Abstract

A customized CO2 laser micromachining system was used for the generation of phase holographic structures directly on the surface of fused silica (HPFS®7980 Corning) and Borofloat®33 (Schott AG) glass. This process used pulses of duration 10µs and nominal wavelength 10.59µm. The pulse energy delivered to the glass workpiece was controlled by an acousto-optic modulator. The laser-generated structures were optically smooth and crack free. We demonstrated their use as diffractive optical elements (DOEs), which could be exploited as anti-counterfeiting markings embedded into valuable glass-made components and products.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Shaping the surface of Borofloat 33 glass with ultrashort laser pulses and a spatial light modulator

Krystian L. Wlodarczyk and Duncan P. Hand
Appl. Opt. 53(9) 1759-1765 (2014)

Analytical model for CO2 laser ablation of fused quartz

Krzysztof M. Nowak, Howard J. Baker, and Denis R. Hall
Appl. Opt. 54(29) 8653-8663 (2015)

Glass processing with pulsed CO2 laser radiation

Christian Weingarten, Emrah Uluz, Andreas Schmickler, Karsten Braun, Edgar Willenborg, André Temmler, and Sebastian Heidrich
Appl. Opt. 56(4) 777-783 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. L. Wlodarczyk, M. Ardron, A. J. Waddie, A. Dunn, M. D. Kidd, N. J. Weston, and D. P. Hand, “Laser microsculpting for the generation of robust diffractive security markings on the surface of metals,” J. Mater. Process. Technol. 222, 206–218 (2015).
    [Crossref]
  2. “Laser marking of glass,” http://www.rofin.com/en/markets/glass-industry/laser-marking/ .
  3. “Glass marking techniques using CO2 lasers,” http://www.synrad.com/synradinside/pdfs/Glassmarkingmethods.pdf .
  4. F. Laguarta, N. Lupon, and J. Armengol, “Optical glass polishing by controlled laser surface-heat treatment,” Appl. Opt. 33(27), 6508–6513 (1994).
    [Crossref] [PubMed]
  5. S. Heidrich, E. Willenborg, and A. Richmann, “Development of a laser based process chain for manufacturing freeform optics,” Phys. Proc. 12, 519–528 (2011).
    [Crossref]
  6. K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt. 45(1), 162–171 (2006).
    [Crossref] [PubMed]
  7. J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, “Correction of beam errors in high power laser diode bars and stacks,” Opt. Express 14(18), 8178–8183 (2006).
    [Crossref] [PubMed]
  8. N. Trela, H. J. Baker, J. J. Wendland, and D. R. Hall, “Dual-axis beam correction for an array of single-mode diode laser emitters using a laser-written custom phase-plate,” Opt. Express 17(26), 23576–23581 (2009).
    [Crossref] [PubMed]
  9. K. L. Wlodarczyk, I. J. Thomson, H. J. Baker, and D. R. Hall, “Generation of microstripe cylindrical and toroidal mirrors by localized laser evaporation of fused silica,” Appl. Opt. 51(26), 6352–6360 (2012).
    [Crossref] [PubMed]
  10. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45(21), 5358–5367 (2006).
    [Crossref] [PubMed]
  11. P. Cormont, P. Combis, L. Gallais, C. Hecquet, L. Lamaignère, and J. L. Rullier, “Removal of scratches on fused silica optics by using a CO₂ laser,” Opt. Express 21(23), 28272–28289 (2013).
    [Crossref] [PubMed]
  12. R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2-laser polishing for reduction of 351-nm surface damage initiation in fused silica,” SPIE Proc. 4679, 34–39 (2001).
  13. W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
    [Crossref]
  14. T. D. Bennett, D. J. Krajnovich, L. Li, and D. Wan, “Mechanism of topography formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 84(5), 2897–2905 (1998).
    [Crossref]
  15. T. D. Bennett, D. J. Krajnovich, and L. Li, “Thermophysical modeling of bump formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 85(1), 153–159 (1999).
    [Crossref]
  16. T. D. Bennett and L. Li, “Modeling laser texturing of silicate glass,” J. Appl. Phys. 89(2), 942–950 (2001).
    [Crossref]
  17. T. R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, “Mechanism of bump formation on glass substrates during laser texturing,” Appl. Phys. A 86(3), 1311–1316 (1999).
    [Crossref]
  18. “Corning® HPFS 7979, 7980, 8655 Fused Silica,” https://www.corning.com/emea/en.html .
  19. “Borofloat®33 – Borosilicate glass,” http://www.schott.com/borofloat/english/ .
  20. P. Merz, H. J. Quenzer, H. Bernt, B. Wanger, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems (IEEE, 2003), pp. 258–261.
    [Crossref]
  21. K. L. Wlodarczyk, Surface deformation mechanisms in laser smoothing and micro-machining of optical glasses (Ph.D. dissertation, Heriot-Watt University, 2011).
  22. W. B. Pietenpol, “Surface tension of molten glass,” J. Appl. Phys. 7, 26–37 (1936).
  23. W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc. 42(1), 6–10 (1959).
    [Crossref]
  24. H. L. Schick, “A thermodynamic analysis of the high temperature vaporization properties of silica,” Chem. Rev. 60(4), 331–362 (1960).
    [Crossref]
  25. E. Mendez Fernandez de Cordoba, Laser micro-polishing of silica optics (Ph.D. dissertation, Heriot-Watt University, 2007).
  26. M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
    [Crossref]
  27. A. Q. Tool, “Relation between inelastic deformability of thermal expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29(9), 240–253 (1946).
    [Crossref]
  28. F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5(7), 1058–1065 (1988).
    [Crossref]
  29. P. J. Stepien, “Computer-generated holograms and diffraction gratings in optical security applications,” Proc. SPIE 3973, 224–230 (2000).
    [Crossref]
  30. H. J. Baker, P. A. Field, F. Villarreal, S. D. Stratton, R. J. Ramirez, and D. R. Hall, “Line stabilization of slab waveguide CO2 lasers and the laser signature revisited,” Proc. SPIE 5120, 55–59 (2003).
    [Crossref]
  31. H. J. Baker, G. A. J. Markillie, P. Field, Q. Cao, C. Janke, and D. R. Hall, “Precision laser processing of optical microstructures with slab waveguide CO2 lasers,” Proc. SPIE 3888, 625–634 (2000).
    [Crossref]
  32. T. R. Steyer, K. L. Day, and D. R. Huffman, “Infrared absorption by small amorphous quartz spheres,” Appl. Opt. 13(7), 1586–1590 (1974).
    [Crossref] [PubMed]
  33. “Operating manual. Germanium acousto-optic modulator. Model number: 37027-5,” http://www.goochandhousego.com/wp-content/uploads/2014/01/51A140021.pdf .
  34. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5(10), 1550–1567 (1966).
    [Crossref] [PubMed]

