Abstract

A high power (~ 1W) continuous wave (CW) laser was focused on argon microplasma generated in the microgap between two electrodes with submillimeter diameters. Dependence of breakdown (VBD) and quench (VQ) voltages of microplasma to the laser power, wavelength, and spot location were studied as the gap size and pressure varied. It was observed that the laser-plasma interaction can only occur thermally through the electrodes. Also, the thermal effect of the laser was noticeable at relatively higher pressures (> 10Torr), and in most cases led to a decrease in VBD, proportional to the pressure.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time-dependent simulations of a CW pumped, pulsed DC discharge Ar metastable laser system

Pengfei Sun, Duluo Zuo, Pavel A. Mikheyev, Jiande Han, and Michael C. Heaven
Opt. Express 27(16) 22289-22301 (2019)

Triggering and guiding megavolt discharges by use of laser-induced ionized filaments

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf
Opt. Lett. 27(9) 772-774 (2002)

Time-resolved emission studies of ArF-laser-produced microplasmas

Josef B. Simeonsson and Andrzej W. Miziolek
Appl. Opt. 32(6) 939-947 (1993)

References

  • View by:
  • |
  • |
  • |

  1. C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621 (1975).
    [Crossref]
  2. R. Foest, M. Schmidt, and K. Becker, “Microplasmas, an emerging field of low-temperature plasma science and technology,” Int. J. Mass Spectrom. 248, 87–102 (2006).
    [Crossref]
  3. A. Papadakis, S. Rossides, and A. Metaxas, “Microplasmas: A review,” Open Appl. Phys. J. 4, 45–63 (2011).
    [Crossref]
  4. S. Brckner, W. Vil, and S. Wieneke,DuarteF. J.Dr.Coherence and Ultrashort Pulse Laser Emission (InTech, 2010).
  5. P. Gibbon and E. Forster, “Short-pulse laser-plasma interactions,” Plasma Phys. Contr. F. 38, 769 (1996).
    [Crossref]
  6. E. Forati, S. Piltan, and D. Sievenpiper, “Microplasma generation: Using metasurfaces to combine DC discharge and laser induced breakdown,” Proceedings of Radio Science Meeting (Joint with AP-S Symposium), 138 (2015).
  7. E. Forati, S. Piltan, and D. Sievenpiper, “On the difference between breakdown and quench voltages of argon plasma and its relation to 4p4s atomic state transitions,” Appl. Phys. Lett. 106, 054101 (2015).
    [Crossref]
  8. S. Mahmood, N. M. Shaikh, M. Kalyar, M. Rafiq, N. Piracha, and M. Baig, “Measurements of electron density, temperature and photoionization cross sections of the excited states of neon in a discharge plasma,” J. Quant. Spectrosc. Ra. 110, 1840–1850 (2009).
    [Crossref]
  9. E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. ACTA B 62, 1287–1302 (2007).
    [Crossref]
  10. J. Plavčan, J. Jašík, P. Vojtek, Z. Zábudlá, and P. Veis, “Optical Diagnostics of Laser Induced Breakdown in Argon at Atmospheric Pressure,” Proceedings of PSU WDS (Citeseer, 2008), pp. 16–19.
  11. N. Konjević, A. Lesage, J. Fuhr, and W. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms (a critical review of selected data for the period 1989 through 2000),” J. Phys. Chem. Ref. Data 31, 819–927 (2002).
    [Crossref]
  12. G. M. Weyl and D. Rosen, “Laser-induced breakdown in argon at 0.35 µ m: theory and experiments,” Phys. Rev. A 31, 2300 (1985).
    [Crossref] [PubMed]
  13. Y. P. Raizer and J. E. Allen, Gas Discharge Physics (Springer, 1997).
  14. N. S. J. Braithwaite, “Introduction to gas discharges,” Plasma Sources Sci. T. 9, 517 (2000).
    [Crossref]
  15. N. S. Kopeika and N. H. Farhat, “Video detection of millimeter waves with glow discharge tubes: Part i: Physical description; part ii: Experimental results,” IEEE T. Electron. Dev. 22, 534–548 (1975).
    [Crossref]
  16. D. B. Go and D. A. Pohlman, “A mathematical model of the modified paschens curve for breakdown in microscale gaps,” J. Appl. Phys. 107, 103303 (2010).
    [Crossref]
  17. N. Leoni and B. Paradkar, “Numerical Simulation of Townsend Discharge, Paschen Breakdown and Dielectric Barrier Discharges,” in Proceedings of International Conference on Digital Printing Technologies, (2009), pp. 229–232.
  18. P. Kisliuk, “Electron emission at high fields due to positive ions,” J. Appl. Phys. 30, 51–55 (1959).
    [Crossref]
  19. P. Testé and J. Chabrerie, “Some improvements concerning the modelling of the cathodic zone of an electric arc (ion incidence on electron emission and thecooling effect’),” J. Phys. D Appl. Phys. 29, 697 (1996).
    [Crossref]
  20. W. Boyle and P. Kisliuk, “Departure from paschen’s law of breakdown in gases,” Phys. Rev. 97, 255 (1955).
    [Crossref]
  21. V. Lisovskii and S. Yakovin, “A modified paschen law for the initiation of a dc glow discharge in inert gases,” Tech. Phys. 45, 727–731 (2000).
    [Crossref]
  22. F. Morgan, L. Evans, and C. G. Morgan, “Laser beam induced breakdown in helium and argon,” J. Phys. D Appl. Phys. 4, 225 (1971).
    [Crossref]
  23. B. Tozer, “Theory of the ionization of gases by laser beams,” Phys. Rev. 137, A1665 (1965).
    [Crossref]
  24. T. Owano, C. Kruger, and R. Beddini, “Electron-ion three-body recombination coefficient of argon,” AIAA J. 31, 75–82 (1993).
    [Crossref]
  25. J. A. Aguilera and C. Aragón, “Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions.: Comparison of local and spatially integrated measurements,” Spectrochim ACTA B 59, 1861–1876 (2004).
    [Crossref]
  26. C. Aragon, J. Bengoechea, and J. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim ACTA B 56, 619–628 (2001).
    [Crossref]
  27. J. Bengoechea, J. Aguilera, and C. Aragon, “Application of laser-induced plasma spectroscopy to the measurement of stark broadening parameters,” Spectrochim ACTA B 61, 69–80 (2006).
    [Crossref]
  28. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).
    [Crossref]
  29. U. S. Inan and M. Gokowski, Principles of Plasma Physics for Engineers and Scientists (Cambridge University, 2010).
    [Crossref]

