Abstract

The enhancement of laser-induced breakdown spectroscopy (LIBS) assisted with microwave radiation is demonstrated for an aqueous solution of indium using the 451.13 nm emission line. Microwave power was delivered via a near-field applicator to the LIBS measurement volume where the indium aqueous solution was presented as a liquid jet. The microwave enhancement effect was observed to decrease with increasing laser pulse fluence at 532 nm resulting in a maximum emission intensity occurring at a laser pulse fluence of 85.2 J∙cm−2, independent of the microwave power used. The detection limits of indium in an aqueous solution were determined to be 10.8 ± 0.7 and 124 ± 5 ppm for the cases of microwave enhanced and standard LIBS, respectively. The 11.5-fold detection limit enhancement obtained in the liquid phase is of the same order of magnitude as that reported for other elements in solid samples, but lower than that obtained in solid phase utilizing a similar experimental setup. This establishes microwave enhancement as an effective technique for the detection of metals in aqueous solutions. In addition, the temporal evolution of plasma emission intensity was investigated and was found to be qualitatively similar to that of plasma produced from solid phase samples, which reveals the same coupling mechanism between laser generated plasma and microwave radiation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative analysis of toxic metals lead and cadmium in water jet by laser-induced breakdown spectroscopy

M. Sadegh Cheri and S. H. Tavassoli
Appl. Opt. 50(9) 1227-1233 (2011)

Sensitive detection of metals in water using laser-induced breakdown spectroscopy on wood sample substrates

Zhijiang Chen, Yogesh Godwal, Ying Yin Tsui, and Robert Fedosejevs
Appl. Opt. 49(13) C87-C94 (2010)

Time-dependent single and double pulse laser-induced breakdown spectroscopy of chromium in liquid

