Abstract

Polarization holography is the superposition of differently polarized beams. Due to its ability to record the polarization states, some extraordinary optical phenomena were found in the polarization holography. For example, the recently reported null-reconstruction phenomenon in polarization volume hologram is odd for the conventional holography which only records the amplitude and phase. In this paper, we perform a thorough investigation of the null reconstruction of polarization hologram recorded by orthogonal circularly polarized waves. To explore the mechanism behind this phenomenon, an interferometry was built to measure the phase difference between the same polarized components within the reconstructed wave. The phase difference of π was secured in our experiment, indicating a destructive interfering effect, which nicely explains the extraordinary null reconstruction observed in the polarization hologram.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Null reconstruction of orthogonal circular polarization hologram with large recording angle

An’an Wu, Guoguo Kang, Jinliang Zang, Ying Liu, Xiaodi Tan, Tsutomu Shimura, and Kazuo Kuroda
Opt. Express 23(7) 8880-8887 (2015)

Investigation of faithful reconstruction in nonparaxial approximation polarization holography

Yifan Hong, Guoguo Kang, Jinliang Zang, Fenglan Fan, Ying Liu, Xiaodi Tan, Tsutomu Shimura, and Kazuo Kuroda
Appl. Opt. 56(36) 10024-10029 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge U. Press, 2009).
  2. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [Crossref] [PubMed]
  3. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
    [Crossref] [PubMed]
  4. X. Tan, X. Lin, A. Wu, and J. Zang, “High density collinear holographic data storage system,” Frontiers Optoelectron. 7(4), 443–449 (2014).
    [Crossref]
  5. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
    [Crossref]
  6. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
    [Crossref]
  7. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23(23), 4309–4312 (1984).
    [Crossref] [PubMed]
  8. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence,” Appl. Opt. 23(24), 4588–4591 (1984).
    [Crossref] [PubMed]
  9. T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, “Polarization holography. 3: Some applications of polarization holographic recording,” Appl. Opt. 24(6), 785–788 (1985).
    [Crossref] [PubMed]
  10. T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions fortransient polarization holography,” IEEE J. Quantum Electron. 22(8), 1262–1267 (1986).
    [Crossref]
  11. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
    [Crossref]
  12. T. Huang and K. H. Wagner, “Holographic diffraction in photo anisotropic organic materials,” J. Opt. Soc. Am. A 10(2), 306–315 (1993).
    [Crossref]
  13. T. Huang and K. H. Wagner, “Coupled Mode Analysis of Polarization Volume Hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
    [Crossref]
  14. K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
    [Crossref]
  15. K. Kuroda, Y. Matsuhashi, and T. Shimura, “Reconstruction characteristics of polarization holograms,” in Proceeding of IEEE 2012 11th Euro-American Workshop on Information Optics (WIO) (IEEE, 2012), p1–2.
    [Crossref]
  16. D. Barada, T. Ochiai, T. Fukuda, S. Kawata, K. Kuroda, and T. Yatagai, “Dual-channel polarization holography: a technique for recording two complex amplitude components of a vector wave,” Opt. Lett. 37(21), 4528–4530 (2012).
    [Crossref] [PubMed]
  17. T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38(5), 748–750 (2013).
    [Crossref] [PubMed]
  18. A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
    [Crossref] [PubMed]
  19. S. H. Lin, S. L. Cho, S. F. Chou, J. H. Lin, C. M. Lin, S. Chi, and K. Y. Hsu, “Volume polarization holographic recording in thick photopolymer for optical memory,” Opt. Express 22(12), 14944–14957 (2014).
    [Crossref] [PubMed]
  20. Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
    [Crossref]
  21. T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials”, in Proceeding of IEEE 2011 ICO International Conference on Information Photonics(IP)(IEEE,2011), pp. 1–2.
    [Crossref]

2015 (2)

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (1)

2012 (1)

2011 (1)

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

2005 (1)

1997 (1)

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

1995 (1)

T. Huang and K. H. Wagner, “Coupled Mode Analysis of Polarization Volume Hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
[Crossref]

1993 (1)

1991 (1)

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

1986 (1)

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions fortransient polarization holography,” IEEE J. Quantum Electron. 22(8), 1262–1267 (1986).
[Crossref]

1985 (1)

1984 (3)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Ando, T.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials”, in Proceeding of IEEE 2011 ICO International Conference on Information Photonics(IP)(IEEE,2011), pp. 1–2.
[Crossref]

Andruzzi, F.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

Barada, D.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38(5), 748–750 (2013).
[Crossref] [PubMed]

D. Barada, T. Ochiai, T. Fukuda, S. Kawata, K. Kuroda, and T. Yatagai, “Dual-channel polarization holography: a technique for recording two complex amplitude components of a vector wave,” Opt. Lett. 37(21), 4528–4530 (2012).
[Crossref] [PubMed]

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials”, in Proceeding of IEEE 2011 ICO International Conference on Information Photonics(IP)(IEEE,2011), pp. 1–2.
[Crossref]

Chi, S.

