Abstract

Miniaturized integrated optical coherence tomography (OCT) systems have the potential to unlock a wide range of both medical and industrial applications. This applies in particular to multi-channel OCT schemes, where scalability and low cost per channel are important, to endoscopic implementations with stringent size demands, and to mechanically robust units for industrial applications. We demonstrate that fully integrated OCT systems can be realized using the state-of-the-art silicon photonic device portfolio. We present two different implementations integrated on a silicon-on-insulator (SOI) photonic chip, one with an integrated reference path (OCTint) for imaging objects in distances of 5 mm to 10 mm from the chip edge, and another one with an external reference path (OCText) for use with conventional scan heads. Both OCT systems use integrated photodiodes and an external swept-frequency source. In our proof-of-concept experiments, we achieve a sensitivity of −64 dB (−53 dB for OCTint) and a dynamic range of 60 dB (53 dB for OCTint). The viability of the concept is demonstrated by imaging of biological and technical objects.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Integrated InP frequency discriminator for Phase-modulated microwave photonic links

J. S. Fandiño, J. D. Doménech, P. Muñoz, and J. Capmany
Opt. Express 21(3) 3726-3736 (2013)

Chip based common-path optical coherence tomography system with an on-chip microlens and multi-reference suppression algorithm

Lantian Chang, Nicolás Weiss, Ton G. van Leeuwen, Markus Pollnau, René M. de Ridder, Kerstin Wörhoff, Vinod Subramaniam, and Johannes S. Kanger
Opt. Express 24(12) 12635-12650 (2016)

Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography

Günay Yurtsever, Boris Považay, Aneesh Alex, Behrooz Zabihian, Wolfgang Drexler, and Roel Baets
Biomed. Opt. Express 5(4) 1050-1061 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [Crossref] [PubMed]
  3. P. E. Stanga, A. Sala-Puigdollers, S. Caputo, H. Jaberansari, M. Cien, J. Gray, Y. D’Souza, S. J. Charles, S. Biswas, D. B. Henson, and D. McLeod, “In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography,” Am. J. Ophthalmol. 157(2), 397–404 (2014).
    [Crossref] [PubMed]
  4. S. Schneider, A. Krämer, F. Eppler, H. Alemye, C. Huebner, I. Mikonsaari, J. Leuthold, W. Freude, and C. Koos, “Polarization-sensitive optical coherence tomography for characterization of size and shape of nano-particles,” in CLEO: Science and Innovations (2013), paper AF1J.4.
  5. K. Wiesauer, M. Pircher, E. Goetzinger, C. K. Hitzenberger, R. Engelke, G. Ahrens, G. Gruetzner, and D. Stifter, “Transversal ultrahigh-resolution polarizationsensitive optical coherence tomography for strain mapping in materials,” Opt. Express 14(13), 5945–5953 (2006).
    [Crossref] [PubMed]
  6. M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
    [Crossref]
  7. S. Schneider, M. Lauermann, C. Weimann, W. Freude, and C. Koos, “Silicon photonic optical coherence tomography system,” in CLEO: Applications and Technology (OSA, 2014), paper ATu2P.4.
  8. G. Yurtsever, N. Weiss, J. Kalkman, T. G. van Leeuwen, and R. Baets, “Ultra-compact silicon photonic integrated interferometer for swept-source optical coherence tomography,” Opt. Lett. 39(17), 5228–5231 (2014).
    [Crossref] [PubMed]
  9. Z. Wang, H.-C. Lee, D. Vermeulen, L. Chen, T. Nielsen, S. Y. Park, A. Ghaemi, E. Swanson, C. Doerr, and J. Fujimoto, “Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection,” Biomed. Opt. Express 6(7), 2562–2574 (2015).
    [Crossref] [PubMed]
  10. V. D. Nguyen, N. Weiss, W. Beeker, M. Hoekman, A. Leinse, R. G. Heideman, T. G. van Leeuwen, and J. Kalkman, “Integrated-optics-based swept-source optical coherence tomography,” Opt. Lett. 37(23), 4820–4822 (2012).
    [Crossref] [PubMed]
  11. B. I. Akca, D. van Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
    [Crossref]
  12. B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express 21(14), 16648–16656 (2013).
    [Crossref] [PubMed]
  13. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
    [Crossref] [PubMed]
  14. T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. Hwee-Gee Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” ArXiv e-prints, 1203.0767 (2012).
  15. N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33(4), 755–760 (2015).
    [Crossref]
  16. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic Publishers; KTK Scientific Publishers, 1988).
  17. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24(21), 1484–1486 (1999).
    [Crossref] [PubMed]
  18. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
    [Crossref] [PubMed]
  19. G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, and J. E. Bowers, “Characterization of Insertion Loss and Back Reflection in Passive Hybrid Silicon Tapers,” IEEE Photonics J. 5(2), 6600410 (2013).
    [Crossref]
  20. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
    [Crossref] [PubMed]
  21. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997).
    [Crossref] [PubMed]
  22. B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20(2), 272–288 (2014).
    [Crossref]
  23. J. Heo, E. Jang, S. Haam, S. J. Oh, Y.-M. Huh, J.-S. Suh, E. Chung, and C. Joo, “In vivo photothermal optical coherence tomography of targeted mouse brain tumors using gold nanostars,” in CLEO: Science and Innovations, pp. SM4P.3.
  24. M. Bonesi, M. P. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. A. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22(3), 2632–2655 (2014).
    [Crossref] [PubMed]
  25. H. Peng, A. Bria, Z. Zhou, G. Iannello, and F. Long, “Extensible visualization and analysis for multidimensional images using Vaa3D,” Nat. Protoc. 9(1), 193–208 (2014).
    [Crossref] [PubMed]
  26. H. Peng, Z. Ruan, F. Long, J. H. Simpson, and E. W. Myers, “V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets,” Nat. Biotechnol. 28(4), 348–353 (2010).
    [Crossref] [PubMed]
  27. H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
    [Crossref] [PubMed]

