Abstract

We demonstrate simultaneous center-of-mass cooling of two coupled oscillators, consisting of a microsphere-cantilever and a tapered optical fiber. Excitation of a whispering gallery mode (WGM) of the microsphere, via the evanescent field of the taper, provides a transduction signal that continuously monitors the relative motion between these two microgram objects with a sensitivity of 3 pm. The cavity enhanced optical dipole force is used to provide feedback damping on the motion of the micron-diameter taper, whereas a piezo stack is used to damp the motion of the much larger (up to 180 μm in diameter), heavier (up to 1.5 × 10−7 kg) and stiffer microsphere-cantilever. In each feedback scheme multiple mechanical modes of each oscillator can be cooled, and mode temperatures below 10 K are reached for the dominant mode, consistent with limits determined by the measurement noise of our system. This represents stabilization on the picometer level and is the first demonstration of using WGM resonances to cool the mechanical modes of both the WGM resonator and its coupling waveguide.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cavity optoelectromechanical regenerative amplification

Michael A. Taylor, Alex Szorkovszky, Joachim Knittel, Kwan H. Lee, Terry G. McRae, and Warwick P. Bowen
Opt. Express 20(12) 12742-12751 (2012)

Magnetometry via spin-mechanical coupling in levitated optomechanics

Pardeep Kumar and M. Bhattacharya
Opt. Express 25(16) 19568-19582 (2017)

Whispering gallery mode sensors

Matthew R. Foreman, Jon D. Swaim, and Frank Vollmer
Adv. Opt. Photon. 7(2) 168-240 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
    [Crossref]
  2. D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
    [Crossref]
  3. G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A 91, 051805 (2015)
    [Crossref]
  4. O. Arcizet, P. -F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J. -M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, “High sensitivity optical monitoring of a micromechanical resonator with a quantum limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006)
    [Crossref]
  5. J. -J. Li and K. -D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101, 141905 (2012)
    [Crossref]
  6. F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21(17), 19555–19567 (2013)
    [Crossref]
  7. L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering gallery mode resonances observed in fused silica microspheres,” Europhys. Lett. 23(5), 327–334 (1993).
    [Crossref]
  8. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused silica microspheres in the near infrared,” Opt. Lett. 23(4), 247–249 (1998).
    [Crossref]
  9. M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
    [Crossref] [PubMed]
  10. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Whispering-gallery-modes electro-optic modulator and photonic microwave receiver,” J. Opt. Soc. Am. B 20(2), 333–342 (2003).
    [Crossref]
  11. D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery mode resonator for efficient optical upconversion,” Phys. Rev. A. 80, 033810 (2009).
    [Crossref]
  12. V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
    [Crossref]
  13. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008)..
    [Crossref]
  14. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref]
  15. A. Schliesser and M. Aspelmeyer, “Cavity optomechanics with whispering-gallery-mode microresonators,” in Cavity Optomechanics, M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, eds. (SpringerBerlin Heidelberg, 2014).
  16. A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
    [Crossref]
  17. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
    [Crossref]
  18. T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, “Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK,” Phys. Rev. Lett. 99, 160801 (2007).
    [Crossref]
  19. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
    [Crossref] [PubMed]
  20. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nature Photonics,  6, 768–772 (2012).
    [Crossref]
  21. O. Basarir, S. Bramhavar, and K. L. Ekinci, “Near-field optical transducer for nanomechanical resonators,’ Appl. Phys. Lett. 97, 253114 (2010).
    [Crossref]
  22. J. H. Chow, M. A. Taylor, T. T-Y. Lam, J. Knittel, J. D. Sawtell-Rickson, D. A. Shaddock, M. B. Gray, D. E. McClelland, and W. P. Bowen, “Critical coupling control of a microresonator by laser amplitude modulation,” Opt. Express 20(11), 12622–12630 (2012).
    [Crossref] [PubMed]
  23. P. Barker, “Doppler cooling a microsphere,” Phys. Rev. Lett. 105, 073002 (2010).
    [Crossref] [PubMed]
  24. Y. Chen, “Macroscopic quantum mechanics: theory and experimental concepts of optomechanics,” J. Phys. B. Atomic Mol. Opt. Phys. 46, 104001 (2013).
    [Crossref]
  25. M. Arndt and K. Hornberger, “Testing the limits of quantum mechanical superpositions,” Nat. Phys. 10, 271–277 (2014).
    [Crossref]
  26. R. Madugani, Y. Yang, J. M. Ward, V.H. Le, and S. Nic Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett. 106, 241101 (2015).
    [Crossref]
  27. E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
    [Crossref] [PubMed]
  28. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
    [Crossref]
  29. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behaviour and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [Crossref] [PubMed]
  30. Y. L. Li, J. Millen, and P. F. Barker, “Cooling the centre-of-mass motion of a silica microsphere,” Proc. SPIE 9164, 916404 (2014).
    [Crossref]
  31. M. Hosseini, G. Guccione, H. J. Slatyer, B. C. Buchler, and P. Koy Lam, “Multimode laser cooling and ultra-high sensitivity force sensing with nanowires,” Nat. Commun. 5, 4663 (2014).
    [Crossref] [PubMed]
  32. M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, “Feedback cooling of a cantilever’s fundamental mode below 5 mK,” Phys. Rev. Lett. 99, 017201 (2007).
    [Crossref]
  33. F. Elste, S. M. Girvin, and A. A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 102, 207209 (2009).
    [Crossref] [PubMed]
  34. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
    [Crossref]