2015 (1)

E. Forati, S. Piltan, and D. Sievenpiper, “On the difference between breakdown and quench voltages of argon plasma and its relation to 4p4s atomic state transitions,” Appl. Phys. Lett. 106, 054101 (2015).
[Crossref]

2011 (1)

A. Papadakis, S. Rossides, and A. Metaxas, “Microplasmas: A review,” Open Appl. Phys. J. 4, 45–63 (2011).
[Crossref]

2010 (1)

D. B. Go and D. A. Pohlman, “A mathematical model of the modified paschens curve for breakdown in microscale gaps,” J. Appl. Phys. 107, 103303 (2010).
[Crossref]

2009 (1)

S. Mahmood, N. M. Shaikh, M. Kalyar, M. Rafiq, N. Piracha, and M. Baig, “Measurements of electron density, temperature and photoionization cross sections of the excited states of neon in a discharge plasma,” J. Quant. Spectrosc. Ra. 110, 1840–1850 (2009).
[Crossref]

2007 (1)

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. ACTA B 62, 1287–1302 (2007).
[Crossref]

2006 (2)

R. Foest, M. Schmidt, and K. Becker, “Microplasmas, an emerging field of low-temperature plasma science and technology,” Int. J. Mass Spectrom. 248, 87–102 (2006).
[Crossref]

J. Bengoechea, J. Aguilera, and C. Aragon, “Application of laser-induced plasma spectroscopy to the measurement of stark broadening parameters,” Spectrochim ACTA B 61, 69–80 (2006).
[Crossref]

2004 (1)

J. A. Aguilera and C. Aragón, “Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions.: Comparison of local and spatially integrated measurements,” Spectrochim ACTA B 59, 1861–1876 (2004).
[Crossref]

2002 (1)

N. Konjević, A. Lesage, J. Fuhr, and W. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms (a critical review of selected data for the period 1989 through 2000),” J. Phys. Chem. Ref. Data 31, 819–927 (2002).
[Crossref]

2001 (1)

C. Aragon, J. Bengoechea, and J. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim ACTA B 56, 619–628 (2001).
[Crossref]

2000 (2)

N. S. J. Braithwaite, “Introduction to gas discharges,” Plasma Sources Sci. T. 9, 517 (2000).
[Crossref]

V. Lisovskii and S. Yakovin, “A modified paschen law for the initiation of a dc glow discharge in inert gases,” Tech. Phys. 45, 727–731 (2000).
[Crossref]

1996 (2)