2015 (2)

2014 (6)

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20(2), 272–288 (2014).
[Crossref]

M. Bonesi, M. P. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. A. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22(3), 2632–2655 (2014).
[Crossref] [PubMed]

H. Peng, A. Bria, Z. Zhou, G. Iannello, and F. Long, “Extensible visualization and analysis for multidimensional images using Vaa3D,” Nat. Protoc. 9(1), 193–208 (2014).
[Crossref] [PubMed]

G. Yurtsever, N. Weiss, J. Kalkman, T. G. van Leeuwen, and R. Baets, “Ultra-compact silicon photonic integrated interferometer for swept-source optical coherence tomography,” Opt. Lett. 39(17), 5228–5231 (2014).
[Crossref] [PubMed]

P. E. Stanga, A. Sala-Puigdollers, S. Caputo, H. Jaberansari, M. Cien, J. Gray, Y. D’Souza, S. J. Charles, S. Biswas, D. B. Henson, and D. McLeod, “In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography,” Am. J. Ophthalmol. 157(2), 397–404 (2014).
[Crossref] [PubMed]

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

2013 (3)

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, and J. E. Bowers, “Characterization of Insertion Loss and Back Reflection in Passive Hybrid Silicon Tapers,” IEEE Photonics J. 5(2), 6600410 (2013).
[Crossref]

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express 21(14), 16648–16656 (2013).
[Crossref] [PubMed]

2012 (2)

V. D. Nguyen, N. Weiss, W. Beeker, M. Hoekman, A. Leinse, R. G. Heideman, T. G. van Leeuwen, and J. Kalkman, “Integrated-optics-based swept-source optical coherence tomography,” Opt. Lett. 37(23), 4820–4822 (2012).
[Crossref] [PubMed]

B. I. Akca, D. van Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[Crossref]

2010 (2)

H. Peng, Z. Ruan, F. Long, J. H. Simpson, and E. W. Myers, “V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets,” Nat. Biotechnol. 28(4), 348–353 (2010).
[Crossref] [PubMed]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
[Crossref] [PubMed]

2006 (1)

2005 (1)

2003 (1)

1999 (1)

1997 (2)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ahrens, G.

Akca, B. I.

B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express 21(14), 16648–16656 (2013).
[Crossref] [PubMed]

B. I. Akca, D. van Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[Crossref]

Akiba, M.

Alex, A.

Ascoli, G. A.

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

Baehr-Jones, T.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

Baets, R.

Beeker, W.

Billah, M. R.

Biswas, S.

