Abstract

In this paper, a dual-band perfect absorber, composed of a periodically patterned elliptical nanodisk graphene structure and a metal ground plane spaced by a thin SiO2 dielectric layer, is proposed and investigated. Numerical results reveal that the absorption spectrum of the graphene-based structure displays two perfect absorption peaks in the terahertz band, corresponding to the absorption value of 99% at 35μm and 97%at 59μm, respectively. And the resonance frequency of the absorber can be tunned by controlling the Fermi level of graphene layer. Further more, it is insensitive to the polarization and remains very high over a wide angular range of incidence around ±600. Compared with the previous graphene dual-band perfect absorption, our absorber only has one shape which can greatly simplify the manufacturing process.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-band tunable perfect metamaterial absorber based on graphene

Fengling Wang, Sha Huang, Ling Li, Weidong Chen, and Zhengwei Xie
Appl. Opt. 57(24) 6916-6922 (2018)

Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal

Ruoxing Wang, Li Li, Jianlong Liu, Fei Yan, Fengjun Tian, Hao Tian, Jianzhong Zhang, and Weimin Sun
Opt. Express 25(26) 32280-32289 (2017)

Multi-band terahertz absorber exploiting graphene metamaterial

Qihui Zhou, Peiguo Liu, Li-an Bian, Xin Cai, and Hanqing Liu
Opt. Mater. Express 8(9) 2928-2940 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [PubMed]
  3. B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “Frequency continuous tunable terahertz metamaterial absorber,” J. Lightwave Technol. 32(6), 1183–1189 (2014).
    [Crossref]
  4. C. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Yao, and F. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
    [Crossref]
  5. X. Shen and T. J. Cui, “Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber,” J. Opt. 14(11), 114012 (2012).
    [Crossref]
  6. X. Zhao, K. Fan, J. Zhang, H. Seren, G. Metcalfe, M. Wraback, R. Averitt, and X. Zhang, “Design, fabrication and characterization of tunable perfect absorber on flexible substrate,” Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on, 84–87 (2014).
    [Crossref]
  7. L. Huang and H.-T. Chen, “A brief review on terahertz metamaterial perfect absorbers,” Terahertz Sci. Technol. 6(1), 26–39 (2013).
  8. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154–156 (2012).
    [Crossref] [PubMed]
  9. S. Hussain, J. Min Woo, and J.-H. Jang, “Dual-band terahertz metamaterials based on nested split ring resonators,” Appl. Phys. Lett. 101(9), 091103 (2012).
    [Crossref]
  10. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–550 (2010).
    [Crossref]
  11. X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostruct. Fundam. Appl. 15, 81–88 (2015).
    [Crossref]
  12. S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
    [Crossref]
  13. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  14. P.-Y. Chen, H. Huang, D. Akinwande, and A. Alù, “Graphene-based plasmonic platform for reconfigurable terahertz nanodevices,” ACS Photonics 1(8), 647–654 (2014).
    [Crossref]
  15. P. Weis, J. L. Garcia-Pomar, and M. Rahm, “Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene,” Opt. Express 22(7), 8473–8489 (2014).
    [Crossref] [PubMed]
  16. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref] [PubMed]
  17. C. Pai-Yen and A. Alu, “Terahertz metamaterial devices based on graphene nanostructures,” IEEE Trans. THz Sci. Technol. 3(6), 748–756 (2013).
  18. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref] [PubMed]
  19. X. H. Deng, J. T. Liu, J. Yuan, T. B. Wang, and N. H. Liu, “Tunable THz absorption in graphene-based heterostructures,” Opt. Express 22(24), 30177–30183 (2014).
    [Crossref] [PubMed]
  20. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
    [Crossref] [PubMed]
  21. S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. THz Sci. Technol 3(6), 757–763 (2013).
  22. M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
    [Crossref] [PubMed]
  23. S. Yi, M. Zhou, X. Shi, Q. Gan, J. Zi, and Z. Yu, “A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene,” Opt. Express 23(8), 10081–10090 (2015).
    [Crossref] [PubMed]
  24. Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
    [Crossref] [PubMed]
  25. R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterial,” AIP Adv. 5(6), 067106 (2015).
    [Crossref]
  26. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  27. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  28. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
    [Crossref]
  29. S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
    [Crossref] [PubMed]
  30. A. Y. Nikitin, F. Guinea, and L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101(15), 151119 (2012).
    [Crossref]
  31. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
    [Crossref]
  32. L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [Crossref] [PubMed]
  33. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
    [Crossref] [PubMed]
  34. B. Vasić and R. Gajić, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
    [Crossref]
  35. Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
    [Crossref] [PubMed]