2015 (3)

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A 91, 051805 (2015)
[Crossref]

R. Madugani, Y. Yang, J. M. Ward, V.H. Le, and S. Nic Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett. 106, 241101 (2015).
[Crossref]

2014 (3)

M. Arndt and K. Hornberger, “Testing the limits of quantum mechanical superpositions,” Nat. Phys. 10, 271–277 (2014).
[Crossref]

Y. L. Li, J. Millen, and P. F. Barker, “Cooling the centre-of-mass motion of a silica microsphere,” Proc. SPIE 9164, 916404 (2014).
[Crossref]

M. Hosseini, G. Guccione, H. J. Slatyer, B. C. Buchler, and P. Koy Lam, “Multimode laser cooling and ultra-high sensitivity force sensing with nanowires,” Nat. Commun. 5, 4663 (2014).
[Crossref] [PubMed]

2013 (2)

Y. Chen, “Macroscopic quantum mechanics: theory and experimental concepts of optomechanics,” J. Phys. B. Atomic Mol. Opt. Phys. 46, 104001 (2013).
[Crossref]

F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21(17), 19555–19567 (2013)
[Crossref]

2012 (4)

J. -J. Li and K. -D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101, 141905 (2012)
[Crossref]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref] [PubMed]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nature Photonics,  6, 768–772 (2012).
[Crossref]

J. H. Chow, M. A. Taylor, T. T-Y. Lam, J. Knittel, J. D. Sawtell-Rickson, D. A. Shaddock, M. B. Gray, D. E. McClelland, and W. P. Bowen, “Critical coupling control of a microresonator by laser amplitude modulation,” Opt. Express 20(11), 12622–12630 (2012).
[Crossref] [PubMed]

2011 (1)

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref]

2010 (3)

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
[Crossref]

P. Barker, “Doppler cooling a microsphere,” Phys. Rev. Lett. 105, 073002 (2010).
[Crossref] [PubMed]

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Near-field optical transducer for nanomechanical resonators,’ Appl. Phys. Lett. 97, 253114 (2010).
[Crossref]

2009 (5)

F. Elste, S. M. Girvin, and A. A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 102, 207209 (2009).
[Crossref] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[Crossref]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery mode resonator for efficient optical upconversion,” Phys. Rev. A. 80, 033810 (2009).
[Crossref]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

2008 (3)

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008)..
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[Crossref]

2007 (3)

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, “Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK,” Phys. Rev. Lett. 99, 160801 (2007).
[Crossref]

M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, “Feedback cooling of a cantilever’s fundamental mode below 5 mK,” Phys. Rev. Lett. 99, 017201 (2007).
[Crossref]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

2006 (2)

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
[Crossref]

O. Arcizet, P. -F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J. -M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, “High sensitivity optical monitoring of a micromechanical resonator with a quantum limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006)
[Crossref]

2004 (1)

2003 (1)

1998 (1)

1993 (1)

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering gallery mode resonances observed in fused silica microspheres,” Europhys. Lett. 23(5), 327–334 (1993).
[Crossref]

Alaie, S.