P. E. Stanga, A. Sala-Puigdollers, S. Caputo, H. Jaberansari, M. Cien, J. Gray, Y. D’Souza, S. J. Charles, S. Biswas, D. B. Henson, and D. McLeod, “In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography,” Am. J. Ophthalmol. 157(2), 397–404 (2014).
[Crossref] [PubMed]

Bonesi, M.

Boschert, P.

Bouma, B.

Bowers, J. E.

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, and J. E. Bowers, “Characterization of Insertion Loss and Back Reflection in Passive Hybrid Silicon Tapers,” IEEE Photonics J. 5(2), 6600410 (2013).
[Crossref]

Bria, A.

H. Peng, A. Bria, Z. Zhou, G. Iannello, and F. Long, “Extensible visualization and analysis for multidimensional images using Vaa3D,” Nat. Protoc. 9(1), 193–208 (2014).
[Crossref] [PubMed]

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

Butler, V.

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

Canciamilla, A.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
[Crossref] [PubMed]

Caputo, S.

P. E. Stanga, A. Sala-Puigdollers, S. Caputo, H. Jaberansari, M. Cien, J. Gray, Y. D’Souza, S. J. Charles, S. Biswas, D. B. Henson, and D. McLeod, “In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography,” Am. J. Ophthalmol. 157(2), 397–404 (2014).
[Crossref] [PubMed]

Chan, K.-P.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Charles, S. J.

P. E. Stanga, A. Sala-Puigdollers, S. Caputo, H. Jaberansari, M. Cien, J. Gray, Y. D’Souza, S. J. Charles, S. Biswas, D. B. Henson, and D. McLeod, “In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography,” Am. J. Ophthalmol. 157(2), 397–404 (2014).
[Crossref] [PubMed]

Chen, J.

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

Chen, L.

Chen, Z.

Chinn, S. R.

Chong, C.

Cien, M.

P. E. Stanga, A. Sala-Puigdollers, S. Caputo, H. Jaberansari, M. Cien, J. Gray, Y. D’Souza, S. J. Charles, S. Biswas, D. B. Henson, and D. McLeod, “In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography,” Am. J. Ophthalmol. 157(2), 397–404 (2014).
[Crossref] [PubMed]

Crawford, M.

D’Souza, Y.

P. E. Stanga, A. Sala-Puigdollers, S. Caputo, H. Jaberansari, M. Cien, J. Gray, Y. D’Souza, S. J. Charles, S. Biswas, D. B. Henson, and D. McLeod, “In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography,” Am. J. Ophthalmol. 157(2), 397–404 (2014).
[Crossref] [PubMed]

Dave, D.

de Boer, J.

de Ridder, R. M.

B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express 21(14), 16648–16656 (2013).
[Crossref] [PubMed]

B. I. Akca, D. van Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[Crossref]

Ding, R.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

Doerr, C.

Dottermusch, S.

Drexler, W.

Driessen, A.

B. I. Akca, D. van Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[Crossref]

Engelke, R.

Ensher, J.

Ferrari, C.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Freude, W.

Fujimoto, J.

Fujimoto, J. G.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ghaemi, A.

Goedecke, M. L.

Goetzinger, E.

Gonzalez-Bellido, P. T.

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

Gray, J.

P. E. Stanga, A. Sala-Puigdollers, S. Caputo, H. Jaberansari, M. Cien, J. Gray, Y. D’Souza, S. J. Charles, S. Biswas, D. B. Henson, and D. McLeod, “In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography,” Am. J. Ophthalmol. 157(2), 397–404 (2014).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gruetzner, G.

Harris, N. C.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

Hawrylycz, M.

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

Heck, M. J. R.

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, and J. E. Bowers, “Characterization of Insertion Loss and Back Reflection in Passive Hybrid Silicon Tapers,” IEEE Photonics J. 5(2), 6600410 (2013).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Heideman, R. G.

Henson, D. B.

P. E. Stanga, A. Sala-Puigdollers, S. Caputo, H. Jaberansari, M. Cien, J. Gray, Y. D’Souza, S. J. Charles, S. Biswas, D. B. Henson, and D. McLeod, “In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography,” Am. J. Ophthalmol. 157(2), 397–404 (2014).
[Crossref] [PubMed]

Hitzenberger, C. K.

Hochberg, M.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

Hoekman, M.

