Abstract

We demonstrate efficient amplification of few-optical-cycle mid-IR pulses in single-pass continuously pumped laser amplifiers based on polycrystalline Cr2+:ZnS and Cr2+:ZnSe. The 1.7 W output of a Kerr-lens mode-locked master oscillator at 2.4 µm central wavelength, 79 MHz repetition rate was amplified to 7.1 W and 2.7 W in Cr2+:ZnS and Cr2+:ZnSe, respectively. High peak power of the input pulses (0.5 MW) and high nonlinearity of the amplifiers’ gain media resulted in a significant shortening of the output pulses and in spectral broadening. Transform-limited 40 fs pulses of the master oscillator were compressed to about 27–30 fs. The spectrum of the pulses was broadened from 136 nm to 450 nm (at −3 dB level); the span of the spectra exceeds 600 nm at −10 dB level.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe

Sergey Vasilyev, Igor Moskalev, Mike Mirov, Viktor Smolski, Sergey Mirov, and Valentin Gapontsev
Opt. Mater. Express 7(7) 2636-2650 (2017)

Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers

Sergey Vasilyev, Mike Mirov, and Valentin Gapontsev
Opt. Express 22(5) 5118-5123 (2014)

Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser

Sergey Vasilyev, Igor Moskalev, Mike Mirov, Sergey Mirov, and Valentin Gapontsev
Opt. Lett. 40(21) 5054-5057 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
    [Crossref]
  2. S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
    [Crossref]
  3. S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov and S. Vasilyev, “High average power Fe:ZnSe and Cr:ZnSe mid-IR solid state lasers,” in Advanced Solid-State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper AW4A.1.
  4. E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Lasers, Sources and Related Photonic Devices, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AMC2.
  5. I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
    [Crossref]
  6. T. Sorokina, E. Sorokin, and T. Carrig, “Femtosecond pulse generation from a SESAM mode-locked Cr:ZnSe laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMQ2.
    [Crossref]
  7. E. Sorokin, N. Tolstik, K. I. Schaffers, and I. T. Sorokina, “Femtosecond SESAM-modelocked Cr:ZnS laser,” Opt. Express 20(27), 28947–28952 (2012).
    [Crossref] [PubMed]
  8. M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34(20), 3056–3058 (2009).
    [Crossref] [PubMed]
  9. E. Sorokin, N. Tolstik, and I. T. Sorokina, “1 Watt femtosecond mid-IR Cr:ZnS laser,” Proc. SPIE 8599, 859916 (2013).
  10. M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38(3), 341–343 (2013).
    [Crossref] [PubMed]
  11. N. Tolstik, E. Sorokin, and I. T. Sorokina, “Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration,” Opt. Express 22(5), 5564–5571 (2014).
    [Crossref] [PubMed]
  12. S. Vasilyev, M. Mirov, and V. Gapontsev, “Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers,” Opt. Express 22(5), 5118–5123 (2014).
    [Crossref] [PubMed]
  13. S. Vasilyev, M. Mirov, and V. Gapontsev, “Mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser with 0.5 MW peak power,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper AW4A.3.
  14. S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
    [Crossref] [PubMed]
  15. H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
    [Crossref]
  16. E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
    [Crossref]
  17. M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
    [Crossref] [PubMed]
  18. M. Durand, A. Houard, K. Lim, A. Durécu, O. Vasseur, and M. Richardson, “Study of filamentation threshold in zinc selenide,” Opt. Express 22(5), 5852–5858 (2014).
    [Crossref] [PubMed]
  19. H. Liang, P. Krogen, R. Grynko, O. Novak, C.-L. Chang, G. J. Stein, D. Weerawarne, B. Shim, F. X. Kärtner, and K.-H. Hong, “Three-octave-spanning supercontinuum generation and sub-two-cycle self-compression of mid-infrared filaments in dielectrics,” Opt. Lett. 40(6), 1069–1072 (2015).
    [Crossref] [PubMed]
  20. S. Vasilyev, M. Mirov, and V. Gapontsev, “High power Kerr-lens mode-locked femtosecond mid-IR laser with efficient second harmonic generation in polycrystalline Cr2+:ZnS and Cr2+:ZnSe,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper AM3A.3.
  21. V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, “Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6 μm,” Opt. Lett. 40(12), 2906–2908 (2015).
    [Crossref] [PubMed]
  22. I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

2015 (6)