Virendra N. Rai, Fang Yu Yueh, and Jagdish P. Singh
Appl. Opt. 47(31) G21-G29 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. E. Lee, H. W. Shim, O. S. Kwon, Y.-I. Huh, and H. Yoon, “Real-time detection of metal ions using conjugated polymer composite papers,” Analyst (Lond.) 139(18), 4466–4475 (2014).
    [Crossref] [PubMed]
  2. L. Sartore, M. Barbaglio, L. Borgese, and E. Bontempi, “Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection,” Sens. Actuators B Chem. 155(2), 538–544 (2011).
    [Crossref] [PubMed]
  3. K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 27(2), 276–283 (2012).
    [Crossref]
  4. S. Musazzi and U. Perini, Laser-Induced Breakdown Spectroscopy: Theory and Applications (Springer, 2014).
  5. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
    [Crossref]
  6. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: Still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
    [Crossref] [PubMed]
  7. Y. Feng, J. J. Yang, J. M. Fan, G. X. Yao, X. H. Ji, X. Y. Zhang, X. F. Zheng, and Z. F. Cui, “Investigation of laser-induced breakdown spectroscopy of a liquid jet,” Appl. Opt. 49(13), C70–C74 (2010).
    [Crossref]
  8. M. A. Aguirre, S. Legnaioli, F. Almodovar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced laser-induced breakdown spectroscopy combined with liquid-liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
    [Crossref]
  9. M. Adamson, A. Padmanabhan, G. J. Godfrey, and S. J. Rehse, “Laser-induced breakdown spectroscopy at a water/gas interface: a study of bath gas-dependent molecular species,” Spectrochim. Acta B At. Spectrosc. 62(12), 1348–1360 (2007).
    [Crossref]
  10. F. A. Barreda, F. Trichard, S. Barbier, N. Gilon, and L. Saint-Jalmes, “Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 403(9), 2601–2610 (2012).
    [Crossref] [PubMed]
  11. P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: a comparison between liquid jets and static liquids,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 986–992 (2005).
    [Crossref]
  12. H. Ohba, M. Saeki, I. Wakaida, R. Tanabe, and Y. Ito, “Effect of liquid-sheet thickness on detection sensitivity for laser-induced breakdown spectroscopy of aqueous solution,” Opt. Express 22(20), 24478–24490 (2014).
    [Crossref] [PubMed]
  13. S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
    [Crossref] [PubMed]
  14. H. Sobral, R. Sangines, and A. Trujillo-Vazquez, “Detection of trace elements in ice and water by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 78, 62–66 (2012).
    [Crossref]
  15. D. H. Lee, S. C. Han, T. H. Kim, and J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
    [Crossref] [PubMed]
  16. H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
    [Crossref]
  17. S. Koch, W. Garen, W. Neu, and R. Reuter, “Resonance fluorescence spectroscopy in laser-induced cavitation bubbles,” Anal. Bioanal. Chem. 385(2), 312–315 (2006).
    [Crossref] [PubMed]
  18. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
    [Crossref] [PubMed]
  19. B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy: sparking new applications,” Nat. Photonics 2(9), 537–540 (2008).
    [Crossref]
  20. Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
    [Crossref]
  21. M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
    [Crossref]
  22. A. Khumaeni, T. Motonobu, A. Katsuaki, M. Masabumi, and W. Ikuo, “Enhancement of LIBS emission using antenna-coupled microwave,” Opt. Express 21(24), 29755–29768 (2013).
    [Crossref] [PubMed]
  23. Y. Ikeda and R. Tsuruoka, “Characteristics of microwave plasma induced by lasers and sparks,” Appl. Opt. 51(7), B183–B191 (2012).
    [Crossref] [PubMed]
  24. Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 73, 89–92 (2012).
    [Crossref]
  25. J. Viljanen, Optics Laboratory, Tampere University of Technology, FIN-33101, Tampere, Finland, Z. Sun, and Z. Alwahabi are preparing a manuscript to be called “Microwave assisted laser-induced breakdown spectroscopy at ambient conditions.”
  26. U. Schwarz-Schampera, “Indium,” in Critical Metals Handbook, G. Gunn, ed. (John Wiley and Sons, 2014), pp. 204–229.
  27. M. Tsujiguchi, “Indium Recovery and Recycling from an LCD Panel,” in Design for Innovative Value Towards a Sustainable Society, M. Matsumoto, Y. Umeda, K. Masui, and S. Fukushige, eds. (Springer, 2012), pp. 743–746.
  28. X. Zeng, F. Wang, X. Sun, and J. Li, “Recycling indium from scraped glass of liquid crystal display: process optimizing and mechanism exploring,” ACS Sustain. Chem.& Eng. 3(7), 1306–1312 (2015).
    [Crossref]
  29. C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28–35 (2013).
    [Crossref]
  30. A. Nishiyama, A. Moon, Y. Ikeda, J. Hayashi, and F. Akamatsu, “Ignition characteristics of methane/air premixed mixture by microwave-enhanced laser-induced breakdown plasma,” Opt. Express 21(S6Suppl 6), A1094–A1101 (2013).
    [Crossref] [PubMed]

2015 (1)

X. Zeng, F. Wang, X. Sun, and J. Li, “Recycling indium from scraped glass of liquid crystal display: process optimizing and mechanism exploring,” ACS Sustain. Chem.& Eng. 3(7), 1306–1312 (2015).
[Crossref]

2014 (3)

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

H. Ohba, M. Saeki, I. Wakaida, R. Tanabe, and Y. Ito, “Effect of liquid-sheet thickness on detection sensitivity for laser-induced breakdown spectroscopy of aqueous solution,” Opt. Express 22(20), 24478–24490 (2014).
[Crossref] [PubMed]

J. E. Lee, H. W. Shim, O. S. Kwon, Y.-I. Huh, and H. Yoon, “Real-time detection of metal ions using conjugated polymer composite papers,” Analyst (Lond.) 139(18), 4466–4475 (2014).
[Crossref] [PubMed]