P. Testé and J. Chabrerie, “Some improvements concerning the modelling of the cathodic zone of an electric arc (ion incidence on electron emission and thecooling effect’),” J. Phys. D Appl. Phys. 29, 697 (1996).
[Crossref]

P. Gibbon and E. Forster, “Short-pulse laser-plasma interactions,” Plasma Phys. Contr. F. 38, 769 (1996).
[Crossref]

1993 (1)

T. Owano, C. Kruger, and R. Beddini, “Electron-ion three-body recombination coefficient of argon,” AIAA J. 31, 75–82 (1993).
[Crossref]

1985 (1)

G. M. Weyl and D. Rosen, “Laser-induced breakdown in argon at 0.35 µ m: theory and experiments,” Phys. Rev. A 31, 2300 (1985).
[Crossref] [PubMed]

1975 (2)

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621 (1975).
[Crossref]

N. S. Kopeika and N. H. Farhat, “Video detection of millimeter waves with glow discharge tubes: Part i: Physical description; part ii: Experimental results,” IEEE T. Electron. Dev. 22, 534–548 (1975).
[Crossref]

1971 (1)

F. Morgan, L. Evans, and C. G. Morgan, “Laser beam induced breakdown in helium and argon,” J. Phys. D Appl. Phys. 4, 225 (1971).
[Crossref]

1965 (1)

B. Tozer, “Theory of the ionization of gases by laser beams,” Phys. Rev. 137, A1665 (1965).
[Crossref]

1959 (1)

P. Kisliuk, “Electron emission at high fields due to positive ions,” J. Appl. Phys. 30, 51–55 (1959).
[Crossref]

1955 (1)

W. Boyle and P. Kisliuk, “Departure from paschen’s law of breakdown in gases,” Phys. Rev. 97, 255 (1955).
[Crossref]

Aguilera, J.

J. Bengoechea, J. Aguilera, and C. Aragon, “Application of laser-induced plasma spectroscopy to the measurement of stark broadening parameters,” Spectrochim ACTA B 61, 69–80 (2006).
[Crossref]

C. Aragon, J. Bengoechea, and J. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim ACTA B 56, 619–628 (2001).
[Crossref]

Aguilera, J. A.

J. A. Aguilera and C. Aragón, “Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions.: Comparison of local and spatially integrated measurements,” Spectrochim ACTA B 59, 1861–1876 (2004).
[Crossref]

Allen, J. E.

Y. P. Raizer and J. E. Allen, Gas Discharge Physics (Springer, 1997).

Aragon, C.

J. Bengoechea, J. Aguilera, and C. Aragon, “Application of laser-induced plasma spectroscopy to the measurement of stark broadening parameters,” Spectrochim ACTA B 61, 69–80 (2006).
[Crossref]

C. Aragon, J. Bengoechea, and J. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim ACTA B 56, 619–628 (2001).
[Crossref]

Aragón, C.

J. A. Aguilera and C. Aragón, “Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions.: Comparison of local and spatially integrated measurements,” Spectrochim ACTA B 59, 1861–1876 (2004).
[Crossref]

Baig, M.

S. Mahmood, N. M. Shaikh, M. Kalyar, M. Rafiq, N. Piracha, and M. Baig, “Measurements of electron density, temperature and photoionization cross sections of the excited states of neon in a discharge plasma,” J. Quant. Spectrosc. Ra. 110, 1840–1850 (2009).
[Crossref]

Becker, K.

R. Foest, M. Schmidt, and K. Becker, “Microplasmas, an emerging field of low-temperature plasma science and technology,” Int. J. Mass Spectrom. 248, 87–102 (2006).
[Crossref]

Beddini, R.

T. Owano, C. Kruger, and R. Beddini, “Electron-ion three-body recombination coefficient of argon,” AIAA J. 31, 75–82 (1993).
[Crossref]

Bengoechea, J.

J. Bengoechea, J. Aguilera, and C. Aragon, “Application of laser-induced plasma spectroscopy to the measurement of stark broadening parameters,” Spectrochim ACTA B 61, 69–80 (2006).
[Crossref]

C. Aragon, J. Bengoechea, and J. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim ACTA B 56, 619–628 (2001).
[Crossref]

Boyle, W.

W. Boyle and P. Kisliuk, “Departure from paschen’s law of breakdown in gases,” Phys. Rev. 97, 255 (1955).
[Crossref]

Braithwaite, N. S. J.

N. S. J. Braithwaite, “Introduction to gas discharges,” Plasma Sources Sci. T. 9, 517 (2000).
[Crossref]

Brckner, S.