Hofmann, A.

Hoose, T.

Hoover, E.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Iannello, G.

H. Peng, A. Bria, Z. Zhou, G. Iannello, and F. Long, “Extensible visualization and analysis for multidimensional images using Vaa3D,” Nat. Protoc. 9(1), 193–208 (2014).
[Crossref] [PubMed]

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

Iftimia, N.

Ismail, N.

B. I. Akca, D. van Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[Crossref]

Itoh, M.

Izatt, J. A.

Jaberansari, H.

P. E. Stanga, A. Sala-Puigdollers, S. Caputo, H. Jaberansari, M. Cien, J. Gray, Y. D’Souza, S. J. Charles, S. Biswas, D. B. Henson, and D. McLeod, “In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography,” Am. J. Ophthalmol. 157(2), 397–404 (2014).
[Crossref] [PubMed]

Kalkman, J.

Kennedy, B. F.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20(2), 272–288 (2014).
[Crossref]

Kennedy, K. M.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20(2), 272–288 (2014).
[Crossref]

Koos, C.

Kurczveil, G.

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, and J. E. Bowers, “Characterization of Insertion Loss and Back Reflection in Passive Hybrid Silicon Tapers,” IEEE Photonics J. 5(2), 6600410 (2013).
[Crossref]

Lee, H.-C.

Leinse, A.

Leitgeb, R. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lindenmann, N.

Long, F.

H. Peng, A. Bria, Z. Zhou, G. Iannello, and F. Long, “Extensible visualization and analysis for multidimensional images using Vaa3D,” Nat. Protoc. 9(1), 193–208 (2014).
[Crossref] [PubMed]

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

H. Peng, Z. Ruan, F. Long, J. H. Simpson, and E. W. Myers, “V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets,” Nat. Biotechnol. 28(4), 348–353 (2010).
[Crossref] [PubMed]

Madjarova, V. D.

Makita, S.

Martinelli, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
[Crossref] [PubMed]

McLeod, D.

P. E. Stanga, A. Sala-Puigdollers, S. Caputo, H. Jaberansari, M. Cien, J. Gray, Y. D’Souza, S. J. Charles, S. Biswas, D. B. Henson, and D. McLeod, “In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography,” Am. J. Ophthalmol. 157(2), 397–404 (2014).
[Crossref] [PubMed]

Melloni, A.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
[Crossref] [PubMed]

Milner, T. E.

Minneman, M. P.

Mitra, A.

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

Morichetti, F.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
[Crossref] [PubMed]

Morosawa, A.

Myers, E.

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

Myers, E. W.

H. Peng, Z. Ruan, F. Long, J. H. Simpson, and E. W. Myers, “V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets,” Nat. Biotechnol. 28(4), 348–353 (2010).
[Crossref] [PubMed]

Nelson, J. S.

Nguyen, V. D.

Nielsen, T.

Novack, A.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

Oh, S. W.

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

Onanuga, T. P.

Park, S. Y.

Peng, H.

H. Peng, A. Bria, Z. Zhou, G. Iannello, and F. Long, “Extensible visualization and analysis for multidimensional images using Vaa3D,” Nat. Protoc. 9(1), 193–208 (2014).
[Crossref] [PubMed]

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

H. Peng, Z. Ruan, F. Long, J. H. Simpson, and E. W. Myers, “V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets,” Nat. Biotechnol. 28(4), 348–353 (2010).
[Crossref] [PubMed]

Peters, J. D.

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, and J. E. Bowers, “Characterization of Insertion Loss and Back Reflection in Passive Hybrid Silicon Tapers,” IEEE Photonics J. 5(2), 6600410 (2013).
[Crossref]

Pintus, P.

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, and J. E. Bowers, “Characterization of Insertion Loss and Back Reflection in Passive Hybrid Silicon Tapers,” IEEE Photonics J. 5(2), 6600410 (2013).
[Crossref]

Pircher, M.

Pollnau, M.

B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express 21(14), 16648–16656 (2013).
[Crossref] [PubMed]

B. I. Akca, D. van Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[Crossref]

Považay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rollins, A. M.

Ruan, Z.

H. Peng, Z. Ruan, F. Long, J. H. Simpson, and E. W. Myers, “V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets,” Nat. Biotechnol. 28(4), 348–353 (2010).
[Crossref] [PubMed]

Sakai, T.

