Abstract

This work reports on a liquid-nitrogen-cooled, SESAM mode-locked Yb:YGAG (Yb:Y3Ga2Al3O12) ceramic laser. The Yb:YGAG has a similar structure to Yb:YAG, but its emission spectrum at low temperature remains much broader, which is suitable for ultrashort pulse generation and amplification. A stable pulse train with 119-MHz repetition rate was obtained at a wavelength of 1026 nm. The measured pulse duration is 2.4 ps, which is more than four times shorter than that achieved with a cryogenically-cooled Yb:YAG. Furthermore, laser performance of the Yb:YGAG ceramics in continuous-wave operation and wavelength tunability at 80 K was investigated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures

Venkatesan Jambunathan, Lucie Horackova, Taisuke Miura, Jan Sulc, Helena Jelínková, Akira Endo, Antonio Lucianetti, and Tomas Mocek
Opt. Mater. Express 5(6) 1289-1295 (2015)

Cryogenic Yb:YGAG ceramic laser pumped at 940 nm and zero-phonon-line: a comparative study

Venkatesan Jambunathan, Petr Navratil, Taisuke Miura, Fangxin Yue, Akira Endo, Antonio Lucianetti, and Tomas Mocek
Opt. Mater. Express 7(2) 477-483 (2017)

Femtosecond Yb:YGAG ceramic slab regenerative amplifier

Jaroslav Huynh, Martin Smrž, Taisuke Miura, Ondřej Slezák, David Vojna, Miroslav Čech, Akira Endo, and Tomáš Mocek
Opt. Mater. Express 8(3) 615-621 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
    [Crossref]
  2. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
    [Crossref]
  3. B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, “High average powers diode pumped slab laser,” IEEE J. Quantum Electron. 28(4), 992–996 (1992).
    [Crossref]
  4. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [Crossref]
  5. V. Jambunathan, T. Miura, L. Těsnohlídková, A. Lucianetti, and T. Mocek, “Efficient laser performance of a cryogenic Yb:YAG laser pumped by fiber coupled 940 and 969 nm laser diodes,” Laser Phys. Lett. 12(1), 015002 (2015).
    [Crossref]
  6. V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoký, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
    [Crossref]
  7. J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, “Improved high-field laser characteristics of a diode-pumped Yb:LiYF4 crystal at low temperature,” Opt. Express 10(10), 455–460 (2002).
    [Crossref] [PubMed]
  8. B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, and B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl(5-x)O12 materials: application toward a compositionally tuned 0.94-μm laser,” J. Opt. Soc. Am. B 15(11), 2794–2801 (1998).
    [Crossref]
  9. Y. Oishi, K. Okamura, K. Miyazaki, N. Saito, M. Iwasaki, and S. Wada, “Amplifying high energy pulses at 1062.78 nm with diode pumped Nd:YGAG ceramic,” in Advanced Solid-State Lasers Congress, G. Huber and P. Moulton, eds. (Optical Society of America, 2013), paper ATu3A.40.
    [Crossref]
  10. V. Jambunathan, L. Horáčková, T. Miura, J. Šulc, H. Jelínková, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289–1295 (2015).
    [Crossref]
  11. K. F. Wall, D. E. Miller, and T. Y. Fan, “Cryo-Yb:YAG lasers for next-generation photoinjector applications,” Proc. SPIE 8235, 823512 (2012).
    [Crossref]
  12. J. Mužík, V. Jambunathan, M. Jelínek, V. Kubeček, T. Miura, A. Endo, and T. Mocek, “Laser properties of Yb:YGAG ceramic in comparison with crystalline Yb:YAG,” presented at the CLEO/Europe - EQEC 2015, Munich, Germany, 21–25 June 2015.
  13. J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, 93421T (2015).
    [Crossref]
  14. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
    [Crossref]
  15. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
    [Crossref] [PubMed]

2015 (3)

V. Jambunathan, T. Miura, L. Těsnohlídková, A. Lucianetti, and T. Mocek, “Efficient laser performance of a cryogenic Yb:YAG laser pumped by fiber coupled 940 and 969 nm laser diodes,” Laser Phys. Lett. 12(1), 015002 (2015).
[Crossref]

V. Jambunathan, L. Horáčková, T. Miura, J. Šulc, H. Jelínková, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289–1295 (2015).
[Crossref]

J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, 93421T (2015).
[Crossref]

2013 (1)

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoký, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[Crossref]

2012 (1)

K. F. Wall, D. E. Miller, and T. Y. Fan, “Cryo-Yb:YAG lasers for next-generation photoinjector applications,” Proc. SPIE 8235, 823512 (2012).
[Crossref]

2007 (1)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

2002 (1)

1999 (1)

1998 (1)

1997 (1)

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[Crossref]

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

1992 (1)

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, “High average powers diode pumped slab laser,” IEEE J. Quantum Electron. 28(4), 992–996 (1992).
[Crossref]

1989 (1)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

Adair, R.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Albrecht, G.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, “High average powers diode pumped slab laser,” IEEE J. Quantum Electron. 28(4), 992–996 (1992).
[Crossref]

Barnes, N. P.