Anetsberger, G.

A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[Crossref]

Arcizet, O.

A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[Crossref]

O. Arcizet, P. -F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J. -M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, “High sensitivity optical monitoring of a micromechanical resonator with a quantum limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006)
[Crossref]

Arndt, M.

M. Arndt and K. Hornberger, “Testing the limits of quantum mechanical superpositions,” Nat. Phys. 10, 271–277 (2014).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Aspelmeyer, M.

A. Schliesser and M. Aspelmeyer, “Cavity optomechanics with whispering-gallery-mode microresonators,” in Cavity Optomechanics, M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, eds. (SpringerBerlin Heidelberg, 2014).

Atherton, D. P.

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A 91, 051805 (2015)
[Crossref]

Barbour, R.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref]

Barker, P.

P. Barker, “Doppler cooling a microsphere,” Phys. Rev. Lett. 105, 073002 (2010).
[Crossref] [PubMed]

Barker, P. F.

Y. L. Li, J. Millen, and P. F. Barker, “Cooling the centre-of-mass motion of a silica microsphere,” Proc. SPIE 9164, 916404 (2014).
[Crossref]

Basarir, O.

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Near-field optical transducer for nanomechanical resonators,’ Appl. Phys. Lett. 97, 253114 (2010).
[Crossref]

Blasius, T. D.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nature Photonics,  6, 768–772 (2012).
[Crossref]

Bodiya, T.

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, “Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK,” Phys. Rev. Lett. 99, 160801 (2007).
[Crossref]

Bouwmeester, D.

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
[Crossref]

Bowen, W. P.

Bramhavar, S.

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Near-field optical transducer for nanomechanical resonators,’ Appl. Phys. Lett. 97, 253114 (2010).
[Crossref]

Briant, T.

O. Arcizet, P. -F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J. -M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, “High sensitivity optical monitoring of a micromechanical resonator with a quantum limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006)
[Crossref]

Brune, M.

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering gallery mode resonances observed in fused silica microspheres,” Europhys. Lett. 23(5), 327–334 (1993).
[Crossref]

Buchler, B. C.

M. Hosseini, G. Guccione, H. J. Slatyer, B. C. Buchler, and P. Koy Lam, “Multimode laser cooling and ultra-high sensitivity force sensing with nanowires,” Nat. Commun. 5, 4663 (2014).
[Crossref] [PubMed]

Carmon, T.

Chen, Y.

Y. Chen, “Macroscopic quantum mechanics: theory and experimental concepts of optomechanics,” J. Phys. B. Atomic Mol. Opt. Phys. 46, 104001 (2013).
[Crossref]

Chow, J. H.

Clerk, A. A.

F. Elste, S. M. Girvin, and A. A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 102, 207209 (2009).
[Crossref] [PubMed]

Cohadon, P. -F.

O. Arcizet, P. -F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J. -M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, “High sensitivity optical monitoring of a micromechanical resonator with a quantum limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006)
[Crossref]

Collot, L.

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering gallery mode resonances observed in fused silica microspheres,” Europhys. Lett. 23(5), 327–334 (1993).
[Crossref]

Corbitt, T.

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, “Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK,” Phys. Rev. Lett. 99, 160801 (2007).
[Crossref]

Cunningham, M.

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A 91, 051805 (2015)
[Crossref]

Degen, C. L.

M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, “Feedback cooling of a cantilever’s fundamental mode below 5 mK,” Phys. Rev. Lett. 99, 017201 (2007).
[Crossref]

Eichenfield, M.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

Ekinci, K. L.

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Near-field optical transducer for nanomechanical resonators,’ Appl. Phys. Lett. 97, 253114 (2010).
[Crossref]

Elste, F.

F. Elste, S. M. Girvin, and A. A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 102, 207209 (2009).
[Crossref] [PubMed]

Fiore, V.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref]

Francais, O.

O. Arcizet, P. -F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J. -M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, “High sensitivity optical monitoring of a micromechanical resonator with a quantum limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006)
[Crossref]

Gavartin, E.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref] [PubMed]

Geraci, A. A.

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A 91, 051805 (2015)
[Crossref]

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
[Crossref]

Ghadimi, A.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

Girvin, S. M.