Sala-Puigdollers, A.

P. E. Stanga, A. Sala-Puigdollers, S. Caputo, H. Jaberansari, M. Cien, J. Gray, Y. D’Souza, S. J. Charles, S. Biswas, D. B. Henson, and D. McLeod, “In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography,” Am. J. Ophthalmol. 157(2), 397–404 (2014).
[Crossref] [PubMed]

Sampson, D. D.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20(2), 272–288 (2014).
[Crossref]

Sattmann, H.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sengo, G.

B. I. Akca, D. van Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[Crossref]

Simpson, J. H.

H. Peng, Z. Ruan, F. Long, J. H. Simpson, and E. W. Myers, “V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets,” Nat. Biotechnol. 28(4), 348–353 (2010).
[Crossref] [PubMed]

Stanga, P. E.

P. E. Stanga, A. Sala-Puigdollers, S. Caputo, H. Jaberansari, M. Cien, J. Gray, Y. D’Souza, S. J. Charles, S. Biswas, D. B. Henson, and D. McLeod, “In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography,” Am. J. Ophthalmol. 157(2), 397–404 (2014).
[Crossref] [PubMed]

Stifter, D.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sun, F.

B. I. Akca, D. van Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[Crossref]

Swanson, E.

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tang, J.

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

Tearney, G.

Torregiani, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
[Crossref] [PubMed]

Tsien, R. W.

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

van Leeuwen, T. G.

van Nguyen, D.

B. I. Akca, D. van Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[Crossref]

Vermeulen, D.

Wang, Z.

Weiss, N.

Wiesauer, K.

Wörhoff, K.

B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express 21(14), 16648–16656 (2013).
[Crossref] [PubMed]

B. I. Akca, D. van Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[Crossref]

Xiao, H.

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

Xuan, Z.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

Yasuno, Y.

Yatagai, T.

Yun, S.

Yurtsever, G.

Zabihian, B.

Zeng, H.

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

Zhang, Y.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

Zhou, J.

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

Zhou, Z.

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

H. Peng, A. Bria, Z. Zhou, G. Iannello, and F. Long, “Extensible visualization and analysis for multidimensional images using Vaa3D,” Nat. Protoc. 9(1), 193–208 (2014).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

P. E. Stanga, A. Sala-Puigdollers, S. Caputo, H. Jaberansari, M. Cien, J. Gray, Y. D’Souza, S. J. Charles, S. Biswas, D. B. Henson, and D. McLeod, “In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography,” Am. J. Ophthalmol. 157(2), 397–404 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (2)

B. I. Akca, D. van Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223–1233 (2012).
[Crossref]

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20(2), 272–288 (2014).
[Crossref]

IEEE Photonics J. (1)

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, and J. E. Bowers, “Characterization of Insertion Loss and Back Reflection in Passive Hybrid Silicon Tapers,” IEEE Photonics J. 5(2), 6600410 (2013).
[Crossref]

IEEE Solid-State Circuits Mag. (1)

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Mag. 5(1), 48–58 (2013).
[Crossref]

J. Lightwave Technol. (1)

Nat. Biotechnol. (1)

H. Peng, Z. Ruan, F. Long, J. H. Simpson, and E. W. Myers, “V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets,” Nat. Biotechnol. 28(4), 348–353 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

H. Peng, J. Tang, H. Xiao, A. Bria, J. Zhou, V. Butler, Z. Zhou, P. T. Gonzalez-Bellido, S. W. Oh, J. Chen, A. Mitra, R. W. Tsien, H. Zeng, G. A. Ascoli, G. Iannello, M. Hawrylycz, E. Myers, and F. Long, “Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis,” Nat. Commun. 5, 4342 (2014).
[Crossref] [PubMed]

Nat. Protoc. (1)

H. Peng, A. Bria, Z. Zhou, G. Iannello, and F. Long, “Extensible visualization and analysis for multidimensional images using Vaa3D,” Nat. Protoc. 9(1), 193–208 (2014).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (5)

S. Schneider, A. Krämer, F. Eppler, H. Alemye, C. Huebner, I. Mikonsaari, J. Leuthold, W. Freude, and C. Koos, “Polarization-sensitive optical coherence tomography for characterization of size and shape of nano-particles,” in CLEO: Science and Innovations (2013), paper AF1J.4.

