TN-Type TFT LCD of the world likes OCB level,” SID Int. Symp. Digest Tech. Papers38(1), 603–606 (2007).
[Crossref]

Huang, Y.

Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

Hung, Y. W.

A. Chao, K. T. Huang, C. W. Tsai, Y. W. Hung, H. F. Cheng, W. Yeh, C. H. Yu, and H. H. Wu, “The fastest response TN-Type TFT LCD of the world likes OCB level,” SID Int. Symp. Digest Tech. Papers38(1), 603–606 (2007).
[Crossref]

Huntley, J. M.

H. O. Saldner and J. M. Huntley, “Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector,” Opt. Eng. 36(2), 610–615 (1997).
[Crossref]

Lee, C.

Lee, S. S.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

Lee, S. W.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

Leitgeb, R.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

Lien, A.

Liu, S.

Liu, Y.

Lo, C. C.

North-Morris, M. B.

Piecek, W.

Považay, B.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

Prieto, P. M.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

Ravikumar, S.

Ren, H.

Rolland, J.

Saldner, H. O.

H. O. Saldner and J. M. Huntley, “Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector,” Opt. Eng. 36(2), 610–615 (1997).
[Crossref]

Sattmann, H.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

Schadt, M.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127 (1971).
[Crossref]

Schowengerdt, B. T.

B. T. Schowengerdt and E. J. Seibel, “True 3-D scanned voxel displays using single or multiple light sources,” J. Soc. Inf. Disp. 14(2), 135 (2006).
[Crossref]

Seibel, E. J.

B. T. Schowengerdt and E. J. Seibel, “True 3-D scanned voxel displays using single or multiple light sources,” J. Soc. Inf. Disp. 14(2), 135 (2006).
[Crossref]

Tarry, H. A.

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twisted angles ≤90°,” J. Phys. D. 8(13), 1575–1584 (1975).
[Crossref]

Tsai, C. W.

A. Chao, K. T. Huang, C. W. Tsai, Y. W. Hung, H. F. Cheng, W. Yeh, C. H. Yu, and H. H. Wu, “The fastest response TN-Type TFT LCD of the world likes OCB level,” SID Int. Symp. Digest Tech. Papers38(1), 603–606 (2007).
[Crossref]

Unterhuber, A.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

VanDelden, J.

Watt, S. J.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Wen, C.-H.

Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

Wu, H. H.

A. Chao, K. T. Huang, C. W. Tsai, Y. W. Hung, H. F. Cheng, W. Yeh, C. H. Yu, and H. H. Wu, “The fastest response TN-Type TFT LCD of the world likes OCB level,” SID Int. Symp. Digest Tech. Papers38(1), 603–606 (2007).
[Crossref]

Wu, S. T.

Wu, S.-T.

Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

Wyant, J. C.

Xu, S.

Yang, C. M.

Yeh, W.

A. Chao, K. T. Huang, C. W. Tsai, Y. W. Hung, H. F. Cheng, W. Yeh, C. H. Yu, and H. H. Wu, “The fastest response TN-Type TFT LCD of the world likes OCB level,” SID Int. Symp. Digest Tech. Papers38(1), 603–606 (2007).
[Crossref]

Yu, C. H.

A. Chao, K. T. Huang, C. W. Tsai, Y. W. Hung, H. F. Cheng, W. Yeh, C. H. Yu, and H. H. Wu, “The fastest response TN-Type TFT LCD of the world likes OCB level,” SID Int. Symp. Digest Tech. Papers38(1), 603–606 (2007).
[Crossref]

Zhu, R.

Zhu, X.

ACM Trans. Graph. (1)

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127 (1971).
[Crossref]

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

J. Display Technol. (2)

J. Phys. D. (1)

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twisted angles ≤90°,” J. Phys. D. 8(13), 1575–1584 (1975).
[Crossref]

J. Soc. Inf. Disp. (1)

B. T. Schowengerdt and E. J. Seibel, “True 3-D scanned voxel displays using single or multiple light sources,” J. Soc. Inf. Disp. 14(2), 135 (2006).
[Crossref]

Opt. Eng. (1)

H. O. Saldner and J. M. Huntley, “Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector,” Opt. Eng. 36(2), 610–615 (1997).
[Crossref]

Opt. Express (3)

Vision Res. (1)

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive Optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

Other (5)

U. Efron, Spatial Light Modulator Technology: Materials, Devices, and Applications (Marcel Dekker, 1994).

B. Furht, Handbook of Augmented Reality (Springer, 2011).

H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).

P. Mouroulis and J. MacDonald, Geometrical Optics and Optical Design (Oxford, 1997).

A. Chao, K. T. Huang, C. W. Tsai, Y. W. Hung, H. F. Cheng, W. Yeh, C. H. Yu, and H. H. Wu, “The fastest response TN-Type TFT LCD of the world likes OCB level,” SID Int. Symp. Digest Tech. Papers38(1), 603–606 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The experimental setup to realize path length difference for two different polarizations. The two paths for s- and p- polarizations are denoted as red and blue arrows. The path difference is introduced by placing mirrors M1 and M2 at different distances from PBS.
Fig. 2
Fig. 2 When looking into the PBS, the switching between two paths results in different images. Photo (a) shows the image corresponding to the red line in Fig. 2; the image was located at 50 cm away from the camera. Photo (b) shows the image corresponding to the blue line in Fig. 2; the image was located at 200 cm away. The other images beside the main images are results of surface reflection from other components. Photos on the right side are the enlarged and inverted pictures of the red dashed blocks.
Fig. 3
Fig. 3 Upon increasing D (the distance from L2 to camera), the angular size of the image from both paths increases but Path 1 (shorter path) increases faster. At 20 cm, these two lines coincide, resulting in the angular size of around −30° (the object size is assumed to be 5 cm).
Fig. 4
Fig. 4 When looking into the PBS, the switching between two paths results in different images as shown above. The left photo shows the image when the light travels through the shorter path, with the image being 40 cm away from the camera, while the right photo shows the image when the light travel the longer path, with the image being 200 cm away. Only one lens with f being 25 cm was used.
Fig. 5
Fig. 5 Four possible device configurations with more versatility. In (a)–(c), green blocks represent the λ/4 films. In (d), the blue block, C, denotes a uniaxial/biaxial plate.
Fig. 6
Fig. 6 Two examples of the stacked device that has 23 possible focuses. Red bars indicate the location of TN cells. Green blocks in (a) represent the λ/4 films and the blue blocks in (b) stand for the uniaxial/biaxial plates.
Fig. 7
Fig. 7 An experiment using two TN cells to represent two pixels (girl and boy) to prove concept that depth information can be added to a 2D image by switching-on and -off the TN pixels.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

1/L'1/L=1/f,
L e =D (d+ f 1 P f 1 P ) f 2 d+ f 1 P f 1 P f 2 ,
M=L'/L.
M= f 1 f 1 P f 2 f 2 f 1 P/( f 1 P)d .
A=arctan( S 0 M L e ),
L e = f 2 2 f 2 f 1 P f 1 P d ,
A=arctan( S 0 f 1 f 1 f 2 P ).
L e = f 2 fP ,
A=arctan( S 0 f ),

Metrics