S. Brckner, W. Vil, and S. Wieneke,DuarteF. J.Dr.Coherence and Ultrashort Pulse Laser Emission (InTech, 2010).

Chabrerie, J.

P. Testé and J. Chabrerie, “Some improvements concerning the modelling of the cathodic zone of an electric arc (ion incidence on electron emission and thecooling effect’),” J. Phys. D Appl. Phys. 29, 697 (1996).
[Crossref]

Cristoforetti, G.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. ACTA B 62, 1287–1302 (2007).
[Crossref]

Evans, L.

F. Morgan, L. Evans, and C. G. Morgan, “Laser beam induced breakdown in helium and argon,” J. Phys. D Appl. Phys. 4, 225 (1971).
[Crossref]

Farhat, N. H.

N. S. Kopeika and N. H. Farhat, “Video detection of millimeter waves with glow discharge tubes: Part i: Physical description; part ii: Experimental results,” IEEE T. Electron. Dev. 22, 534–548 (1975).
[Crossref]

Foest, R.

R. Foest, M. Schmidt, and K. Becker, “Microplasmas, an emerging field of low-temperature plasma science and technology,” Int. J. Mass Spectrom. 248, 87–102 (2006).
[Crossref]

Forati, E.

E. Forati, S. Piltan, and D. Sievenpiper, “On the difference between breakdown and quench voltages of argon plasma and its relation to 4p4s atomic state transitions,” Appl. Phys. Lett. 106, 054101 (2015).
[Crossref]

E. Forati, S. Piltan, and D. Sievenpiper, “Microplasma generation: Using metasurfaces to combine DC discharge and laser induced breakdown,” Proceedings of Radio Science Meeting (Joint with AP-S Symposium), 138 (2015).

Forster, E.

P. Gibbon and E. Forster, “Short-pulse laser-plasma interactions,” Plasma Phys. Contr. F. 38, 769 (1996).
[Crossref]

Fuhr, J.

N. Konjević, A. Lesage, J. Fuhr, and W. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms (a critical review of selected data for the period 1989 through 2000),” J. Phys. Chem. Ref. Data 31, 819–927 (2002).
[Crossref]

Gibbon, P.

P. Gibbon and E. Forster, “Short-pulse laser-plasma interactions,” Plasma Phys. Contr. F. 38, 769 (1996).
[Crossref]

Go, D. B.

D. B. Go and D. A. Pohlman, “A mathematical model of the modified paschens curve for breakdown in microscale gaps,” J. Appl. Phys. 107, 103303 (2010).
[Crossref]

Gokowski, M.

U. S. Inan and M. Gokowski, Principles of Plasma Physics for Engineers and Scientists (Cambridge University, 2010).
[Crossref]

Gornushkin, I.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. ACTA B 62, 1287–1302 (2007).
[Crossref]

Griem, H. R.

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).
[Crossref]

Inan, U. S.

U. S. Inan and M. Gokowski, Principles of Plasma Physics for Engineers and Scientists (Cambridge University, 2010).
[Crossref]

Jašík, J.

J. Plavčan, J. Jašík, P. Vojtek, Z. Zábudlá, and P. Veis, “Optical Diagnostics of Laser Induced Breakdown in Argon at Atmospheric Pressure,” Proceedings of PSU WDS (Citeseer, 2008), pp. 16–19.

Kalyar, M.

S. Mahmood, N. M. Shaikh, M. Kalyar, M. Rafiq, N. Piracha, and M. Baig, “Measurements of electron density, temperature and photoionization cross sections of the excited states of neon in a discharge plasma,” J. Quant. Spectrosc. Ra. 110, 1840–1850 (2009).
[Crossref]

Kisliuk, P.

P. Kisliuk, “Electron emission at high fields due to positive ions,” J. Appl. Phys. 30, 51–55 (1959).
[Crossref]

W. Boyle and P. Kisliuk, “Departure from paschen’s law of breakdown in gases,” Phys. Rev. 97, 255 (1955).
[Crossref]

Konjevic, N.

N. Konjević, A. Lesage, J. Fuhr, and W. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms (a critical review of selected data for the period 1989 through 2000),” J. Phys. Chem. Ref. Data 31, 819–927 (2002).
[Crossref]

Kopeika, N. S.

N. S. Kopeika and N. H. Farhat, “Video detection of millimeter waves with glow discharge tubes: Part i: Physical description; part ii: Experimental results,” IEEE T. Electron. Dev. 22, 534–548 (1975).
[Crossref]

Kruger, C.