F. Elste, S. M. Girvin, and A. A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 102, 207209 (2009).
[Crossref] [PubMed]

Gray, M. B.

Guccione, G.

M. Hosseini, G. Guccione, H. J. Slatyer, B. C. Buchler, and P. Koy Lam, “Multimode laser cooling and ultra-high sensitivity force sensing with nanowires,” Nat. Commun. 5, 4663 (2014).
[Crossref] [PubMed]

Haroche, S.

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering gallery mode resonances observed in fused silica microspheres,” Europhys. Lett. 23(5), 327–334 (1993).
[Crossref]

Heidmann, A.

O. Arcizet, P. -F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J. -M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, “High sensitivity optical monitoring of a micromechanical resonator with a quantum limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006)
[Crossref]

Hornberger, K.

M. Arndt and K. Hornberger, “Testing the limits of quantum mechanical superpositions,” Nat. Phys. 10, 271–277 (2014).
[Crossref]

Hosseini, M.

M. Hosseini, G. Guccione, H. J. Slatyer, B. C. Buchler, and P. Koy Lam, “Multimode laser cooling and ultra-high sensitivity force sensing with nanowires,” Nat. Commun. 5, 4663 (2014).
[Crossref] [PubMed]

Hossein-Zadeh, M.

Ilchenko, V. S.

Jiang, X.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

Kimble, H. J.

Kippenberg, T. J.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref] [PubMed]

A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[Crossref]

Kitching, J.

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
[Crossref]

Kleckner, D.

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
[Crossref]

Knittel, J.

Koy Lam, P.

M. Hosseini, G. Guccione, H. J. Slatyer, B. C. Buchler, and P. Koy Lam, “Multimode laser cooling and ultra-high sensitivity force sensing with nanowires,” Nat. Commun. 5, 4663 (2014).
[Crossref] [PubMed]

Krause, A. G.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nature Photonics,  6, 768–772 (2012).
[Crossref]

Kuzyk, M. C.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref]

Lam, T. T-Y.

Le, V.H.

R. Madugani, Y. Yang, J. M. Ward, V.H. Le, and S. Nic Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett. 106, 241101 (2015).
[Crossref]

Lefevre-Seguin, V.

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering gallery mode resonances observed in fused silica microspheres,” Europhys. Lett. 23(5), 327–334 (1993).
[Crossref]

Leseman, Z. C.

Li, J. -J.

J. -J. Li and K. -D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101, 141905 (2012)
[Crossref]

Li, M.

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[Crossref]

Li, Y. L.

Y. L. Li, J. Millen, and P. F. Barker, “Cooling the centre-of-mass motion of a silica microsphere,” Proc. SPIE 9164, 916404 (2014).
[Crossref]

Lin, Q.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nature Photonics,  6, 768–772 (2012).
[Crossref]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

Liu, F.

Mabuchi, H.

Mackowski, J. -M.

O. Arcizet, P. -F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J. -M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, “High sensitivity optical monitoring of a micromechanical resonator with a quantum limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006)
[Crossref]

Madugani, R.

R. Madugani, Y. Yang, J. M. Ward, V.H. Le, and S. Nic Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett. 106, 241101 (2015).
[Crossref]

Maleki, L.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008)..
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Whispering-gallery-modes electro-optic modulator and photonic microwave receiver,” J. Opt. Soc. Am. B 20(2), 333–342 (2003).
[Crossref]

Mamin, H. J.

M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, “Feedback cooling of a cantilever’s fundamental mode below 5 mK,” Phys. Rev. Lett. 99, 017201 (2007).
[Crossref]

Matsko, A. B.

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery mode resonator for efficient optical upconversion,” Phys. Rev. A. 80, 033810 (2009).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008)..
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Whispering-gallery-modes electro-optic modulator and photonic microwave receiver,” J. Opt. Soc. Am. B 20(2), 333–342 (2003).
[Crossref]

Mavalvala, N.

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, “Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK,” Phys. Rev. Lett. 99, 160801 (2007).
[Crossref]

McClelland, D. E.

Michael, C. P.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

Michel, C.

O. Arcizet, P. -F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J. -M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, “High sensitivity optical monitoring of a micromechanical resonator with a quantum limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006)
[Crossref]

Millen, J.