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
[Crossref] [PubMed]

H. Liang, P. Krogen, R. Grynko, O. Novak, C.-L. Chang, G. J. Stein, D. Weerawarne, B. Shim, F. X. Kärtner, and K.-H. Hong, “Three-octave-spanning supercontinuum generation and sub-two-cycle self-compression of mid-infrared filaments in dielectrics,” Opt. Lett. 40(6), 1069–1072 (2015).
[Crossref] [PubMed]

V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, “Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6 μm,” Opt. Lett. 40(12), 2906–2908 (2015).
[Crossref] [PubMed]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

2014 (3)

2013 (2)

2012 (1)

2009 (1)

2004 (1)

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

2001 (1)

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

1998 (1)

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Apolonski, A.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

Bae, S.

Baudrier-Raybaut, M.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Biegert, J.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

Cankaya, H.

Chang, C.-L.

Chirkin, A. S.

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Cizmeciyan, M. N.

DeLoach, L. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Durand, M.

Durécu, A.

Fedorov, V.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

Fill, E.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

Gapontsev, V.

Grynko, R.

Haïdar, R.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Hong, B. H.

Hong, K.-H.

Houard, A.

Hvam, J. M.

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Kaminskii, A. A.

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Karpowicz, N.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

Kärtner, F. X.

Kim, J. W.

Krausz, F.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

Krogen, P.

Krupke, W. F.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Kühnelt, M.

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Kupecek, P.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Kurt, A.

Langbein, W.

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Lemasson, P.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Liang, H.

Lilienfein, N.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

Lim, K.

Martyshkin, D.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

Mirov, M.

Mirov, S.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
[Crossref] [PubMed]

Mirov, S. B.

Morozov, E. Yu.

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Moskalev, I.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
[Crossref] [PubMed]

Novak, O.

Paasch-Colberg, T.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

Page, R. H.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Payne, S. A.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Pervak, V.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

Pescher, M.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

Pronin, O.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

Pupeza, I.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

Richardson, M.

Rosencher, E.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Rotermund, F.

Sánchez, D.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

Schaffers, K. I.

Schunemann, P. G.

Schweinberger, W.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

Seidel, M.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

Sennaroglu, A.

Shim, B.

Smolski, V. O.

Sorokin, E.

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
[Crossref]

N. Tolstik, E. Sorokin, and I. T. Sorokina, “Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration,” Opt. Express 22(5), 5564–5571 (2014).
[Crossref] [PubMed]

E. Sorokin, N. Tolstik, and I. T. Sorokina, “1 Watt femtosecond mid-IR Cr:ZnS laser,” Proc. SPIE 8599, 859916 (2013).

E. Sorokin, N. Tolstik, K. I. Schaffers, and I. T. Sorokina, “Femtosecond SESAM-modelocked Cr:ZnS laser,” Opt. Express 20(27), 28947–28952 (2012).
[Crossref] [PubMed]

Sorokina, I. T.

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
[Crossref]

N. Tolstik, E. Sorokin, and I. T. Sorokina, “Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration,” Opt. Express 22(5), 5564–5571 (2014).
[Crossref] [PubMed]

E. Sorokin, N. Tolstik, and I. T. Sorokina, “1 Watt femtosecond mid-IR Cr:ZnS laser,” Proc. SPIE 8599, 859916 (2013).

E. Sorokin, N. Tolstik, K. I. Schaffers, and I. T. Sorokina, “Femtosecond SESAM-modelocked Cr:ZnS laser,” Opt. Express 20(27), 28947–28952 (2012).
[Crossref] [PubMed]

Stein, G. J.

Tolstik, N.

Vasilyev, S.

Vasseur, O.

Vodopyanov, K. L.

Wagner, H. P.

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Weerawarne, D.

Wei, Z.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

Wilke, G. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Yusupov, D. B.

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Zhang, J.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

Znakovskaya, I.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

IEEE J. Quantum Electron. (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
[Crossref]

JETP Lett. (1)

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Nat. Photonics (1)

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).

Nature (1)

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. B (1)

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Proc. SPIE (1)

E. Sorokin, N. Tolstik, and I. T. Sorokina, “1 Watt femtosecond mid-IR Cr:ZnS laser,” Proc. SPIE 8599, 859916 (2013).

Other (5)

T. Sorokina, E. Sorokin, and T. Carrig, “Femtosecond pulse generation from a SESAM mode-locked Cr:ZnSe laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMQ2.
[Crossref]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov and S. Vasilyev, “High average power Fe:ZnSe and Cr:ZnSe mid-IR solid state lasers,” in Advanced Solid-State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper AW4A.1.