S. Schneider, M. Lauermann, C. Weimann, W. Freude, and C. Koos, “Silicon photonic optical coherence tomography system,” in CLEO: Applications and Technology (OSA, 2014), paper ATu2P.4.

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic Publishers; KTK Scientific Publishers, 1988).

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. Hwee-Gee Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” ArXiv e-prints, 1203.0767 (2012).

J. Heo, E. Jang, S. Haam, S. J. Oh, Y.-M. Huh, J.-S. Suh, E. Chung, and C. Joo, “In vivo photothermal optical coherence tomography of targeted mouse brain tumors using gold nanostars,” in CLEO: Science and Innovations, pp. SM4P.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 OCTint system configuration with integrated reference path: Experimental setup and photonic integrated circuit (PIC). (a) Schematic of setup. SS: swept-source laser, PolC: polarization controller, LF: lensed fiber, CPL1,2: 3 dB couplers with ports designated by 1…4, BL: ball lens, SP: sample path, RP: reference path, PD1,2: photodiodes with anodes (A1,2) and cathodes (C1,2), RF amp: RF amplifier, ADC: analog-to-digital converter, PC: personal computer. The photodiodes are contacted with RF probes and their photocurrents are subtracted for balanced detection. (b) PIC microscope image with optical input (LF), optical port with free-space path (via BL) to and from the sample, along with electrical connections (via RF probes). The OCTint system was co-integrated with a large number of additional optical circuits used for other purposes – the occupied on-chip area is indicated by a red frame and amounts to less than 0.4 mm2.
Fig. 2
Fig. 2 OCText configuration with long external reference and sample paths: Experimental setup and photonic integrated circuit (PIC). (a) Schematic of setup. SS: swept-source laser, PolC: polarization controller, SMF: single-mode fiber, PL: polymer lens, CPL1,2: 3 dB couplers with ports designated by 1…4, SP: sample path, RP: reference path, PD1,2: photodiodes with anodes (A1,2) and cathodes (C1,2), APC-FC: fiber collimator (FC) with angled physical contact connector (APC), RF amp: RF amplifier, ADC: analog-to-digital converter, PC: personal computer. The photodiodes are contacted with RF probes and their photocurrents are subtracted for balanced detection. (b) PIC microscope image of the chip’s right edge. The OCText system is co-integrated with a large number of additional optical circuits used for other purposes – the occupied on-chip area amounts to less than 0.4 mm2. SP: silicon waveguide for sample path, C1,2 and A1,2: contact pads for photodiode readout with RF probes, PL: Three polymer lenses between chip waveguides and a standard single-mode fiber array.
Fig. 3
Fig. 3 Sensitivity and dynamic range (DR) derived from a measured OCT scan in a conventional setup, and from A-scan schematics for configurations OCTint and OCText. Horizontal axes: Measurement depth z – z0 referred to a reference position z0. Vertical axes: Backscatter signal and noise power relative to the power reflected from an ideal mirror at position zM. All relative intensity noise data are related to the OCT resolution bandwidth of 28.4 kHz, or, equivalently, to the OCT depth resolution of 8 µm. (a) Measurement of RIN background of the swept source used for the OCTint and OCText system: The profile of the RINz,dB background is derived from the measured backscatter signal of a fully reflecting mirror (full refl.) positioned at z1z0 = 1 mm in a conventional fiber-based OCT setup (thin blue curve: measurement, thick blue curve: schematic approximation). The spatial RINz,dB(zzc) profile for a resolution of 8 µm is about 80 dB down and results from the interference of reflected source RIN with the reference field. If the fully reflecting mirror is replaced by a partially reflecting mirror (power reflection factor −50 dB), the noise level corresponds to a reflectivity of −100 dB (gray curve, spurious peaks originate from weak multiple reflections in the setup), because the balanced receiver suppresses the source RIN, which is transmitted now mainly along the reference path. (b) Noise and backscatter background for the OCTint setup. At small distances zz0 < 5 mm, on-chip backscatter (on-chip backsc., black) is dominant. At larger distances zz0 > 5 mm, RIN from the strong reflection at the chip edge (blue, zedge, int = z0) dominates the noise level for any sample reflectivity. The total background consists of the