2015 (1)

K. L. Wlodarczyk, M. Ardron, A. J. Waddie, A. Dunn, M. D. Kidd, N. J. Weston, and D. P. Hand, “Laser microsculpting for the generation of robust diffractive security markings on the surface of metals,” J. Mater. Process. Technol. 222, 206–218 (2015).
[Crossref]

2013 (1)

2012 (1)

2011 (2)

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

S. Heidrich, E. Willenborg, and A. Richmann, “Development of a laser based process chain for manufacturing freeform optics,” Phys. Proc. 12, 519–528 (2011).
[Crossref]

2010 (1)

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[Crossref]

2009 (1)

2006 (3)

2003 (1)

H. J. Baker, P. A. Field, F. Villarreal, S. D. Stratton, R. J. Ramirez, and D. R. Hall, “Line stabilization of slab waveguide CO2 lasers and the laser signature revisited,” Proc. SPIE 5120, 55–59 (2003).
[Crossref]

2001 (1)

T. D. Bennett and L. Li, “Modeling laser texturing of silicate glass,” J. Appl. Phys. 89(2), 942–950 (2001).
[Crossref]

2000 (2)

H. J. Baker, G. A. J. Markillie, P. Field, Q. Cao, C. Janke, and D. R. Hall, “Precision laser processing of optical microstructures with slab waveguide CO2 lasers,” Proc. SPIE 3888, 625–634 (2000).
[Crossref]

P. J. Stepien, “Computer-generated holograms and diffraction gratings in optical security applications,” Proc. SPIE 3973, 224–230 (2000).
[Crossref]

1999 (2)

T. R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, “Mechanism of bump formation on glass substrates during laser texturing,” Appl. Phys. A 86(3), 1311–1316 (1999).
[Crossref]

T. D. Bennett, D. J. Krajnovich, and L. Li, “Thermophysical modeling of bump formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 85(1), 153–159 (1999).
[Crossref]

1998 (1)

T. D. Bennett, D. J. Krajnovich, L. Li, and D. Wan, “Mechanism of topography formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 84(5), 2897–2905 (1998).
[Crossref]