T. Owano, C. Kruger, and R. Beddini, “Electron-ion three-body recombination coefficient of argon,” AIAA J. 31, 75–82 (1993).
[Crossref]

Legnaioli, S.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. ACTA B 62, 1287–1302 (2007).
[Crossref]

Leoni, N.

N. Leoni and B. Paradkar, “Numerical Simulation of Townsend Discharge, Paschen Breakdown and Dielectric Barrier Discharges,” in Proceedings of International Conference on Digital Printing Technologies, (2009), pp. 229–232.

Lesage, A.

N. Konjević, A. Lesage, J. Fuhr, and W. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms (a critical review of selected data for the period 1989 through 2000),” J. Phys. Chem. Ref. Data 31, 819–927 (2002).
[Crossref]

Lisovskii, V.

V. Lisovskii and S. Yakovin, “A modified paschen law for the initiation of a dc glow discharge in inert gases,” Tech. Phys. 45, 727–731 (2000).
[Crossref]

Mahmood, S.

S. Mahmood, N. M. Shaikh, M. Kalyar, M. Rafiq, N. Piracha, and M. Baig, “Measurements of electron density, temperature and photoionization cross sections of the excited states of neon in a discharge plasma,” J. Quant. Spectrosc. Ra. 110, 1840–1850 (2009).
[Crossref]

Metaxas, A.

A. Papadakis, S. Rossides, and A. Metaxas, “Microplasmas: A review,” Open Appl. Phys. J. 4, 45–63 (2011).
[Crossref]

Morgan, C. G.

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621 (1975).
[Crossref]

F. Morgan, L. Evans, and C. G. Morgan, “Laser beam induced breakdown in helium and argon,” J. Phys. D Appl. Phys. 4, 225 (1971).
[Crossref]

Morgan, F.

F. Morgan, L. Evans, and C. G. Morgan, “Laser beam induced breakdown in helium and argon,” J. Phys. D Appl. Phys. 4, 225 (1971).
[Crossref]

Mueller, M.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. ACTA B 62, 1287–1302 (2007).
[Crossref]

Owano, T.

T. Owano, C. Kruger, and R. Beddini, “Electron-ion three-body recombination coefficient of argon,” AIAA J. 31, 75–82 (1993).
[Crossref]

Palleschi, V.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. ACTA B 62, 1287–1302 (2007).
[Crossref]

Panne, U.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. ACTA B 62, 1287–1302 (2007).
[Crossref]

Papadakis, A.

A. Papadakis, S. Rossides, and A. Metaxas, “Microplasmas: A review,” Open Appl. Phys. J. 4, 45–63 (2011).
[Crossref]

Paradkar, B.

N. Leoni and B. Paradkar, “Numerical Simulation of Townsend Discharge, Paschen Breakdown and Dielectric Barrier Discharges,” in Proceedings of International Conference on Digital Printing Technologies, (2009), pp. 229–232.

Piltan, S.

E. Forati, S. Piltan, and D. Sievenpiper, “On the difference between breakdown and quench voltages of argon plasma and its relation to 4p4s atomic state transitions,” Appl. Phys. Lett. 106, 054101 (2015).
[Crossref]

E. Forati, S. Piltan, and D. Sievenpiper, “Microplasma generation: Using metasurfaces to combine DC discharge and laser induced breakdown,” Proceedings of Radio Science Meeting (Joint with AP-S Symposium), 138 (2015).

Piracha, N.

S. Mahmood, N. M. Shaikh, M. Kalyar, M. Rafiq, N. Piracha, and M. Baig, “Measurements of electron density, temperature and photoionization cross sections of the excited states of neon in a discharge plasma,” J. Quant. Spectrosc. Ra. 110, 1840–1850 (2009).
[Crossref]

Plavcan, J.

J. Plavčan, J. Jašík, P. Vojtek, Z. Zábudlá, and P. Veis, “Optical Diagnostics of Laser Induced Breakdown in Argon at Atmospheric Pressure,” Proceedings of PSU WDS (Citeseer, 2008), pp. 16–19.

Pohlman, D. A.

D. B. Go and D. A. Pohlman, “A mathematical model of the modified paschens curve for breakdown in microscale gaps,” J. Appl. Phys. 107, 103303 (2010).
[Crossref]

Rafiq, M.

S. Mahmood, N. M. Shaikh, M. Kalyar, M. Rafiq, N. Piracha, and M. Baig, “Measurements of electron density, temperature and photoionization cross sections of the excited states of neon in a discharge plasma,” J. Quant. Spectrosc. Ra. 110, 1840–1850 (2009).
[Crossref]

Raizer, Y. P.