2013 (4)

M. A. Aguirre, S. Legnaioli, F. Almodovar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced laser-induced breakdown spectroscopy combined with liquid-liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
[Crossref]

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28–35 (2013).
[Crossref]

A. Nishiyama, A. Moon, Y. Ikeda, J. Hayashi, and F. Akamatsu, “Ignition characteristics of methane/air premixed mixture by microwave-enhanced laser-induced breakdown plasma,” Opt. Express 21(S6Suppl 6), A1094–A1101 (2013).
[Crossref] [PubMed]

A. Khumaeni, T. Motonobu, A. Katsuaki, M. Masabumi, and W. Ikuo, “Enhancement of LIBS emission using antenna-coupled microwave,” Opt. Express 21(24), 29755–29768 (2013).
[Crossref] [PubMed]

2012 (6)

Y. Ikeda and R. Tsuruoka, “Characteristics of microwave plasma induced by lasers and sparks,” Appl. Opt. 51(7), B183–B191 (2012).
[Crossref] [PubMed]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 73, 89–92 (2012).
[Crossref]

F. A. Barreda, F. Trichard, S. Barbier, N. Gilon, and L. Saint-Jalmes, “Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 403(9), 2601–2610 (2012).
[Crossref] [PubMed]

K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 27(2), 276–283 (2012).
[Crossref]

H. Sobral, R. Sangines, and A. Trujillo-Vazquez, “Detection of trace elements in ice and water by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 78, 62–66 (2012).
[Crossref]

2011 (2)

D. H. Lee, S. C. Han, T. H. Kim, and J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[Crossref] [PubMed]

L. Sartore, M. Barbaglio, L. Borgese, and E. Bontempi, “Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection,” Sens. Actuators B Chem. 155(2), 538–544 (2011).
[Crossref] [PubMed]

2010 (4)

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: Still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
[Crossref] [PubMed]

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

Y. Feng, J. J. Yang, J. M. Fan, G. X. Yao, X. H. Ji, X. Y. Zhang, X. F. Zheng, and Z. F. Cui, “Investigation of laser-induced breakdown spectroscopy of a liquid jet,” Appl. Opt. 49(13), C70–C74 (2010).
[Crossref]

2009 (1)

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

2008 (1)

B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy: sparking new applications,” Nat. Photonics 2(9), 537–540 (2008).
[Crossref]

2007 (1)

M. Adamson, A. Padmanabhan, G. J. Godfrey, and S. J. Rehse, “Laser-induced breakdown spectroscopy at a water/gas interface: a study of bath gas-dependent molecular species,” Spectrochim. Acta B At. Spectrosc. 62(12), 1348–1360 (2007).
[Crossref]

2006 (1)

S. Koch, W. Garen, W. Neu, and R. Reuter, “Resonance fluorescence spectroscopy in laser-induced cavitation bubbles,” Anal. Bioanal. Chem. 385(2), 312–315 (2006).
[Crossref] [PubMed]

2005 (1)

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: a comparison between liquid jets and static liquids,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 986–992 (2005).
[Crossref]

2000 (1)

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Adamson, M.

M. Adamson, A. Padmanabhan, G. J. Godfrey, and S. J. Rehse, “Laser-induced breakdown spectroscopy at a water/gas interface: a study of bath gas-dependent molecular species,” Spectrochim. Acta B At. Spectrosc. 62(12), 1348–1360 (2007).
[Crossref]

Aguirre, M. A.

M. A. Aguirre, S. Legnaioli, F. Almodovar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced laser-induced breakdown spectroscopy combined with liquid-liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
[Crossref]

Akamatsu, F.

Akaoka, K.

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

Almodovar, F.

M. A. Aguirre, S. Legnaioli, F. Almodovar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced laser-induced breakdown spectroscopy combined with liquid-liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
[Crossref]

Barbaglio, M.