sum of on-chip backscatter and RIN (amber dotted line). Both a fully reflecting mirror (full refl., red) and a partially reflecting mirror (low refl., green) lead to similarly shaped, but shifted RIN contributions which are smaller than the RIN related to the chip edge reflection peak. The minimum detectable reflectivity (sensitivity) is −56 dB and represents also the DR of the system. (c) Noise and backscatter background for the OCText setup with schematic backscatter curves. The chip edge peak at zedge, extz0 is far outside the source coherence window (long reference path, zedge, extz0 = −8 m). However, on-chip backscatter (on-chip backsc., black) falls within the coherence window and limits the sensitivity to −61 dB. RIN from a fully reflecting mirror (full refl., red) is responsible for the noise floor 60 dB below the peak. The DR is therefore 60 dB. The total background consists of the sum of on-chip backscatter and RIN (amber dotted line). A weaker mirror reflectivity (low refl., green) can be measured as long as it is larger than −61 dB.
Fig. 4
Fig. 4 Backscatter measurements on the OCTint chip with integrated reference path. (a) Reflections from a plane mirror at 8 (positive) depth positions zz0. A depth zz0 = 0 corresponds to the chip edge. The black broken line is the spatial autocorrelation function of the light source with a 10 dB coherence length of lc = 2 × 6 mm in vacuum. The beam is focused by a ball lens (BL) at zz0 = 10 mm. The defocusing function (black dotted line) describes the depth-dependent variations of the power reflected from a plane mirror and coupled back into the on-chip waveguide. The drop in spatial coherence (black broken line) partially compensates the defocusing function. The 8 axial A-scans of the mirror backreflections are superimposed (brightly colored scans, normalized to the maximum of the 8 backreflections). The finite isolation of ports 1-4 and 2-3 of coupler CPL1, multiple reflections, and irregularities inside the chip lead to backscatter at negative depths (zz0 < 0, black part of scan). Because the depth information results from a Fourier analysis of the scan traces in the k-domain, negative depths cannot be discriminated from the true positive depths (depth degeneracy). Therefore the on-chip backscatter appears also at depths zz0 > 0 (gray part of scan), and the backscatter from the mirrors could be also seen at zz0 < 0 (lightly colored scans). The backscatter in combination with the depth degeneracy limits the measurement range to zz0 > 5 mm. The measured mirror reflections are uniform with variations of less than 3 dB for mirror positions between 5 mm and 10 mm. The noise is measured to be between 50 dB and 53 dB below the mirror reflection leading to a dynamic range of up to 53 dB. A minimum measureable sample reflectivity of −53 dB defines the measurement sensitivity. (b) Two-dimensional B-scan of a piece of pumice. The gray line emphasizes the sample surface. The porous surface structure is clearly visible on both the B-scan and the photograph of the cross-section (inset).
Fig. 5
Fig. 5 Backscatter measurements obtained with the OCText chip using an external reference path. A depth zz0 = 0 denotes an approximate geometrical position 8 m off the chip edge. (a) Axial scans of a −20 dB reflector as test sample placed at various depth positions zz0, showing a signal decay of 3.3 dB / mm. The black broken line is the spatial autocorrelation function of the light source with a 10 dB coherence length of lc = 2 × 6 mm in vacuum. The position 1 mm coincides with the focus of the scan lens. The black dotted line represents the influence of defocusing on the reflected power coupled back into the on-chip waveguides. The sample is placed at distances from 1 mm to 10 mm within the scanning range, and the resulting scans are superimposed. For each curve, 100 subsequent scans are averaged. The measurement sensitivity is −64 dB for objects placed in a region 0.5 mm ≤ zz0 ≤ 2 mm. (b,c,d) Three-dimensional C-scans of biological and non-biological objects. The images are averages of 100 scans. (b) shows a piece of pumice, (c) a part of a decayed leaf of cornus sanguinea, and (d) a cross section of a reel of tape.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

RIN tot = 0 RIN( f f c )df , RIN dB ( f f c )=10lg( RIN( f f c )×1Hz )(in dB Hz 1 ).
RIN z ( z z c )=RIN( ( z z c )×3.55 MHz/mm )×3.55 MHz/mm.
RIN z,dB ( z z c )=10lg( RIN z ( z z c )×8m )(in dB ( 8m ) 1 ).

Metrics