Y. P. Raizer and J. E. Allen, Gas Discharge Physics (Springer, 1997).

Rosen, D.

G. M. Weyl and D. Rosen, “Laser-induced breakdown in argon at 0.35 µ m: theory and experiments,” Phys. Rev. A 31, 2300 (1985).
[Crossref] [PubMed]

Rossides, S.

A. Papadakis, S. Rossides, and A. Metaxas, “Microplasmas: A review,” Open Appl. Phys. J. 4, 45–63 (2011).
[Crossref]

Salvetti, A.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. ACTA B 62, 1287–1302 (2007).
[Crossref]

Schmidt, M.

R. Foest, M. Schmidt, and K. Becker, “Microplasmas, an emerging field of low-temperature plasma science and technology,” Int. J. Mass Spectrom. 248, 87–102 (2006).
[Crossref]

Shaikh, N. M.

S. Mahmood, N. M. Shaikh, M. Kalyar, M. Rafiq, N. Piracha, and M. Baig, “Measurements of electron density, temperature and photoionization cross sections of the excited states of neon in a discharge plasma,” J. Quant. Spectrosc. Ra. 110, 1840–1850 (2009).
[Crossref]

Sievenpiper, D.

E. Forati, S. Piltan, and D. Sievenpiper, “On the difference between breakdown and quench voltages of argon plasma and its relation to 4p4s atomic state transitions,” Appl. Phys. Lett. 106, 054101 (2015).
[Crossref]

E. Forati, S. Piltan, and D. Sievenpiper, “Microplasma generation: Using metasurfaces to combine DC discharge and laser induced breakdown,” Proceedings of Radio Science Meeting (Joint with AP-S Symposium), 138 (2015).

Testé, P.

P. Testé and J. Chabrerie, “Some improvements concerning the modelling of the cathodic zone of an electric arc (ion incidence on electron emission and thecooling effect’),” J. Phys. D Appl. Phys. 29, 697 (1996).
[Crossref]

Tognoni, E.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. ACTA B 62, 1287–1302 (2007).
[Crossref]

Tozer, B.

B. Tozer, “Theory of the ionization of gases by laser beams,” Phys. Rev. 137, A1665 (1965).
[Crossref]

Veis, P.

J. Plavčan, J. Jašík, P. Vojtek, Z. Zábudlá, and P. Veis, “Optical Diagnostics of Laser Induced Breakdown in Argon at Atmospheric Pressure,” Proceedings of PSU WDS (Citeseer, 2008), pp. 16–19.

Vil, W.

S. Brckner, W. Vil, and S. Wieneke,DuarteF. J.Dr.Coherence and Ultrashort Pulse Laser Emission (InTech, 2010).

Vojtek, P.

J. Plavčan, J. Jašík, P. Vojtek, Z. Zábudlá, and P. Veis, “Optical Diagnostics of Laser Induced Breakdown in Argon at Atmospheric Pressure,” Proceedings of PSU WDS (Citeseer, 2008), pp. 16–19.

Weyl, G. M.

G. M. Weyl and D. Rosen, “Laser-induced breakdown in argon at 0.35 µ m: theory and experiments,” Phys. Rev. A 31, 2300 (1985).
[Crossref] [PubMed]

Wieneke, S.

S. Brckner, W. Vil, and S. Wieneke,DuarteF. J.Dr.Coherence and Ultrashort Pulse Laser Emission (InTech, 2010).

Wiese, W.

N. Konjević, A. Lesage, J. Fuhr, and W. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms (a critical review of selected data for the period 1989 through 2000),” J. Phys. Chem. Ref. Data 31, 819–927 (2002).
[Crossref]

Yakovin, S.

V. Lisovskii and S. Yakovin, “A modified paschen law for the initiation of a dc glow discharge in inert gases,” Tech. Phys. 45, 727–731 (2000).
[Crossref]

Zábudlá, Z.

J. Plavčan, J. Jašík, P. Vojtek, Z. Zábudlá, and P. Veis, “Optical Diagnostics of Laser Induced Breakdown in Argon at Atmospheric Pressure,” Proceedings of PSU WDS (Citeseer, 2008), pp. 16–19.