L. Sartore, M. Barbaglio, L. Borgese, and E. Bontempi, “Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection,” Sens. Actuators B Chem. 155(2), 538–544 (2011).
[Crossref] [PubMed]

Barbier, S.

F. A. Barreda, F. Trichard, S. Barbier, N. Gilon, and L. Saint-Jalmes, “Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 403(9), 2601–2610 (2012).
[Crossref] [PubMed]

Barreda, F. A.

F. A. Barreda, F. Trichard, S. Barbier, N. Gilon, and L. Saint-Jalmes, “Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 403(9), 2601–2610 (2012).
[Crossref] [PubMed]

Baudelet, M.

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 73, 89–92 (2012).
[Crossref]

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

Beddows, D. C. S.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Body, D.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: a comparison between liquid jets and static liquids,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 986–992 (2005).
[Crossref]

Bontempi, E.

L. Sartore, M. Barbaglio, L. Borgese, and E. Bontempi, “Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection,” Sens. Actuators B Chem. 155(2), 538–544 (2011).
[Crossref] [PubMed]

Borgese, L.

L. Sartore, M. Barbaglio, L. Borgese, and E. Bontempi, “Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection,” Sens. Actuators B Chem. 155(2), 538–544 (2011).
[Crossref] [PubMed]

Bousquet, B.

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 73, 89–92 (2012).
[Crossref]

Cabuil, V.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28–35 (2013).
[Crossref]

Canals, A.

M. A. Aguirre, S. Legnaioli, F. Almodovar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced laser-induced breakdown spectroscopy combined with liquid-liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
[Crossref]

Caron, N.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28–35 (2013).
[Crossref]

Chadwick, B. L.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: a comparison between liquid jets and static liquids,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 986–992 (2005).
[Crossref]

Chaker, M.

K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 27(2), 276–283 (2012).
[Crossref]

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Courouau, J. L.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28–35 (2013).
[Crossref]

Cui, Z. F.

Diwakar, P. K.

S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
[Crossref] [PubMed]

Fan, J. M.

Feng, Y.

Gallou, C.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28–35 (2013).
[Crossref]

Garcia, C. C.

S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
[Crossref] [PubMed]

Garen, W.

S. Koch, W. Garen, W. Neu, and R. Reuter, “Resonance fluorescence spectroscopy in laser-induced cavitation bubbles,” Anal. Bioanal. Chem. 385(2), 312–315 (2006).
[Crossref] [PubMed]

Gilon, N.

F. A. Barreda, F. Trichard, S. Barbier, N. Gilon, and L. Saint-Jalmes, “Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 403(9), 2601–2610 (2012).
[Crossref] [PubMed]

Godfrey, G. J.

M. Adamson, A. Padmanabhan, G. J. Godfrey, and S. J. Rehse, “Laser-induced breakdown spectroscopy at a water/gas interface: a study of bath gas-dependent molecular species,” Spectrochim. Acta B At. Spectrosc. 62(12), 1348–1360 (2007).
[Crossref]

Groh, S.

S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
[Crossref] [PubMed]

Hahn, D. W.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
[Crossref] [PubMed]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: Still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Han, S. C.

D. H. Lee, S. C. Han, T. H. Kim, and J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[Crossref] [PubMed]

Hayashi, J.

Hidalgo, M.

M. A. Aguirre, S. Legnaioli, F. Almodovar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced laser-induced breakdown spectroscopy combined with liquid-liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
[Crossref]

Huh, Y.-I.

J. E. Lee, H. W. Shim, O. S. Kwon, Y.-I. Huh, and H. Yoon, “Real-time detection of metal ions using conjugated polymer composite papers,” Analyst (Lond.) 139(18), 4466–4475 (2014).
[Crossref] [PubMed]

Ikeda, Y.

Ikuo, W.

Ito, Y.

Ji, X. H.

Kaiser, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Katsuaki, A.

Kearton, B.