2015 (7)

C. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Yao, and F. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostruct. Fundam. Appl. 15, 81–88 (2015).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

S. Yi, M. Zhou, X. Shi, Q. Gan, J. Zi, and Z. Yu, “A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene,” Opt. Express 23(8), 10081–10090 (2015).
[Crossref] [PubMed]

Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
[Crossref] [PubMed]

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterial,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref] [PubMed]

2014 (6)

2013 (6)

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. THz Sci. Technol 3(6), 757–763 (2013).

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
[Crossref] [PubMed]

L. Huang and H.-T. Chen, “A brief review on terahertz metamaterial perfect absorbers,” Terahertz Sci. Technol. 6(1), 26–39 (2013).

C. Pai-Yen and A. Alu, “Terahertz metamaterial devices based on graphene nanostructures,” IEEE Trans. THz Sci. Technol. 3(6), 748–756 (2013).

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

B. Vasić and R. Gajić, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
[Crossref]

2012 (8)

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

A. Y. Nikitin, F. Guinea, and L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101(15), 151119 (2012).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154–156 (2012).
[Crossref] [PubMed]

S. Hussain, J. Min Woo, and J.-H. Jang, “Dual-band terahertz metamaterials based on nested split ring resonators,” Appl. Phys. Lett. 101(9), 091103 (2012).
[Crossref]

X. Shen and T. J. Cui, “Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber,” J. Opt. 14(11), 114012 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

2010 (3)

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–550 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

2008 (2)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (2)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Ajayan, P. M.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Akinwande, D.

P.-Y. Chen, H. Huang, D. Akinwande, and A. Alù, “Graphene-based plasmonic platform for reconfigurable terahertz nanodevices,” ACS Photonics 1(8), 647–654 (2014).
[Crossref]

Alaee, R.

Alu, A.

C. Pai-Yen and A. Alu, “Terahertz metamaterial devices based on graphene nanostructures,” IEEE Trans. THz Sci. Technol. 3(6), 748–756 (2013).

Alù, A.

P.-Y. Chen, H. Huang, D. Akinwande, and A. Alù, “Graphene-based plasmonic platform for reconfigurable terahertz nanodevices,” ACS Photonics 1(8), 647–654 (2014).
[Crossref]

Amin, M.

Bagci, H.

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Capasso, F.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Carbotte, J. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Chen, H.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Chen, H.-T.

Chen, P.-Y.

P.-Y. Chen, H. Huang, D. Akinwande, and A. Alù, “Graphene-based plasmonic platform for reconfigurable terahertz nanodevices,” ACS Photonics 1(8), 647–654 (2014).
[Crossref]

Chen, T.

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. THz Sci. Technol 3(6), 757–763 (2013).

Chowdhury, D. R.

Cui, T. J.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

X. Shen and T. J. Cui, “Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber,” J. Opt. 14(11), 114012 (2012).
[Crossref]

Deng, X. H.

Fang, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Farhat, M.

Feng, Y.

Ferrari, A.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Gajic, R.

B. Vasić and R. Gajić, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
[Crossref]

Gan, Q.

Gao, P.

C. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Yao, and F. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

García de Abajo, F. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Garcia-Pomar, J. L.

Garcia-Vidal, F. J.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Genevet, P.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Guinea, F.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

A. Y. Nikitin, F. Guinea, and L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101(15), 151119 (2012).
[Crossref]

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Halas, N. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

He, S.

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. THz Sci. Technol 3(6), 757–763 (2013).

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–550 (2010).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Huang, H.

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref] [PubMed]

P.-Y. Chen, H. Huang, D. Akinwande, and A. Alù, “Graphene-based plasmonic platform for reconfigurable terahertz nanodevices,” ACS Photonics 1(8), 647–654 (2014).
[Crossref]

Huang, L.