1994 (1)

1988 (1)

1974 (1)

1966 (1)

1960 (1)

H. L. Schick, “A thermodynamic analysis of the high temperature vaporization properties of silica,” Chem. Rev. 60(4), 331–362 (1960).
[Crossref]

1959 (1)

W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc. 42(1), 6–10 (1959).
[Crossref]

1946 (1)

A. Q. Tool, “Relation between inelastic deformability of thermal expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29(9), 240–253 (1946).
[Crossref]

1936 (1)

W. B. Pietenpol, “Surface tension of molten glass,” J. Appl. Phys. 7, 26–37 (1936).

Ardron, M.

K. L. Wlodarczyk, M. Ardron, A. J. Waddie, A. Dunn, M. D. Kidd, N. J. Weston, and D. P. Hand, “Laser microsculpting for the generation of robust diffractive security markings on the surface of metals,” J. Mater. Process. Technol. 222, 206–218 (2015).
[Crossref]

Armengol, J.

Baker, H. J.

Bennett, T. D.

T. D. Bennett and L. Li, “Modeling laser texturing of silicate glass,” J. Appl. Phys. 89(2), 942–950 (2001).
[Crossref]

T. D. Bennett, D. J. Krajnovich, and L. Li, “Thermophysical modeling of bump formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 85(1), 153–159 (1999).
[Crossref]

T. D. Bennett, D. J. Krajnovich, L. Li, and D. Wan, “Mechanism of topography formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 84(5), 2897–2905 (1998).
[Crossref]

Bernt, H.

P. Merz, H. J. Quenzer, H. Bernt, B. Wanger, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems (IEEE, 2003), pp. 258–261.
[Crossref]

Bryngdahl, O.

Cahill, D. G.

T. R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, “Mechanism of bump formation on glass substrates during laser texturing,” Appl. Phys. A 86(3), 1311–1316 (1999).
[Crossref]

Cao, Q.

H. J. Baker, G. A. J. Markillie, P. Field, Q. Cao, C. Janke, and D. R. Hall, “Precision laser processing of optical microstructures with slab waveguide CO2 lasers,” Proc. SPIE 3888, 625–634 (2000).
[Crossref]

Combis, P.

Cooke, J. D.

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[Crossref]

Cormont, P.

Dai, W.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Day, K. L.

Dunn, A.

K. L. Wlodarczyk, M. Ardron, A. J. Waddie, A. Dunn, M. D. Kidd, N. J. Weston, and D. P. Hand, “Laser microsculpting for the generation of robust diffractive security markings on the surface of metals,” J. Mater. Process. Technol. 222, 206–218 (2015).
[Crossref]

Feit, M. D.

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[Crossref]

Field, P.

H. J. Baker, G. A. J. Markillie, P. Field, Q. Cao, C. Janke, and D. R. Hall, “Precision laser processing of optical microstructures with slab waveguide CO2 lasers,” Proc. SPIE 3888, 625–634 (2000).
[Crossref]

Field, P. A.

H. J. Baker, P. A. Field, F. Villarreal, S. D. Stratton, R. J. Ramirez, and D. R. Hall, “Line stabilization of slab waveguide CO2 lasers and the laser signature revisited,” Proc. SPIE 5120, 55–59 (2003).
[Crossref]

Gallais, L.

Greif, R.

T. R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, “Mechanism of bump formation on glass substrates during laser texturing,” Appl. Phys. A 86(3), 1311–1316 (1999).
[Crossref]

Grigoropoulos, C. P.

T. R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, “Mechanism of bump formation on glass substrates during laser texturing,” Appl. Phys. A 86(3), 1311–1316 (1999).
[Crossref]

Hall, D. R.

Hand, D. P.

K. L. Wlodarczyk, M. Ardron, A. J. Waddie, A. Dunn, M. D. Kidd, N. J. Weston, and D. P. Hand, “Laser microsculpting for the generation of robust diffractive security markings on the surface of metals,” J. Mater. Process. Technol. 222, 206–218 (2015).
[Crossref]

Hecquet, C.

Heidrich, S.

S. Heidrich, E. Willenborg, and A. Richmann, “Development of a laser based process chain for manufacturing freeform optics,” Phys. Proc. 12, 519–528 (2011).
[Crossref]

Huffman, D. R.

Janke, C.