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Lasers, Sources and Related Photonic Devices, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AMC2.

S. Vasilyev, M. Mirov, and V. Gapontsev, “Mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser with 0.5 MW peak power,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper AW4A.3.

S. Vasilyev, M. Mirov, and V. Gapontsev, “High power Kerr-lens mode-locked femtosecond mid-IR laser with efficient second harmonic generation in polycrystalline Cr2+:ZnS and Cr2+:ZnSe,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper AM3A.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup: (a) Schematic of polycrystalline Cr2+:ZnS/Cr2+:ZnSe fs laser MOPA; (b) optical setup for dispersion compensation of output pulses. MO – fs master oscillator (2380 nm central wavelength, 22 nJ pulse energy, 40 fs pulse duration, 79 MHz repetition rate); EDFL#1 – MO pump (Er- fiber laser at 1567 nm, 8.4 W), EDFL#2 – amplifier pump (Er- fiber laser at 1567 nm, 0–20 W); L –focusing lens, Cr:ZnS/ZnSe –polycrystalline gain element of the amplifier, HR(1) –dispersive high reflectors with GDD≈-200 fs2, HR* –TOD compensator, W – CaF2 wedge; DM – dichroic mirror for SHG separation with low GDD; YAG – stack of plane-parallel YAG plates; IAC – interferometric autocorrelator; Mono – grating monochromator.

Fig. 2
Fig. 2

Dispersion control in fs laser MOPA: solid lines show GDD spectra of 9 mm thick ZnSe and ZnS (gain elements), 3.2 mm thick ZnSe (substrate of the master laser’s OC); dashed lines show net GDD of the MOPAs equipped with Cr2+:ZnSe and Cr2+:ZnS. The dispersion control components include 2 × HR(1), 2 × HR*, 12 mm YAG stack (for Cr2+:ZnSe) or 8 mm YAG stack (for Cr2+:ZnS). All spectra are theoretical, see main text and Fig. 1.

Fig. 3
Fig. 3

Measured spectral broadening in bulk polycrystalline Cr2+:ZnSe and Cr2+:ZnS (9 mm thick samples, solid lines) and spectrum of input pulses (dashed line). Sech2 transform-limited input pulses with ∼480 kW peak power (22 nJ, 40 fs) were focused in ∼Ø20 µm spot. The focusing was adjusted for broadest spectra of output pulses. All spectra are normalized to unity.

Fig. 4
Fig. 4

Measured spectra of MOPAs equipped with (a) Cr2+:ZnSe and (b) Cr2+:ZnS gain elements. Dashed lines – initial spectra (pump is turned off); solid lines – the final spectra (highest reached power); grey lines – intermediate spectra (gradual increase of the amplifier’s pump power). Initial spectra are normalized to unity. Final and intermediate spectra are normalized to optical power. Graphs in the top show transmission of 1.5 m standard air (grey background) and reflectivity of the pump separator HR(1).

Fig. 5
Fig. 5

Measured autocorrelations (ACs) of output pulses (a) Cr2+:ZnSe MOPA and (b) Cr2+:ZnS MOPA. ACs obtained with and without dispersion compensation (see Fig. 1b) are shown in the top and in the bottom, respectively. ACs obtained without pumping of the amplifier are shown on the left; ACs obtained at maximum pump power are shown on the right. PPUMP is cw pump power; POUT is average output power of the MOPA; τACF is a width of an AC and Δτ is a pulse duration obtained by sech2 fit of an AC (both FWHM).

Fig. 6
Fig. 6

Output characteristics of Cr2+:ZnSe (■) and Cr2+:ZnS (●) MOPAs vs pump power (PPUMP): (a) gain of the amplifier, (b) spectral bandwidth Δλ (at −10 dB level), (c) pulse duration Δτ. The gain is defined as G = POUT (PPUMP)/POUT (0) there POUT is average output power. POUT(0) = 1.35 W and 1.49 W for Cr2+:ZnSe and Cr2+:ZnS MOPAs, respectively. Dashed lines in part (a) correspond to the gain measured in cw regime of the MO.

Tables (1)

Tables Icon

Table 1 Output parameters of single-pass fs MOPAsa

Metrics