B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy: sparking new applications,” Nat. Photonics 2(9), 537–540 (2008).
[Crossref]

Khumaeni, A.

Kim, T. H.

D. H. Lee, S. C. Han, T. H. Kim, and J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[Crossref] [PubMed]

Koch, S.

S. Koch, W. Garen, W. Neu, and R. Reuter, “Resonance fluorescence spectroscopy in laser-induced cavitation bubbles,” Anal. Bioanal. Chem. 385(2), 312–315 (2006).
[Crossref] [PubMed]

Kukhlevsky, S. V.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Kwon, O. S.

J. E. Lee, H. W. Shim, O. S. Kwon, Y.-I. Huh, and H. Yoon, “Real-time detection of metal ions using conjugated polymer composite papers,” Analyst (Lond.) 139(18), 4466–4475 (2014).
[Crossref] [PubMed]

L’Hermite, D.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28–35 (2013).
[Crossref]

Laville, S.

K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 27(2), 276–283 (2012).
[Crossref]

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Lee, D. H.

D. H. Lee, S. C. Han, T. H. Kim, and J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[Crossref] [PubMed]

Lee, J. E.

J. E. Lee, H. W. Shim, O. S. Kwon, Y.-I. Huh, and H. Yoon, “Real-time detection of metal ions using conjugated polymer composite papers,” Analyst (Lond.) 139(18), 4466–4475 (2014).
[Crossref] [PubMed]

Legnaioli, S.

M. A. Aguirre, S. Legnaioli, F. Almodovar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced laser-induced breakdown spectroscopy combined with liquid-liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
[Crossref]

Li, J.

X. Zeng, F. Wang, X. Sun, and J. Li, “Recycling indium from scraped glass of liquid crystal display: process optimizing and mechanism exploring,” ACS Sustain. Chem.& Eng. 3(7), 1306–1312 (2015).
[Crossref]

Liska, M.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Liu, Y.

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 73, 89–92 (2012).
[Crossref]

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

Loudyi, H.

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Maruyama, Y.

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

Masabumi, M.

Mattley, Y.

B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy: sparking new applications,” Nat. Photonics 2(9), 537–540 (2008).
[Crossref]

Maury, C.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28–35 (2013).
[Crossref]

Miyabe, M.

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

Moon, A.

Morrison, R. J. S.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: a comparison between liquid jets and static liquids,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 986–992 (2005).
[Crossref]

Motonobu, T.

Moutiers, G.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28–35 (2013).
[Crossref]

Murtazin, A.

S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
[Crossref] [PubMed]

Neu, W.

S. Koch, W. Garen, W. Neu, and R. Reuter, “Resonance fluorescence spectroscopy in laser-induced cavitation bubbles,” Anal. Bioanal. Chem. 385(2), 312–315 (2006).
[Crossref] [PubMed]

Niemax, K.

S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
[Crossref] [PubMed]

Nishiyama, A.

Oba, M.

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

Ohba, H.

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

H. Ohba, M. Saeki, I. Wakaida, R. Tanabe, and Y. Ito, “Effect of liquid-sheet thickness on detection sensitivity for laser-induced breakdown spectroscopy of aqueous solution,” Opt. Express 22(20), 24478–24490 (2014).
[Crossref] [PubMed]

Omenetto, N.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: Still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Padmanabhan, A.

M. Adamson, A. Padmanabhan, G. J. Godfrey, and S. J. Rehse, “Laser-induced breakdown spectroscopy at a water/gas interface: a study of bath gas-dependent molecular species,” Spectrochim. Acta B At. Spectrosc. 62(12), 1348–1360 (2007).
[Crossref]

Palleschi, V.

M. A. Aguirre, S. Legnaioli, F. Almodovar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced laser-induced breakdown spectroscopy combined with liquid-liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
[Crossref]

Rehse, S. J.