Y. L. Li, J. Millen, and P. F. Barker, “Cooling the centre-of-mass motion of a silica microsphere,” Proc. SPIE 9164, 916404 (2014).
[Crossref]

Nic Chormaic, S.

R. Madugani, Y. Yang, J. M. Ward, V.H. Le, and S. Nic Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett. 106, 241101 (2015).
[Crossref]

O’Shea, D.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

Ottaway, D.

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, “Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK,” Phys. Rev. Lett. 99, 160801 (2007).
[Crossref]

Painter, O.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nature Photonics,  6, 768–772 (2012).
[Crossref]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

Papp, S. B.

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
[Crossref]

Perahia, R.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

Pernice, W. H. P.

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[Crossref]

Pinard, L.

O. Arcizet, P. -F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J. -M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, “High sensitivity optical monitoring of a micromechanical resonator with a quantum limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006)
[Crossref]

Pinard, M.

O. Arcizet, P. -F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J. -M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, “High sensitivity optical monitoring of a micromechanical resonator with a quantum limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006)
[Crossref]

Piro, N.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

Poggio, M.

M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, “Feedback cooling of a cantilever’s fundamental mode below 5 mK,” Phys. Rev. Lett. 99, 017201 (2007).
[Crossref]

Pöllinger, M.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

Raimond, J. M.

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering gallery mode resonances observed in fused silica microspheres,” Europhys. Lett. 23(5), 327–334 (1993).
[Crossref]

Ranjit, G.

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A 91, 051805 (2015)
[Crossref]

Rauschenbeutel, A.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

Riviere, R.

A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[Crossref]

Rosenberg, J.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

Rousseau, L.

O. Arcizet, P. -F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J. -M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, “High sensitivity optical monitoring of a micromechanical resonator with a quantum limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006)
[Crossref]

Rugar, D.

M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, “Feedback cooling of a cantilever’s fundamental mode below 5 mK,” Phys. Rev. Lett. 99, 017201 (2007).
[Crossref]

Savchenkov, A. A.

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery mode resonator for efficient optical upconversion,” Phys. Rev. A. 80, 033810 (2009).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008)..
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Whispering-gallery-modes electro-optic modulator and photonic microwave receiver,” J. Opt. Soc. Am. B 20(2), 333–342 (2003).
[Crossref]

Sawtell-Rickson, J. D.

Schilling, R.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

Schliesser, A.

A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[Crossref]

A. Schliesser and M. Aspelmeyer, “Cavity optomechanics with whispering-gallery-mode microresonators,” in Cavity Optomechanics, M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, eds. (SpringerBerlin Heidelberg, 2014).

Schwefel, H. G. L.

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery mode resonator for efficient optical upconversion,” Phys. Rev. A. 80, 033810 (2009).
[Crossref]

Seidel, D.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008)..
[Crossref]

Shaddock, D. A.

Sigg, D.

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, “Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK,” Phys. Rev. Lett. 99, 160801 (2007).
[Crossref]

Slatyer, H. J.

M. Hosseini, G. Guccione, H. J. Slatyer, B. C. Buchler, and P. Koy Lam, “Multimode laser cooling and ultra-high sensitivity force sensing with nanowires,” Nat. Commun. 5, 4663 (2014).
[Crossref] [PubMed]

Smith, N.

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, “Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK,” Phys. Rev. Lett. 99, 160801 (2007).
[Crossref]

Solomatine, I.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008)..
[Crossref]

Streed, E. W.

Strekalov, D. V.

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery mode resonator for efficient optical upconversion,” Phys. Rev. A. 80, 033810 (2009).
[Crossref]

Stutz, J. H.

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A 91, 051805 (2015)
[Crossref]

Sudhir, V.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

Tang, H. X.

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[Crossref]

Taylor, M. A.

Tian, L.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref]

Vahala, K. J.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behaviour and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

Verlot, P.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref] [PubMed]

Vernooy, D. W.

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Wang, H.

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref]

Wang, L. J.

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery mode resonator for efficient optical upconversion,” Phys. Rev. A. 80, 033810 (2009).
[Crossref]

Ward, J. M.