H. J. Baker, G. A. J. Markillie, P. Field, Q. Cao, C. Janke, and D. R. Hall, “Precision laser processing of optical microstructures with slab waveguide CO2 lasers,” Proc. SPIE 3888, 625–634 (2000).
[Crossref]

Jiang, Y.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Kidd, M. D.

K. L. Wlodarczyk, M. Ardron, A. J. Waddie, A. Dunn, M. D. Kidd, N. J. Weston, and D. P. Hand, “Laser microsculpting for the generation of robust diffractive security markings on the surface of metals,” J. Mater. Process. Technol. 222, 206–218 (2015).
[Crossref]

Kingery, W. D.

W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc. 42(1), 6–10 (1959).
[Crossref]

Kogelnik, H.

Krajnovich, D. J.

T. D. Bennett, D. J. Krajnovich, and L. Li, “Thermophysical modeling of bump formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 85(1), 153–159 (1999).
[Crossref]

T. D. Bennett, D. J. Krajnovich, L. Li, and D. Wan, “Mechanism of topography formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 84(5), 2897–2905 (1998).
[Crossref]

Laguarta, F.

Lamaignère, L.

Li, L.

T. D. Bennett and L. Li, “Modeling laser texturing of silicate glass,” J. Appl. Phys. 89(2), 942–950 (2001).
[Crossref]

T. D. Bennett, D. J. Krajnovich, and L. Li, “Thermophysical modeling of bump formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 85(1), 153–159 (1999).
[Crossref]

T. D. Bennett, D. J. Krajnovich, L. Li, and D. Wan, “Mechanism of topography formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 84(5), 2897–2905 (1998).
[Crossref]

Li, T.

Li, X. B.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Lupon, N.

Lv, H. B.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Markillie, G. A. J.

H. J. Baker, G. A. J. Markillie, P. Field, Q. Cao, C. Janke, and D. R. Hall, “Precision laser processing of optical microstructures with slab waveguide CO2 lasers,” Proc. SPIE 3888, 625–634 (2000).
[Crossref]

Matthews, M. J.

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[Crossref]

Mendez, E.

Merz, P.

P. Merz, H. J. Quenzer, H. Bernt, B. Wanger, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems (IEEE, 2003), pp. 258–261.
[Crossref]

Monjardin, J. F.

Nowak, K. M.

Pietenpol, W. B.

W. B. Pietenpol, “Surface tension of molten glass,” J. Appl. Phys. 7, 26–37 (1936).

Quenzer, H. J.

P. Merz, H. J. Quenzer, H. Bernt, B. Wanger, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems (IEEE, 2003), pp. 258–261.
[Crossref]

Ramirez, R. J.

H. J. Baker, P. A. Field, F. Villarreal, S. D. Stratton, R. J. Ramirez, and D. R. Hall, “Line stabilization of slab waveguide CO2 lasers and the laser signature revisited,” Proc. SPIE 5120, 55–59 (2003).
[Crossref]

Richmann, A.

S. Heidrich, E. Willenborg, and A. Richmann, “Development of a laser based process chain for manufacturing freeform optics,” Phys. Proc. 12, 519–528 (2011).
[Crossref]

Rullier, J. L.

Schick, H. L.

H. L. Schick, “A thermodynamic analysis of the high temperature vaporization properties of silica,” Chem. Rev. 60(4), 331–362 (1960).
[Crossref]

Shiu, T. R.

T. R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, “Mechanism of bump formation on glass substrates during laser texturing,” Appl. Phys. A 86(3), 1311–1316 (1999).
[Crossref]

Soules, T. F.

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[Crossref]

Stepien, P. J.

P. J. Stepien, “Computer-generated holograms and diffraction gratings in optical security applications,” Proc. SPIE 3973, 224–230 (2000).
[Crossref]

Steyer, T. R.

Stolken, J. S.

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[Crossref]

Stratton, S. D.

H. J. Baker, P. A. Field, F. Villarreal, S. D. Stratton, R. J. Ramirez, and D. R. Hall, “Line stabilization of slab waveguide CO2 lasers and the laser signature revisited,” Proc. SPIE 5120, 55–59 (2003).
[Crossref]

Thomson, I. J.

Tool, A. Q.

A. Q. Tool, “Relation between inelastic deformability of thermal expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29(9), 240–253 (1946).
[Crossref]

Trela, N.

Vignes, R. M.

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[Crossref]

Villarreal, F.

H. J. Baker, P. A. Field, F. Villarreal, S. D. Stratton, R. J. Ramirez, and D. R. Hall, “Line stabilization of slab waveguide CO2 lasers and the laser signature revisited,” Proc. SPIE 5120, 55–59 (2003).
[Crossref]

Villarreal, F. J.