M. Adamson, A. Padmanabhan, G. J. Godfrey, and S. J. Rehse, “Laser-induced breakdown spectroscopy at a water/gas interface: a study of bath gas-dependent molecular species,” Spectrochim. Acta B At. Spectrosc. 62(12), 1348–1360 (2007).
[Crossref]

Reuter, R.

S. Koch, W. Garen, W. Neu, and R. Reuter, “Resonance fluorescence spectroscopy in laser-induced cavitation bubbles,” Anal. Bioanal. Chem. 385(2), 312–315 (2006).
[Crossref] [PubMed]

Richardson, M.

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 73, 89–92 (2012).
[Crossref]

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

Rifai, K.

K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 27(2), 276–283 (2012).
[Crossref]

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Sabsabi, M.

K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 27(2), 276–283 (2012).
[Crossref]

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Saeki, M.

Saint-Jalmes, L.

F. A. Barreda, F. Trichard, S. Barbier, N. Gilon, and L. Saint-Jalmes, “Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 403(9), 2601–2610 (2012).
[Crossref] [PubMed]

Samek, O.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Sangines, R.

H. Sobral, R. Sangines, and A. Trujillo-Vazquez, “Detection of trace elements in ice and water by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 78, 62–66 (2012).
[Crossref]

Sartore, L.

L. Sartore, M. Barbaglio, L. Borgese, and E. Bontempi, “Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection,” Sens. Actuators B Chem. 155(2), 538–544 (2011).
[Crossref] [PubMed]

Shim, H. W.

J. E. Lee, H. W. Shim, O. S. Kwon, Y.-I. Huh, and H. Yoon, “Real-time detection of metal ions using conjugated polymer composite papers,” Analyst (Lond.) 139(18), 4466–4475 (2014).
[Crossref] [PubMed]

Sirven, J. B.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28–35 (2013).
[Crossref]

Sobral, H.

H. Sobral, R. Sangines, and A. Trujillo-Vazquez, “Detection of trace elements in ice and water by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 78, 62–66 (2012).
[Crossref]

Sun, X.

X. Zeng, F. Wang, X. Sun, and J. Li, “Recycling indium from scraped glass of liquid crystal display: process optimizing and mechanism exploring,” ACS Sustain. Chem.& Eng. 3(7), 1306–1312 (2015).
[Crossref]

Tabarant, M.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28–35 (2013).
[Crossref]

Tampo, M.

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

Tanabe, R.

Telle, H. H.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Trichard, F.

F. A. Barreda, F. Trichard, S. Barbier, N. Gilon, and L. Saint-Jalmes, “Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 403(9), 2601–2610 (2012).
[Crossref] [PubMed]

Trujillo-Vazquez, A.

H. Sobral, R. Sangines, and A. Trujillo-Vazquez, “Detection of trace elements in ice and water by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 78, 62–66 (2012).
[Crossref]

Tsuruoka, R.

Vidal, F.

K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 27(2), 276–283 (2012).
[Crossref]

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Wakaida, I.

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

H. Ohba, M. Saeki, I. Wakaida, R. Tanabe, and Y. Ito, “Effect of liquid-sheet thickness on detection sensitivity for laser-induced breakdown spectroscopy of aqueous solution,” Opt. Express 22(20), 24478–24490 (2014).
[Crossref] [PubMed]

Wang, F.

X. Zeng, F. Wang, X. Sun, and J. Li, “Recycling indium from scraped glass of liquid crystal display: process optimizing and mechanism exploring,” ACS Sustain. Chem.& Eng. 3(7), 1306–1312 (2015).
[Crossref]

Yang, J. J.

Yao, G. X.

Yaroshchyk, P.

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: a comparison between liquid jets and static liquids,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 986–992 (2005).
[Crossref]

Yoon, H.

J. E. Lee, H. W. Shim, O. S. Kwon, Y.-I. Huh, and H. Yoon, “Real-time detection of metal ions using conjugated polymer composite papers,” Analyst (Lond.) 139(18), 4466–4475 (2014).
[Crossref] [PubMed]

Young, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Yun, J. I.