Cho, S. L.

Chou, S. F.

Denz, C.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

Dragostinova, V.

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions fortransient polarization holography,” IEEE J. Quantum Electron. 22(8), 1262–1267 (1986).
[Crossref]

Fujimura, R.

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

Fukuda, T.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Hayasaki, Y.

Horimai, H.

Hsu, K. Y.

Huang, T.

T. Huang and K. H. Wagner, “Coupled Mode Analysis of Polarization Volume Hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
[Crossref]

T. Huang and K. H. Wagner, “Holographic diffraction in photo anisotropic organic materials,” J. Opt. Soc. Am. A 10(2), 306–315 (1993).
[Crossref]

Hvilsted, S.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

Ivanov, M.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

Kang, G.

Kawata, S.

Kuroda, K.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38(5), 748–750 (2013).
[Crossref] [PubMed]

D. Barada, T. Ochiai, T. Fukuda, S. Kawata, K. Kuroda, and T. Yatagai, “Dual-channel polarization holography: a technique for recording two complex amplitude components of a vector wave,” Opt. Lett. 37(21), 4528–4530 (2012).
[Crossref] [PubMed]

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

K. Kuroda, Y. Matsuhashi, and T. Shimura, “Reconstruction characteristics of polarization holograms,” in Proceeding of IEEE 2012 11th Euro-American Workshop on Information Optics (WIO) (IEEE, 2012), p1–2.
[Crossref]

Li, J.

Li, Z.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

Lin, C. M.

Lin, J. H.

Lin, S. H.

Lin, X.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

X. Tan, X. Lin, A. Wu, and J. Zang, “High density collinear holographic data storage system,” Frontiers Optoelectron. 7(4), 443–449 (2014).
[Crossref]

Liu, Y.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

Masaki, K.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials”, in Proceeding of IEEE 2011 ICO International Conference on Information Photonics(IP)(IEEE,2011), pp. 1–2.
[Crossref]

Matsuhashi, Y.

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

K. Kuroda, Y. Matsuhashi, and T. Shimura, “Reconstruction characteristics of polarization holograms,” in Proceeding of IEEE 2012 11th Euro-American Workshop on Information Optics (WIO) (IEEE, 2012), p1–2.
[Crossref]

Nikolova, L.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions fortransient polarization holography,” IEEE J. Quantum Electron. 22(8), 1262–1267 (1986).
[Crossref]

T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, “Polarization holography. 3: Some applications of polarization holographic recording,” Appl. Opt. 24(6), 785–788 (1985).
[Crossref] [PubMed]

T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence,” Appl. Opt. 23(24), 4588–4591 (1984).
[Crossref] [PubMed]

T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23(23), 4309–4312 (1984).
[Crossref] [PubMed]

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
[Crossref]

Ochiai, T.

Pauliat, G.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

Ramanujam, P. S.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

Roosen, G.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

Shimizu, T.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials”, in Proceeding of IEEE 2011 ICO International Conference on Information Photonics(IP)(IEEE,2011), pp. 1–2.
[Crossref]

Shimura, T.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

K. Kuroda, Y. Matsuhashi, and T. Shimura, “Reconstruction characteristics of polarization holograms,” in Proceeding of IEEE 2012 11th Euro-American Workshop on Information Optics (WIO) (IEEE, 2012), p1–2.
[Crossref]

Stoyanova, K.

Tan, X.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

X. Tan, X. Lin, A. Wu, and J. Zang, “High density collinear holographic data storage system,” Frontiers Optoelectron. 7(4), 443–449 (2014).
[Crossref]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
[Crossref] [PubMed]

Todorov, T.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions fortransient polarization holography,” IEEE J. Quantum Electron. 22(8), 1262–1267 (1986).
[Crossref]

T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, “Polarization holography. 3: Some applications of polarization holographic recording,” Appl. Opt. 24(6), 785–788 (1985).
[Crossref] [PubMed]

T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23(23), 4309–4312 (1984).
[Crossref] [PubMed]

T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence,” Appl. Opt. 23(24), 4588–4591 (1984).
[Crossref] [PubMed]

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
[Crossref]

Tomova, N.

Tschudi, T.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

Uchida, E.

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials”, in Proceeding of IEEE 2011 ICO International Conference on Information Photonics(IP)(IEEE,2011), pp. 1–2.
[Crossref]

Wagner, K. H.