Waddie, A. J.

K. L. Wlodarczyk, M. Ardron, A. J. Waddie, A. Dunn, M. D. Kidd, N. J. Weston, and D. P. Hand, “Laser microsculpting for the generation of robust diffractive security markings on the surface of metals,” J. Mater. Process. Technol. 222, 206–218 (2015).
[Crossref]

Wan, D.

T. D. Bennett, D. J. Krajnovich, L. Li, and D. Wan, “Mechanism of topography formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 84(5), 2897–2905 (1998).
[Crossref]

Wang, H. J.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Wanger, B.

P. Merz, H. J. Quenzer, H. Bernt, B. Wanger, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems (IEEE, 2003), pp. 258–261.
[Crossref]

Wendland, J. J.

Weston, N. J.

K. L. Wlodarczyk, M. Ardron, A. J. Waddie, A. Dunn, M. D. Kidd, N. J. Weston, and D. P. Hand, “Laser microsculpting for the generation of robust diffractive security markings on the surface of metals,” J. Mater. Process. Technol. 222, 206–218 (2015).
[Crossref]

Willenborg, E.

S. Heidrich, E. Willenborg, and A. Richmann, “Development of a laser based process chain for manufacturing freeform optics,” Phys. Proc. 12, 519–528 (2011).
[Crossref]

Wlodarczyk, K. L.

K. L. Wlodarczyk, M. Ardron, A. J. Waddie, A. Dunn, M. D. Kidd, N. J. Weston, and D. P. Hand, “Laser microsculpting for the generation of robust diffractive security markings on the surface of metals,” J. Mater. Process. Technol. 222, 206–218 (2015).
[Crossref]

K. L. Wlodarczyk, I. J. Thomson, H. J. Baker, and D. R. Hall, “Generation of microstripe cylindrical and toroidal mirrors by localized laser evaporation of fused silica,” Appl. Opt. 51(26), 6352–6360 (2012).
[Crossref] [PubMed]

Wyrowski, F.

Xiang, X.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Yang, S. T.

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[Crossref]

Yuan, X. D.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Zheng, W. G.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Zoberbier, M.

P. Merz, H. J. Quenzer, H. Bernt, B. Wanger, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems (IEEE, 2003), pp. 258–261.
[Crossref]

Zu, X. T.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Appl. Opt. (6)

Appl. Phys. A (1)

T. R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, “Mechanism of bump formation on glass substrates during laser texturing,” Appl. Phys. A 86(3), 1311–1316 (1999).
[Crossref]

Chem. Rev. (1)

H. L. Schick, “A thermodynamic analysis of the high temperature vaporization properties of silica,” Chem. Rev. 60(4), 331–362 (1960).
[Crossref]

J. Am. Ceram. Soc. (2)

A. Q. Tool, “Relation between inelastic deformability of thermal expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29(9), 240–253 (1946).
[Crossref]

W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc. 42(1), 6–10 (1959).
[Crossref]

J. Appl. Phys. (4)

W. B. Pietenpol, “Surface tension of molten glass,” J. Appl. Phys. 7, 26–37 (1936).

T. D. Bennett, D. J. Krajnovich, L. Li, and D. Wan, “Mechanism of topography formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 84(5), 2897–2905 (1998).
[Crossref]

T. D. Bennett, D. J. Krajnovich, and L. Li, “Thermophysical modeling of bump formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 85(1), 153–159 (1999).
[Crossref]

T. D. Bennett and L. Li, “Modeling laser texturing of silicate glass,” J. Appl. Phys. 89(2), 942–950 (2001).
[Crossref]

J. Mater. Process. Technol. (1)

K. L. Wlodarczyk, M. Ardron, A. J. Waddie, A. Dunn, M. D. Kidd, N. J. Weston, and D. P. Hand, “Laser microsculpting for the generation of robust diffractive security markings on the surface of metals,” J. Mater. Process. Technol. 222, 206–218 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (3)

Opt. Lasers Eng. (1)

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Phys. Proc. (1)

S. Heidrich, E. Willenborg, and A. Richmann, “Development of a laser based process chain for manufacturing freeform optics,” Phys. Proc. 12, 519–528 (2011).
[Crossref]

Proc. SPIE (4)

P. J. Stepien, “Computer-generated holograms and diffraction gratings in optical security applications,” Proc. SPIE 3973, 224–230 (2000).
[Crossref]