AIAA J. (1)

T. Owano, C. Kruger, and R. Beddini, “Electron-ion three-body recombination coefficient of argon,” AIAA J. 31, 75–82 (1993).
[Crossref]

Appl. Phys. Lett. (1)

E. Forati, S. Piltan, and D. Sievenpiper, “On the difference between breakdown and quench voltages of argon plasma and its relation to 4p4s atomic state transitions,” Appl. Phys. Lett. 106, 054101 (2015).
[Crossref]

IEEE T. Electron. Dev. (1)

N. S. Kopeika and N. H. Farhat, “Video detection of millimeter waves with glow discharge tubes: Part i: Physical description; part ii: Experimental results,” IEEE T. Electron. Dev. 22, 534–548 (1975).
[Crossref]

Int. J. Mass Spectrom. (1)

R. Foest, M. Schmidt, and K. Becker, “Microplasmas, an emerging field of low-temperature plasma science and technology,” Int. J. Mass Spectrom. 248, 87–102 (2006).
[Crossref]

J. Appl. Phys. (2)

P. Kisliuk, “Electron emission at high fields due to positive ions,” J. Appl. Phys. 30, 51–55 (1959).
[Crossref]

D. B. Go and D. A. Pohlman, “A mathematical model of the modified paschens curve for breakdown in microscale gaps,” J. Appl. Phys. 107, 103303 (2010).
[Crossref]

J. Phys. Chem. Ref. Data (1)

N. Konjević, A. Lesage, J. Fuhr, and W. Wiese, “Experimental stark widths and shifts for spectral lines of neutral and ionized atoms (a critical review of selected data for the period 1989 through 2000),” J. Phys. Chem. Ref. Data 31, 819–927 (2002).
[Crossref]

J. Phys. D Appl. Phys. (2)

P. Testé and J. Chabrerie, “Some improvements concerning the modelling of the cathodic zone of an electric arc (ion incidence on electron emission and thecooling effect’),” J. Phys. D Appl. Phys. 29, 697 (1996).
[Crossref]

F. Morgan, L. Evans, and C. G. Morgan, “Laser beam induced breakdown in helium and argon,” J. Phys. D Appl. Phys. 4, 225 (1971).
[Crossref]

J. Quant. Spectrosc. Ra. (1)

S. Mahmood, N. M. Shaikh, M. Kalyar, M. Rafiq, N. Piracha, and M. Baig, “Measurements of electron density, temperature and photoionization cross sections of the excited states of neon in a discharge plasma,” J. Quant. Spectrosc. Ra. 110, 1840–1850 (2009).
[Crossref]

Open Appl. Phys. J. (1)

A. Papadakis, S. Rossides, and A. Metaxas, “Microplasmas: A review,” Open Appl. Phys. J. 4, 45–63 (2011).
[Crossref]

Phys. Rev. (2)

W. Boyle and P. Kisliuk, “Departure from paschen’s law of breakdown in gases,” Phys. Rev. 97, 255 (1955).
[Crossref]

B. Tozer, “Theory of the ionization of gases by laser beams,” Phys. Rev. 137, A1665 (1965).
[Crossref]

Phys. Rev. A (1)

G. M. Weyl and D. Rosen, “Laser-induced breakdown in argon at 0.35 µ m: theory and experiments,” Phys. Rev. A 31, 2300 (1985).
[Crossref] [PubMed]

Plasma Phys. Contr. F. (1)

P. Gibbon and E. Forster, “Short-pulse laser-plasma interactions,” Plasma Phys. Contr. F. 38, 769 (1996).
[Crossref]

Plasma Sources Sci. T. (1)

N. S. J. Braithwaite, “Introduction to gas discharges,” Plasma Sources Sci. T. 9, 517 (2000).
[Crossref]

Rep. Prog. Phys. (1)

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621 (1975).
[Crossref]

Spectrochim ACTA B (3)

J. A. Aguilera and C. Aragón, “Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions.: Comparison of local and spatially integrated measurements,” Spectrochim ACTA B 59, 1861–1876 (2004).
[Crossref]

C. Aragon, J. Bengoechea, and J. Aguilera, “Influence of the optical depth on spectral line emission from laser-induced plasmas,” Spectrochim ACTA B 56, 619–628 (2001).
[Crossref]

J. Bengoechea, J. Aguilera, and C. Aragon, “Application of laser-induced plasma spectroscopy to the measurement of stark broadening parameters,” Spectrochim ACTA B 61, 69–80 (2006).
[Crossref]

Spectrochim. ACTA B (1)

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. ACTA B 62, 1287–1302 (2007).
[Crossref]

Tech. Phys. (1)

V. Lisovskii and S. Yakovin, “A modified paschen law for the initiation of a dc glow discharge in inert gases,” Tech. Phys. 45, 727–731 (2000).
[Crossref]

Other (7)

Y. P. Raizer and J. E. Allen, Gas Discharge Physics (Springer, 1997).

J. Plavčan, J. Jašík, P. Vojtek, Z. Zábudlá, and P. Veis, “Optical Diagnostics of Laser Induced Breakdown in Argon at Atmospheric Pressure,” Proceedings of PSU WDS (Citeseer, 2008), pp. 16–19.