Huang, N.

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostruct. Fundam. Appl. 15, 81–88 (2015).
[Crossref]

Huang, W.-Q.

Hussain, S.

S. Hussain, J. Min Woo, and J.-H. Jang, “Dual-band terahertz metamaterials based on nested split ring resonators,” Appl. Phys. Lett. 101(9), 091103 (2012).
[Crossref]

Jang, J.-H.

S. Hussain, J. Min Woo, and J.-H. Jang, “Dual-band terahertz metamaterials based on nested split ring resonators,” Appl. Phys. Lett. 101(9), 091103 (2012).
[Crossref]

Jiang, T.

Jiao, Z.

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterial,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

Jin, Y.

Kats, M. A.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Ke, S.

Kong, J.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lederer, F.

Li, D.

C. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Yao, and F. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

Li, X.

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostruct. Fundam. Appl. 15, 81–88 (2015).
[Crossref]

Li, X.-F.

Ling, F.

C. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Yao, and F. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

Liu, H.

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostruct. Fundam. Appl. 15, 81–88 (2015).
[Crossref]

Liu, J. T.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, N. H.

Liu, S.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterial,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Liu, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Long, H.

Lu, P.

Luo, C.

C. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Yao, and F. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

Luo, Q.

C. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Yao, and F. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

Luo, S.-N.

Martin-Moreno, L.

A. Y. Nikitin, F. Guinea, and L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101(15), 151119 (2012).
[Crossref]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Min Woo, J.

S. Hussain, J. Min Woo, and J.-H. Jang, “Dual-band terahertz metamaterials based on nested split ring resonators,” Appl. Phys. Lett. 101(9), 091103 (2012).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Nikitin, A. Y.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

A. Y. Nikitin, F. Guinea, and L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101(15), 151119 (2012).
[Crossref]

Ning, R.

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterial,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

Nordlander, P.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Novotny, L.

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pai-Yen, C.

C. Pai-Yen and A. Alu, “Terahertz metamaterial devices based on graphene nanostructures,” IEEE Trans. THz Sci. Technol. 3(6), 748–756 (2013).

Rahm, M.

Ramani, S.

Reiten, M. T.

Rockstuhl, C.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schlather, A. E.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Shen, X.

X. Shen and T. J. Cui, “Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber,” J. Opt. 14(11), 114012 (2012).
[Crossref]

Shi, X.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Song, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Su, Z.

Sun, Q.

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostruct. Fundam. Appl. 15, 81–88 (2015).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Taylor, A. J.

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Vasic, B.

B. Vasić and R. Gajić, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
[Crossref]

Wang, B.

Wang, B.-X.

Wang, G.-Z.

Wang, K.

Wang, L.-L.

Wang, T. B.

Wang, Y.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Weis, P.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Yao, J.

C. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Yao, and F. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

Yao, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Ye, Y. Q.

Yi, S.

Yin, J.

Yu, N.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Yu, Z.

Yuan, J.

Yue, J.

C. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Yao, and F. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

Zhai, X.

Zhang, H.

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterial,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

Zhang, Y.

Zhao, J.

Zhao, X.

Zhou, M.

Zhu, B.

Zhu, X.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Zi, J.

ACS Photonics (1)

P.-Y. Chen, H. Huang, D. Akinwande, and A. Alù, “Graphene-based plasmonic platform for reconfigurable terahertz nanodevices,” ACS Photonics 1(8), 647–654 (2014).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

AIP Adv. (1)

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterial,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

Appl. Phys. Lett. (4)

A. Y. Nikitin, F. Guinea, and L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101(15), 151119 (2012).
[Crossref]

B. Vasić and R. Gajić, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
[Crossref]

S. Hussain, J. Min Woo, and J.-H. Jang, “Dual-band terahertz metamaterials based on nested split ring resonators,” Appl. Phys. Lett. 101(9), 091103 (2012).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

IEEE Trans. THz Sci. Technol (1)

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. THz Sci. Technol 3(6), 757–763 (2013).