D. H. Lee, S. C. Han, T. H. Kim, and J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[Crossref] [PubMed]

Zeng, X.

X. Zeng, F. Wang, X. Sun, and J. Li, “Recycling indium from scraped glass of liquid crystal display: process optimizing and mechanism exploring,” ACS Sustain. Chem.& Eng. 3(7), 1306–1312 (2015).
[Crossref]

Zhang, X. Y.

Zheng, X. F.

ACS Sustain. Chem.& Eng. (1)

X. Zeng, F. Wang, X. Sun, and J. Li, “Recycling indium from scraped glass of liquid crystal display: process optimizing and mechanism exploring,” ACS Sustain. Chem.& Eng. 3(7), 1306–1312 (2015).
[Crossref]

Anal. Bioanal. Chem. (2)

S. Koch, W. Garen, W. Neu, and R. Reuter, “Resonance fluorescence spectroscopy in laser-induced cavitation bubbles,” Anal. Bioanal. Chem. 385(2), 312–315 (2006).
[Crossref] [PubMed]

F. A. Barreda, F. Trichard, S. Barbier, N. Gilon, and L. Saint-Jalmes, “Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 403(9), 2601–2610 (2012).
[Crossref] [PubMed]

Anal. Chem. (2)

S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
[Crossref] [PubMed]

D. H. Lee, S. C. Han, T. H. Kim, and J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011).
[Crossref] [PubMed]

Analyst (Lond.) (1)

J. E. Lee, H. W. Shim, O. S. Kwon, Y.-I. Huh, and H. Yoon, “Real-time detection of metal ions using conjugated polymer composite papers,” Analyst (Lond.) 139(18), 4466–4475 (2014).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Spectrosc. (2)

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: Still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

J. Anal. At. Spectrom. (4)

K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 27(2), 276–283 (2012).
[Crossref]

H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24(10), 1421–1428 (2009).
[Crossref]

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

M. Tampo, M. Miyabe, K. Akaoka, M. Oba, H. Ohba, Y. Maruyama, and I. Wakaida, “Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling,” J. Anal. At. Spectrom. 29(5), 886–892 (2014).
[Crossref]

Nat. Photonics (1)

B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy: sparking new applications,” Nat. Photonics 2(9), 537–540 (2008).
[Crossref]

Opt. Eng. (1)

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39(8), 2248–2262 (2000).
[Crossref]

Opt. Express (3)

Sens. Actuators B Chem. (1)

L. Sartore, M. Barbaglio, L. Borgese, and E. Bontempi, “Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection,” Sens. Actuators B Chem. 155(2), 538–544 (2011).
[Crossref] [PubMed]

Spectrochim. Acta B At. Spectrosc. (6)

M. A. Aguirre, S. Legnaioli, F. Almodovar, M. Hidalgo, V. Palleschi, and A. Canals, “Elemental analysis by surface-enhanced laser-induced breakdown spectroscopy combined with liquid-liquid microextraction,” Spectrochim. Acta B At. Spectrosc. 79–80, 88–93 (2013).
[Crossref]

M. Adamson, A. Padmanabhan, G. J. Godfrey, and S. J. Rehse, “Laser-induced breakdown spectroscopy at a water/gas interface: a study of bath gas-dependent molecular species,” Spectrochim. Acta B At. Spectrosc. 62(12), 1348–1360 (2007).
[Crossref]

P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: a comparison between liquid jets and static liquids,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 986–992 (2005).
[Crossref]

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 73, 89–92 (2012).
[Crossref]

H. Sobral, R. Sangines, and A. Trujillo-Vazquez, “Detection of trace elements in ice and water by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 78, 62–66 (2012).
[Crossref]

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28–35 (2013).
[Crossref]

Other (4)

J. Viljanen, Optics Laboratory, Tampere University of Technology, FIN-33101, Tampere, Finland, Z. Sun, and Z. Alwahabi are preparing a manuscript to be called “Microwave assisted laser-induced breakdown spectroscopy at ambient conditions.”