E. Forati, S. Piltan, and D. Sievenpiper, “Microplasma generation: Using metasurfaces to combine DC discharge and laser induced breakdown,” Proceedings of Radio Science Meeting (Joint with AP-S Symposium), 138 (2015).

S. Brckner, W. Vil, and S. Wieneke,DuarteF. J.Dr.Coherence and Ultrashort Pulse Laser Emission (InTech, 2010).

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).
[Crossref]

U. S. Inan and M. Gokowski, Principles of Plasma Physics for Engineers and Scientists (Cambridge University, 2010).
[Crossref]

N. Leoni and B. Paradkar, “Numerical Simulation of Townsend Discharge, Paschen Breakdown and Dielectric Barrier Discharges,” in Proceedings of International Conference on Digital Printing Technologies, (2009), pp. 229–232.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 a) relaxation oscillator circuit, b) the 3-D printed plastic fixture to focus the laser beam onto the microgap, c) the measurement setup.
Fig. 2
Fig. 2 The sawtooth voltage waveform across the microplasma with the gap size of 1000 µm and at pressure 0.5Torr. VBD and VQ are extremums of the sawtooth as specified.
Fig. 3
Fig. 3 a) gold plated tungsten electrodes with a tip diameter of 10µm (top), and tungsten electrodes with a tip diameter of 635µm (bottom), before and after plasma ignition, b) emission spectrum of the microplasma at p = 100Torr for the relaxation oscillator circuit parameters VDC = 1kV, R = 2MΩ, and C = 70nF.
Fig. 4
Fig. 4 VQ and VBD as a function of laser spot location at p = 100Torr using the gold electrodes with a gap size of 200 µm (left), and the tungsten electrodes with a gap size of 400 µm (right).
Fig. 5
Fig. 5 Time evolution of VBD and VQ as the laser is switched on and off. The laser with p = 1W, and λ = 800nm was focused on the anode (left). The relaxation oscillator circuit parameters were VDC = 0.6kV, R = 32MΩ, and C = 70nF.
Fig. 6
Fig. 6 VBD and VQ as a function of pressure using the gold plated electrodes with gap sizes of 20 µm (left), 500 µm (center), and 1000 µm (right). The laser and the relaxation oscillator parameters were the same as Fig. 5.
Fig. 7
Fig. 7 Laser effect on VBD of microplasmas using the gold electrodes with different gap sizes, and as a function of pressure. The laser with a spot size of 50µm, p = 1W, and λ = 800nm was focused on the cathode (left). The relaxation oscillator circuit parameters were VDC = 0.6kV, R = 32MΩ, and C = 70nF.
Fig. 8
Fig. 8 The 3-D printed fixture for electrodes alignment and their symmetrical feed. a) front view, b) side view. The indicated groove at the center can accommodate a 700 µm thick gauge sheet for the initial adjustment of the electrodes.
Fig. 9
Fig. 9 The 3-D printed fixture inside the chamber. There are two view-ports on the right side and top of the chamber for laser entrance and imaging, respectively. The green arrow indicates the laser path. The blue coaxial cable, carrying high voltage to the electrodes, is specified as well.
Fig. 10
Fig. 10 The measurement setup including the laser, optics section (elaborated in the next figure), vacuum chamber, and the camera with a lens mounted on an x-y manual micropositioner.
Fig. 11
Fig. 11 Top view of the optics section in Fig. 10. A: beam sampler, B: beam chopper, C: beam splitter with an attached fiber coupled parabolic collimator, D: spectrometer, E: photo detector, and F: periscope for beam elevation.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I 1 I 2 = g 1 g 2 A 1 A 2 λ 2 λ 1 exp [ ( E 1 E 2 k B T ) ]
Δ λ = 2 w ( n e / 10 16 )
A r + M A r * + M A r * + M A r + + e + M
I 1 I 2 = g 1 g 2 A 1 A 2 λ 2 λ 1 exp [ ( E 1 E 2 k B T ) ]
Δ λ = 2 w ( n e / 10 16 ) + 3.5 A ( n e / 10 16 ) 5 / 4 × ( 1 3 4 N D 1 / 3 ) × w
Δ λ = 2 w ( n e / 10 16 )

Metrics