IEEE Trans. THz Sci. Technol. (1)

C. Pai-Yen and A. Alu, “Terahertz metamaterial devices based on graphene nanostructures,” IEEE Trans. THz Sci. Technol. 3(6), 748–756 (2013).

J. Alloys Compd. (1)

C. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Yao, and F. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

X. Shen and T. J. Cui, “Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber,” J. Opt. 14(11), 114012 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Nano Lett. (3)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Opt. Express (8)

P. Weis, J. L. Garcia-Pomar, and M. Rahm, “Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene,” Opt. Express 22(7), 8473–8489 (2014).
[Crossref] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

X. H. Deng, J. T. Liu, J. Yuan, T. B. Wang, and N. H. Liu, “Tunable THz absorption in graphene-based heterostructures,” Opt. Express 22(24), 30177–30183 (2014).
[Crossref] [PubMed]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref] [PubMed]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref] [PubMed]

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
[Crossref] [PubMed]

S. Yi, M. Zhou, X. Shi, Q. Gan, J. Zi, and Z. Yu, “A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene,” Opt. Express 23(8), 10081–10090 (2015).
[Crossref] [PubMed]

Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Photon. Nanostruct. Fundam. Appl. (1)

X. Li, H. Liu, Q. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostruct. Fundam. Appl. 15, 81–88 (2015).
[Crossref]

Phys. Rev. B (1)

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Phys. Rev. Lett. (3)

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Terahertz Sci. Technol. (1)

L. Huang and H.-T. Chen, “A brief review on terahertz metamaterial perfect absorbers,” Terahertz Sci. Technol. 6(1), 26–39 (2013).

Other (1)

X. Zhao, K. Fan, J. Zhang, H. Seren, G. Metcalfe, M. Wraback, R. Averitt, and X. Zhang, “Design, fabrication and characterization of tunable perfect absorber on flexible substrate,” Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on, 84–87 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the graphene elliptical perfect absorber. The geometrical parameters of the proposed structure are: d = 2.5 μ m , b = 1.8 μ m , a = 1 μ m , the thickness of SiO2 is t s = 3.3 μ m and the thickness of gold is t g = 0.2 μ m .
Fig. 2
Fig. 2 Graphene conductivity: (a) real part (b) imag part.
Fig. 3
Fig. 3 The absorption spectra for periodic arrays with only one elliptical nanodisks, (a) the minor of elliptical along the x-axis, the insert color map represents the corresponding z component distributions of the electric field of the graphene elliptical nanodisk at the transmission peak wavelength of 39 μ m , (b) the major of elliptical along the x-axis, the insert color maps represent the corresponding z component electric field distributions of the graphene elliptical nanodisk at the transmission peak wavelength of 59 μ m . (c) periodic arrays with four half elliptical nanodisk, (d) the absorption spectra for a (red dash line), b (blue dash line), and c (solid line).
Fig. 4
Fig. 4 The electric field distribution on the top graphene nanodisk of unit cell (namely, x0y plane in the insert) corresponding to two peak wavelength, (a) 35 μ m , (b) 59 μ m . (c)The magnetic field distribution at the e plane (x0z pane) in the inset corresponding to peak wavelength 35 μ m , (d) The magnetic field distribution at the f plane ( y = 1.25 μ m plane) in the insert corresponding to peak wavelength 59 μ m .
Fig. 5
Fig. 5 The simulated absorption efficiencies as a function of wavelength and angle of incidence under (a) TE and (b) TM polarization.
Fig. 6
Fig. 6 Simulated field distribution at 41 μ m (a) 60 0 , (c) 70 0 and 4 6 μ m (b) 60 0 , (d) 70 0 on the top surface.
Fig. 7
Fig. 7 The absorption spectra for different (a) the Femi level and (b)relaxation times.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ ( ω , E f ) = σ int e r + σ int r a = j e 2 ( ω 2 j Γ ) π 2 [ 1 ( ω 2 i Γ ) 2 0 ε ( f d ( ε ) ε f d ( ε ) ε ) d ε 0 f d ( ε ) f d ( ε ) ( ω 2 i Γ ) 2 4 ( ε ) 2 d ε ] .
σ g r a = e 2 E f π 2 i ( ω + i / τ ) .

Metrics