Beach, R.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, “High average powers diode pumped slab laser,” IEEE J. Quantum Electron. 28(4), 992–996 (1992).
[Crossref]

Benett, W. J.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, “High average powers diode pumped slab laser,” IEEE J. Quantum Electron. 28(4), 992–996 (1992).
[Crossref]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Bruesselbach, H. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[Crossref]

Byren, R. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[Crossref]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Chase, L. L.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

Comaskey, B. J.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, “High average powers diode pumped slab laser,” IEEE J. Quantum Electron. 28(4), 992–996 (1992).
[Crossref]

Di Bartolo, B.

Divoký, M.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoký, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[Crossref]

Endo, A.

V. Jambunathan, L. Horáčková, T. Miura, J. Šulc, H. Jelínková, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289–1295 (2015).
[Crossref]

J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, 93421T (2015).
[Crossref]

Equall, R. W.

Fan, T. Y.

K. F. Wall, D. E. Miller, and T. Y. Fan, “Cryo-Yb:YAG lasers for next-generation photoinjector applications,” Proc. SPIE 8235, 823512 (2012).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Freitas, B. L.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, “High average powers diode pumped slab laser,” IEEE J. Quantum Electron. 28(4), 992–996 (1992).
[Crossref]

Giesen, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Hein, J.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoký, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[Crossref]

Hönninger, C.

Horácková, L.

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Hutcheson, R. L.

Jambunathan, V.

J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, 93421T (2015).
[Crossref]

V. Jambunathan, L. Horáčková, T. Miura, J. Šulc, H. Jelínková, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289–1295 (2015).
[Crossref]

V. Jambunathan, T. Miura, L. Těsnohlídková, A. Lucianetti, and T. Mocek, “Efficient laser performance of a cryogenic Yb:YAG laser pumped by fiber coupled 940 and 969 nm laser diodes,” Laser Phys. Lett. 12(1), 015002 (2015).
[Crossref]

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoký, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[Crossref]

Jelínková, H.

J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, 93421T (2015).
[Crossref]

V. Jambunathan, L. Horáčková, T. Miura, J. Šulc, H. Jelínková, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289–1295 (2015).
[Crossref]

Kawanaka, J.

Keller, U.

Koerner, J.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoký, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[Crossref]

Lucianetti, A.

V. Jambunathan, T. Miura, L. Těsnohlídková, A. Lucianetti, and T. Mocek, “Efficient laser performance of a cryogenic Yb:YAG laser pumped by fiber coupled 940 and 969 nm laser diodes,” Laser Phys. Lett. 12(1), 015002 (2015).
[Crossref]

V. Jambunathan, L. Horáčková, T. Miura, J. Šulc, H. Jelínková, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289–1295 (2015).
[Crossref]

J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, 93421T (2015).
[Crossref]

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoký, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[Crossref]

Miller, D. E.

K. F. Wall, D. E. Miller, and T. Y. Fan, “Cryo-Yb:YAG lasers for next-generation photoinjector applications,” Proc. SPIE 8235, 823512 (2012).
[Crossref]

Miura, T.

J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, 93421T (2015).
[Crossref]

V. Jambunathan, L. Horáčková, T. Miura, J. Šulc, H. Jelínková, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289–1295 (2015).
[Crossref]

V. Jambunathan, T. Miura, L. Těsnohlídková, A. Lucianetti, and T. Mocek, “Efficient laser performance of a cryogenic Yb:YAG laser pumped by fiber coupled 940 and 969 nm laser diodes,” Laser Phys. Lett. 12(1), 015002 (2015).
[Crossref]

Mocek, T.

V. Jambunathan, T. Miura, L. Těsnohlídková, A. Lucianetti, and T. Mocek, “Efficient laser performance of a cryogenic Yb:YAG laser pumped by fiber coupled 940 and 969 nm laser diodes,” Laser Phys. Lett. 12(1), 015002 (2015).
[Crossref]

V. Jambunathan, L. Horáčková, T. Miura, J. Šulc, H. Jelínková, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289–1295 (2015).
[Crossref]

J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, 93421T (2015).
[Crossref]

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoký, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[Crossref]

Morier-Genoud, F.

Moser, M.

Mundinger, D.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, “High average powers diode pumped slab laser,” IEEE J. Quantum Electron. 28(4), 992–996 (1992).
[Crossref]

Nishioka, H.

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Paschotta, R.

Payne, S. A.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

Petty, C.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, “High average powers diode pumped slab laser,” IEEE J. Quantum Electron. 28(4), 992–996 (1992).
[Crossref]

Reeder, R. A.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[Crossref]

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Sawicka, M.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoký, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[Crossref]

Sikocinski, P.