U. Schwarz-Schampera, “Indium,” in Critical Metals Handbook, G. Gunn, ed. (John Wiley and Sons, 2014), pp. 204–229.

M. Tsujiguchi, “Indium Recovery and Recycling from an LCD Panel,” in Design for Innovative Value Towards a Sustainable Society, M. Matsumoto, Y. Umeda, K. Masui, and S. Fukushige, eds. (Springer, 2012), pp. 743–746.

S. Musazzi and U. Perini, Laser-Induced Breakdown Spectroscopy: Theory and Applications (Springer, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the experimental setup. M, mirror; ARC, achromatic reflective coupler; OAPM, off-axis parabolic mirror; HWP, half-wave plate; P, polarizer; EnM, energy meter; L, lens; F, fiber; C, coaxial cable; WG, waveguide-to-coaxial adapter; J, liquid jet.

Fig. 2
Fig. 2

Schematics showing (a) the flow circulation system and (b) the arrangement of equipment around the liquid jet. V, collection vessel; CN, circular nozzle; P, peristaltic pump; PD, pulse dampener; T, plastic tubing; J, liquid jet viewed horizontally along its propagation.

Fig. 3
Fig. 3

Representative LIBS spectra of 1,005 ppm indium for MW-LIBS with a MW power of 1.2 kW and LIBS using a laser pulse fluence of 85.2 J∙cm−2, gate delay of 250 ns, gate width of 700 μs and an accumulation of 500 shots.

Fig. 4
Fig. 4

Representative single shot spectra of 1,005 ppm indium for (a) MW-LIBS with a MW power of 1.2 kW and (b) LIBS with experimental parameters as in Fig. 3.

Fig. 5
Fig. 5

Normalized spectra of 1,005 ppm indium for MW-LIBS (red) with a MW power of 1.2 kW and LIBS (blue) with experimental parameters as in Fig. 3.

Fig. 6
Fig. 6

MW-LIBS signal temporal evolution of 1,005 ppm indium solution at 1.2 kW MW power and 44.6 Jcm−2 laser pulse fluence obtained from the accumulation of 300 shots using a gate width and delay step of (a) 50 ns and (b) 100 μs.

Fig. 7
Fig. 7

(a, b) LIBS and (c, d) MW-LIBS emission intensity temporal evolution of 1,005 ppm indium solution at 1.2 kW MW power and 44.6 J∙cm−2 laser pulse fluence obtained from the accumulation of 300 shots using a gate width and delay step of (a, c) 50 ns and (b, d) 100 μs.

Fig. 8
Fig. 8

MW-LIBS emission intensity for 1,005 ppm indium (451.13 nm) as indicated by SNR as a function of laser pulse fluence at various MW powers with a gate delay of 250 ns and gate width of 700 μs. Error bars are standard deviations from 500 shots.

Fig. 9
Fig. 9

MW-LIBS enhancement factors for 1,005 ppm indium (451.13 nm) as indicated by SNR ratios as a function of laser pulse fluence at various MW powers with a gate delay of 250 ns and gate width of 700 μs. Error bars are standard deviations from 500 shots.

Fig. 10
Fig. 10

MW-LIBS emission intensity for 1,005 ppm indium (451.13 nm) as indicated by SNR as a function of MW power at various laser pulse fluences with a gate delay of 250 ns and gate width of 700 μs. Error bars are standard deviations from 500 shots.

Fig. 11
Fig. 11

Calibration curves for indium (451.13 nm) generated using (a) MW-LIBS with a MW power of 1.2 kW and (b) LIBS using a laser pulse fluence of 85.2 J∙cm−2, a gate delay of 250 ns and gate width of 700 μs. Error bars are standard deviations from 500 shots.

Metrics