H. J. Baker, P. A. Field, F. Villarreal, S. D. Stratton, R. J. Ramirez, and D. R. Hall, “Line stabilization of slab waveguide CO2 lasers and the laser signature revisited,” Proc. SPIE 5120, 55–59 (2003).
[Crossref]

H. J. Baker, G. A. J. Markillie, P. Field, Q. Cao, C. Janke, and D. R. Hall, “Precision laser processing of optical microstructures with slab waveguide CO2 lasers,” Proc. SPIE 3888, 625–634 (2000).
[Crossref]

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE 7842, 78420O (2010).
[Crossref]

Other (9)

“Operating manual. Germanium acousto-optic modulator. Model number: 37027-5,” http://www.goochandhousego.com/wp-content/uploads/2014/01/51A140021.pdf .

E. Mendez Fernandez de Cordoba, Laser micro-polishing of silica optics (Ph.D. dissertation, Heriot-Watt University, 2007).

“Laser marking of glass,” http://www.rofin.com/en/markets/glass-industry/laser-marking/ .

“Glass marking techniques using CO2 lasers,” http://www.synrad.com/synradinside/pdfs/Glassmarkingmethods.pdf .

R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2-laser polishing for reduction of 351-nm surface damage initiation in fused silica,” SPIE Proc. 4679, 34–39 (2001).

“Corning® HPFS 7979, 7980, 8655 Fused Silica,” https://www.corning.com/emea/en.html .

“Borofloat®33 – Borosilicate glass,” http://www.schott.com/borofloat/english/ .

P. Merz, H. J. Quenzer, H. Bernt, B. Wanger, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems (IEEE, 2003), pp. 258–261.
[Crossref]

K. L. Wlodarczyk, Surface deformation mechanisms in laser smoothing and micro-machining of optical glasses (Ph.D. dissertation, Heriot-Watt University, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Customized CO2 laser micromachining system.
Fig. 2
Fig. 2 (a) Control of the duration of laser pulses using AOM, (b) Peak power on the workpiece as a function of the AOM voltage for various duration of the AOM gating signal (τAOM) and a constant delay τD = 50µs.
Fig. 3
Fig. 3 CO2 laser-induced deformations on the surface of HPFS®7980 Corning glass substrate near the threshold. Pulse duration was 10µs, whereas the peak power was: (a) 17W, (b) 19W, and (c) 21W.
Fig. 4
Fig. 4 CO2 laser-induced deformations on the surface of borosilicate glass substrate near the threshold. Pulse duration was 10µs, whereas the peak power was: (a) 6.0W, (b) 7.5W, (c) 9.0W and (d) 10.5W.
Fig. 5
Fig. 5 (a) Depth and (b) diameter of the CO2 laser-induced deformations (craters and bumps) produced on the surface of fused silica (HPFS®7980 Corning) and borosilicate (Borofloat®33) glasses as a function of the peak power. The deformations were generated using single laser pulses of duration 10µs and a laser spot of diameter 35µm.
Fig. 6
Fig. 6 CO2 laser-induced deformations on the surface of fused silica glass after annealing at 1042°C for 1 hour. Deformations before annealing are shown in Fig. 3.
Fig. 7
Fig. 7 CO2 laser-induced deformations on the surface of borosilicate glass after annealing at 560°C for 1 hour. Deformations before annealing are shown in Fig. 4.
Fig. 8
Fig. 8 (a) Overall volume change calculated for the annealed borosilicate glass. (b) Surface profile of the deformation produced with PPK = 9.0W including the highlighted area (square) selected for the calculation of the volume change.
Fig. 9
Fig. 9 Design and fabrication process of holographic structures on glass.
Fig. 10
Fig. 10 Holographic structure produced on the surface of borosilicate glass: (a) optical microscope image, (b) close-up of the selected area, (c) 3D surface profile and (d) cross section of the hologram pixels, measured using the Zygo profilometer. Peak power was 12.5W.
Fig. 11
Fig. 11 3D surface profile and cross section of the hologram pixels generated on the surface of fused silica, measured using the Zygo profilometer. Peak power was 21W.
Fig. 12
Fig. 12 Testing the CO2 laser generated holographic structures: (a) using a laser beam and (c) an LED. Examples of the diffractive images generated by the holograms in the setups (a) and (c) are shown in (b) and (d), respectively.
Fig. 13
Fig. 13 Imperfections in the holographic structure resulting from the laser wavelength hopping.

Metrics