T. Huang and K. H. Wagner, “Coupled Mode Analysis of Polarization Volume Hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
[Crossref]

T. Huang and K. H. Wagner, “Holographic diffraction in photo anisotropic organic materials,” J. Opt. Soc. Am. A 10(2), 306–315 (1993).
[Crossref]

Wang, J.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

Wu, A.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

X. Tan, X. Lin, A. Wu, and J. Zang, “High density collinear holographic data storage system,” Frontiers Optoelectron. 7(4), 443–449 (2014).
[Crossref]

Yatagai, T.

Zang, J.

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

A. Wu, G. Kang, J. Zang, Y. Liu, X. Tan, T. Shimura, and K. Kuroda, “Null reconstruction of orthogonal circular polarization hologram with large recording angle,” Opt. Express 23(7), 8880–8887 (2015).
[Crossref] [PubMed]

X. Tan, X. Lin, A. Wu, and J. Zang, “High density collinear holographic data storage system,” Frontiers Optoelectron. 7(4), 443–449 (2014).
[Crossref]

Appl. Opt. (4)

Frontiers Optoelectron. (1)

X. Tan, X. Lin, A. Wu, and J. Zang, “High density collinear holographic data storage system,” Frontiers Optoelectron. 7(4), 443–449 (2014).
[Crossref]

IEEE J. Quantum Electron. (2)

T. Todorov, L. Nikolova, N. Tomova, and V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions fortransient polarization holography,” IEEE J. Quantum Electron. 22(8), 1262–1267 (1986).
[Crossref]

T. Huang and K. H. Wagner, “Coupled Mode Analysis of Polarization Volume Hologram,” IEEE J. Quantum Electron. 31(2), 372–390 (1995).
[Crossref]

J. Opt. Soc. Am. A (1)

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Opt. Acta (Lond.) (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
[Crossref]

Opt. Commun. (1)

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2–3), 171–176 (1991).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Opt. Mater. 8(4), 255–258 (1997).
[Crossref]

Opt. Rev. (2)

Y. Liu, Z. Li, J. Zang, A. Wu, J. Wang, X. Lin, X. Tan, D. Barada, T. Shimura, and K. Kuroda, “The optical polarization properties of phenanthrenequinone-doped poly(methyl methacrylate)photopolymer materials for volume holographic storage,” Opt. Rev. 22(5), 837–840 (2015).
[Crossref]

K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Opt. Rev. 18(5), 374–382 (2011).
[Crossref]

Other (3)

K. Kuroda, Y. Matsuhashi, and T. Shimura, “Reconstruction characteristics of polarization holograms,” in Proceeding of IEEE 2012 11th Euro-American Workshop on Information Optics (WIO) (IEEE, 2012), p1–2.
[Crossref]

T. Fukuda, E. Uchida, K. Masaki, T. Ando, T. Shimizu, D. Barada, and T. Yatagai, “An investigation on polarization-sensitive materials”, in Proceeding of IEEE 2011 ICO International Conference on Information Photonics(IP)(IEEE,2011), pp. 1–2.
[Crossref]

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge U. Press, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The photo-anisotropy of the material (a) before and (b) after exposure. Insets: the status of molecules before and after exposure.
Fig. 2
Fig. 2 Experimental setup of polarization holography based on the orthogonal circularly polarized wave: BE, beam expander; HWP, half-wave plate; QWP, quarter-wave plate; BS, beam splitter; PBS, polarization beam splitter; M, mirror; P, polarizer. Inset: schematic of the recording and reading process.
Fig. 3
Fig. 3 The intensity of the component sO-ipO in the reconstructed beam. The intensity drops down to the minimum at the exposure time of 100 s, indicating the status of α + β = 0 being secured in the material.
Fig. 4
Fig. 4 Experimental setup of simultaneous reconstructions by s and ep linearly polarized beams: BE, beam expander; HWP, half-wave plate; QWP, quarter-wave plate; BS, beam splitter; PBS, polarization beam splitter; M, mirror; P, polarizer.
Fig. 5
Fig. 5 Interference patterns on (a) CMOS1 and (b) on CMOS2

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S[β+ 1 4 (α+β)(1+ cos 2 θ) 1 2 (αβ)cosθ]( s O +i p O ) + 1 4 (α+β)(1 cos 2 θ)( s O i p O )
S ¯ 1 4 (α+β)(1 cos 2 θ)( s O +i p O ) + 1 4 (α+β) (1cosθ) 2 ( s O i p O )
S s R [2β+α( 1cosθ )] s O +[(1+cosθ)β]i p O =[ (1+cosθ)β ] s O +[(1+cosθ)β]i p O
S i p R β( 1+cosθ ) s O +[αcosθ( α+β ) cos 2 θβ]i p O =[ (1+cosθ)β ] s O [(1+cosθ)β]i p O
S e iφ p R β e iφ ( 1+cosθ )i s O +[ αcosθ( α+β ) cos 2 θβ ] e iφ p O =β e i( φ+π/2 ) ( 1+cosθ ) s O +β e i( φ+π ) ( 1+cosθ ) p O

Metrics