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoký, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[Crossref]

Solarz, R. W.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, “High average powers diode pumped slab laser,” IEEE J. Quantum Electron. 28(4), 992–996 (1992).
[Crossref]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Šulc, J.

J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, 93421T (2015).
[Crossref]

V. Jambunathan, L. Horáčková, T. Miura, J. Šulc, H. Jelínková, A. Endo, A. Lucianetti, and T. Mocek, “Spectroscopic and lasing characteristics of Yb:YGAG ceramic at cryogenic temperatures,” Opt. Mater. Express 5(6), 1289–1295 (2015).
[Crossref]

Sumida, D. S.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[Crossref]

Tesnohlídková, L.

V. Jambunathan, T. Miura, L. Těsnohlídková, A. Lucianetti, and T. Mocek, “Efficient laser performance of a cryogenic Yb:YAG laser pumped by fiber coupled 940 and 969 nm laser diodes,” Laser Phys. Lett. 12(1), 015002 (2015).
[Crossref]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Ueda, K.

VanLue, D.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, “High average powers diode pumped slab laser,” IEEE J. Quantum Electron. 28(4), 992–996 (1992).
[Crossref]

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Wall, K. F.

K. F. Wall, D. E. Miller, and T. Y. Fan, “Cryo-Yb:YAG lasers for next-generation photoinjector applications,” Proc. SPIE 8235, 823512 (2012).
[Crossref]

Walsh, B. M.

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Yamakawa, K.

Appl. Phys. B (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, and R. W. Solarz, “High average powers diode pumped slab laser,” IEEE J. Quantum Electron. 28(4), 992–996 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

V. Jambunathan, T. Miura, L. Těsnohlídková, A. Lucianetti, and T. Mocek, “Efficient laser performance of a cryogenic Yb:YAG laser pumped by fiber coupled 940 and 969 nm laser diodes,” Laser Phys. Lett. 12(1), 015002 (2015).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter (1)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

Proc. SPIE (3)

J. Šulc, H. Jelínková, V. Jambunathan, T. Miura, A. Endo, A. Lucianetti, and T. Mocek, “Wavelength tunability of laser based on Yb-doped YGAG ceramics,” Proc. SPIE 9342, 93421T (2015).
[Crossref]

V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoký, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE 8780, 87800G (2013).
[Crossref]

K. F. Wall, D. E. Miller, and T. Y. Fan, “Cryo-Yb:YAG lasers for next-generation photoinjector applications,” Proc. SPIE 8235, 823512 (2012).
[Crossref]

Other (2)

J. Mužík, V. Jambunathan, M. Jelínek, V. Kubeček, T. Miura, A. Endo, and T. Mocek, “Laser properties of Yb:YGAG ceramic in comparison with crystalline Yb:YAG,” presented at the CLEO/Europe - EQEC 2015, Munich, Germany, 21–25 June 2015.

Y. Oishi, K. Okamura, K. Miyazaki, N. Saito, M. Iwasaki, and S. Wada, “Amplifying high energy pulses at 1062.78 nm with diode pumped Nd:YGAG ceramic,” in Advanced Solid-State Lasers Congress, G. Huber and P. Moulton, eds. (Optical Society of America, 2013), paper ATu3A.40.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental set-up for CW operation of the Yb:YGAG laser (without the filter) and for CW wavelength-tunable laser. PCC – plano-concave, HR – high-reflection.
Fig. 2
Fig. 2 Yb:YGAG laser output power with respect to incident and absorbed pump power in free-running regime (a) in CW mode, (b) with pulsed pumping (4% duty cycle).
Fig. 3
Fig. 3 Yb:YGAG laser spectra obtained with birefringent-filter tuning and corresponding normalized output power (magenta crosses).
Fig. 4
Fig. 4 Optical scheme of the mode-locked Yb:YGAG oscillator. PCC – plano-concave, HR – high-reflection, OC – output coupler, SESAM – semiconductor saturable absorber mirror.
Fig. 5
Fig. 5 Output spectrum of the mode-locked Yb:YGAG laser. Inset, transverse near-field profile of the output beam.
Fig. 6
Fig. 6 (a) waveform of the mode-locked pulse train acquired using a fast photodiode; (b) RF spectrum of the CW mode-locked cryogenic Yb:YGAG laser (RBW – resolution bandwidth).
Fig. 7
Fig. 7 Autocorrelation trace of the output pulses (left) and detail of the main peak (right).

Tables (1)

Tables Icon

Table 1 Comparison of stimulated emission cross sections (σe) and bandwidths of Yb:YAG (peak wavelength 1030 nm) and Yb:YGAG (peak at 1026 nm) at room and nearly liquid-nitrogen temperaturesa

Metrics