R. Madugani, Y. Yang, J. M. Ward, V.H. Le, and S. Nic Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett. 106, 241101 (2015).
[Crossref]

Warken, F.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

Whitcomb, S.

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, “Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK,” Phys. Rev. Lett. 99, 160801 (2007).
[Crossref]

Wilson, D. J.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

Winger, M.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nature Photonics,  6, 768–772 (2012).
[Crossref]

Wipf, C.

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, “Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK,” Phys. Rev. Lett. 99, 160801 (2007).
[Crossref]

Yang, L.

Yang, Y.

R. Madugani, Y. Yang, J. M. Ward, V.H. Le, and S. Nic Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett. 106, 241101 (2015).
[Crossref]

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref]

Yu, N.

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery mode resonator for efficient optical upconversion,” Phys. Rev. A. 80, 033810 (2009).
[Crossref]

Zhu, K. -D.

J. -J. Li and K. -D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101, 141905 (2012)
[Crossref]

Appl. Phys. Lett. (3)

J. -J. Li and K. -D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101, 141905 (2012)
[Crossref]

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Near-field optical transducer for nanomechanical resonators,’ Appl. Phys. Lett. 97, 253114 (2010).
[Crossref]

R. Madugani, Y. Yang, J. M. Ward, V.H. Le, and S. Nic Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett. 106, 241101 (2015).
[Crossref]

Europhys. Lett. (1)

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering gallery mode resonances observed in fused silica microspheres,” Europhys. Lett. 23(5), 327–334 (1993).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B. Atomic Mol. Opt. Phys. (1)

Y. Chen, “Macroscopic quantum mechanics: theory and experimental concepts of optomechanics,” J. Phys. B. Atomic Mol. Opt. Phys. 46, 104001 (2013).
[Crossref]

Nat. Commun. (1)

M. Hosseini, G. Guccione, H. J. Slatyer, B. C. Buchler, and P. Koy Lam, “Multimode laser cooling and ultra-high sensitivity force sensing with nanowires,” Nat. Commun. 5, 4663 (2014).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Nat. Nanotechnol. (1)

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

Nat. Phys. (2)

M. Arndt and K. Hornberger, “Testing the limits of quantum mechanical superpositions,” Nat. Phys. 10, 271–277 (2014).
[Crossref]

A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[Crossref]

Nature (2)

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
[Crossref]

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

Nature Photonics (1)

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nature Photonics,  6, 768–772 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

G. Ranjit, D. P. Atherton, J. H. Stutz, M. Cunningham, and A. A. Geraci, “Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum,” Phys. Rev. A 91, 051805 (2015)
[Crossref]

Phys. Rev. A. (1)

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery mode resonator for efficient optical upconversion,” Phys. Rev. A. 80, 033810 (2009).
[Crossref]

Phys. Rev. Lett. (11)

V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008)..
[Crossref]

O. Arcizet, P. -F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J. -M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, “High sensitivity optical monitoring of a micromechanical resonator with a quantum limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006)
[Crossref]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, “Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK,” Phys. Rev. Lett. 99, 160801 (2007).
[Crossref]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

P. Barker, “Doppler cooling a microsphere,” Phys. Rev. Lett. 105, 073002 (2010).
[Crossref] [PubMed]

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
[Crossref]

M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, “Feedback cooling of a cantilever’s fundamental mode below 5 mK,” Phys. Rev. Lett. 99, 017201 (2007).
[Crossref]

F. Elste, S. M. Girvin, and A. A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 102, 207209 (2009).
[Crossref] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[Crossref]

Proc. SPIE (1)

Y. L. Li, J. Millen, and P. F. Barker, “Cooling the centre-of-mass motion of a silica microsphere,” Proc. SPIE 9164, 916404 (2014).
[Crossref]

Other (1)

A. Schliesser and M. Aspelmeyer, “Cavity optomechanics with whispering-gallery-mode microresonators,” in Cavity Optomechanics, M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, eds. (SpringerBerlin Heidelberg, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) A microscope image of a typical microsphere-cantilever. (b) Artist’s impression of the microsphere-cantilever, which is brought close to, but never touches, the tapered optical fiber underneath it. The evanescent fields of the WGM and tapered fiber are illustrated. (c) Monitoring the transmission t through the taper as the laser frequency is scanned reveals a WGM resonance (black), fitted with a Lorentzian function (blue) with a FWHM of 6.8 MHz.

Fig. 2
Fig. 2

A schematic of the transduction and feedback system. A 1064 nm Nd:YVO4 laser with an intracavity electro-optic modulator (EOM) is tuned to excite the WGM. A PDH locking scheme is implemented, with sidebands created using an RF signal applied to the EOM. The light is split into a strong beam (blue), and a weak, red-detuned, transduction beam (red) that counterpropagate along the tapered optical fiber with fixed detuning. Feedback cooling is achieved by amplifying (increasing the gain, g) and differentiating the transduction signal from photodiode PD 2, which is sent to a piezo stack (PZT) supporting the microsphere-cantilever, and / or used to modulate the locking beam intensity using AOM 2.

Fig. 3
Fig. 3

The full PSD from the transduction signal shows multiple mechanical modes belonging to the microsphere-cantilever or the tapered fibre which are identified by resonantly driving either oscillator. The predicted mode-shapes are shown as inset diagrams.

Fig. 4
Fig. 4

(a) The FFT of the transduction signal, showing the motion of the microsphere-cantilever with d = 0.42 μm, 0.18 μm, and 0.03 μm, illustrating the change in transduction, defined as the peak height above the background level. The FFT is normalized with respect to the maximum measured peak height. (b) The effect of the coupling distance, d, on the power coupled into the WGM, Pc, normalized to the input power propagating through the taper (blue), fitted with the on-resonance transmission relationship from [28]. Also shown is the transduction, τ, of the fundamental mechanical mode of a microsphere-cantilever (black) when the transduction beam is red-detuned by 20 MHz using a WGM with 40 MHz FWHM, fitted using reference [26].

Fig. 5
Fig. 5

Simultaneous cavity enhanced optical dipole force cooling of two mechanical modes of the tapered optical fiber, obtained at a pressure of 0.5 mbar. Representational mode shapes are shown. Each mode temperature is defined as Tt1, Tt2, at varying gain, gt1, gt2. Curves are fitted using Eq. 2 to infer the mode temperatures, and the values of Tt1, t2 are found with less than 10% uncertainty. The mechanical quality factor of each mode is Qm1 = 380 and Qm2 = 510.

Fig. 6
Fig. 6

PZT feedback cooling of the fundamental mode of the microsphere-cantilever with Qm1 = 370, reaching Tc1 at varying feedback gains gc1. The second mechanical eigenfrequency at 17.73 kHz, with Qm2 = 640, is simultaneously cooled to Tc2 = 108 K. Mechanical mode shapes are shown as inset diagrams. Data was taken at atmospheric pressure, with curves fitted using Eq. 2 to infer the mode temperatures Tc1,c2, with uncertainties of less than 10%.

Fig. 7
Fig. 7

PZT cooling of a microsphere-cantilever with a lower Qm = 280 than in Fig. 6 and higher noise floor, showing squashing with large feedback gain, gc. The mechanical mode is shown as an inset. Data was taken at atmospheric pressure, with curves fitted using Eq. 2 and Eq. 3 to infer the mode temperatures, with less than 10% uncertainty unless stated.

Fig. 8
Fig. 8

(a) Simultaneous cooling of a taper mode at Tt and the microsphere-cantilever mode at Tc using both the PZT and the CEODF, performed at atmospheric pressure. Mode temperatures are approximated by integrating the area under the respective peaks. (b) Cooling with only the CEODF or the PZT scheme, each optimized for the taper mode and cantilever mode respectively, can influence the transduced PSD of the other oscillator.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F o ( d ) = 8 ψ χ t V t γ e ( 0 ) Q opt 2 P c Θ 0 2 n t 2 V s × e ψ d ( e ψ d + ( γ e ( 0 ) Q opt / Θ 0 ) ) 3 ,
S fb ( ω ) = 2 Γ 0 k B T 0 M eff 1 ( ω 0 2 ω 2 ) 2 + ( 1 + g ) 2 Γ 0 2 ω 2 ,
S mod ( ω ) = S fb ( ω ) + S det ( ω 0 2 ω 2 ) 2 + Γ 0 2 ω 2 ( ω 0 2 ω 2 ) 2 + ( 1 + g ) 2 Γ 0 2 ω 2 ,

Metrics