Abstract

A novel and efficient method for fiber transfer delay measurement is demonstrated. Fiber transfer delay measurement in time domain is converted into the frequency measurement of the modulation signal in frequency domain, accompany with a coarse and easy ambiguity resolving process. This method achieves a sub-picosecond resolution, with an accuracy of 1 picosecond, and a large dynamic range up to 50 km as well as no measurement dead zone.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simple and highly accurate technique for time delay measurement in optical fibers by free-running laser configuration

Ke Yun, Jing Li, Guangxiao Zhang, Lingling Chen, Weijian Yang, and Zhigang Zhang
Opt. Lett. 33(15) 1732-1734 (2008)

Large-dynamic-range time pre-compensation scheme for fiber optic time transfer

Longqiang Yu, Rong Wang, Lin Lu, Yong Zhu, Chuanxin Wu, Baofu Zhang, and Yimei Wei
Appl. Opt. 56(6) 1757-1762 (2017)

Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber

Yunli Dang, Zhiyong Zhao, Ming Tang, Can Zhao, Lin Gan, Songnian Fu, Tongqing Liu, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 25(17) 20183-20193 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
    [Crossref]
  2. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [Crossref]
  3. K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
    [Crossref] [PubMed]
  4. W. Shillue, “Fiber distribution of local oscillator for Atacama Large Millimeter Array,” in Optical Fiber Communication/National Fiber Optic Engineers Conference (IEEE, 2008), pp. 1–3.
    [Crossref]
  5. B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometer array telescope - precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5, 13851 (2015).
    [Crossref] [PubMed]
  6. https://www.ptb.de/emrp/neatft_publications.html .
  7. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
    [Crossref]
  8. B. Vidal, T. Mengual, C. Ibáňez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, “Simplified WDM optical beamforming network for large antenna arrays,” IEEE Photonics Technol. Lett. 18(10), 1200–1202 (2006).
    [Crossref]
  9. D. Dolfi, F. Michel-Gabriel, S. Bann, and J. P. Huignard, “Two-dimensional optical architecture for time-delay beam forming in a phased-array antenna,” Opt. Lett. 16(4), 255–257 (1991).
    [Crossref] [PubMed]
  10. B. Vidal, T. Mengual, and J. Marti, “Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays,” IEEE Photonics Technol. Lett. 18(24), 2590–2592 (2006).
    [Crossref]
  11. S. R. Jefferts, M. A. Weiss, J. Levine, S. Dilla, E. W. Bell, and T. E. Parker, “Two-way time and frequency transfer using optical fibers,” IEEE Trans. Instrum. Meas. 46(2), 209–211 (1997).
    [Crossref]
  12. C. Lopes and B. Riondet, “Ultra precise time dissemination system,” in Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum, 1999 and the IEEE International Frequency Control Symposium,1999 (IEEE, 1999), pp. 296–299.
    [Crossref]
  13. M. Rost, M. Fujieda, and D. Piester, “Time transfer through optical fibers (TTTOF): progress on calibrated clock comparisons,” in Proceedings of 24th European Frequency and Time Forum (2010), paper 6.4.
    [Crossref]
  14. B. Wang, C. Gao, W. L. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level,” Sci. Rep. 2, 556 (2012).
    [Crossref] [PubMed]
  15. J. Kalisz, “Review of methods for time interval measurements with picosecond resolution,” Metrologia 41(1), 17–32 (2004).
    [Crossref]
  16. D. L. Philen, I. A. White, J. F. Kuhl, and S. C. Mettler, “Single-mode fiber OTDR: experiment and theory,” IEEE Trans. Microw. Theory Tech. 30(10), 1487–1496 (1982).
    [Crossref]
  17. B. Qi, A. Tausz, L. Qian, and H. K. Lo, “High-resolution, large dynamic range fiber length measurement based on a frequency-shifted asymmetric Sagnac interferometer,” Opt. Lett. 30(24), 3287–3289 (2005).
    [Crossref] [PubMed]
  18. L. D. Nguyen, B. Journet, I. Ledoux-Rak, J. Zyss, L. Nam, and V. V. Luc, “Opto-electronic oscillator: applications to sensors,” in Proceedings of IEEE International Meeting on Microwave Photonics/2008 Asia-Pacific Microwave Photonics Conference (IEEE, 2008), pp. 131–134.
  19. K. H. Yoon, J. W. Song, and H. D. Kim, “Fiber length measurement technique employing self-seeding laser oscillation of fabry–perot laser diode,” Jpn. J. Appl. Phys. 46(1), 415–416 (2007).
    [Crossref]
  20. I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
    [Crossref]
  21. Y. L. Hu, L. Zhan, Z. X. Zhang, S. Y. Luo, and Y. X. Xia, “High-resolution measurement of fiber length by using a mode-locked fiber laser configuration,” Opt. Lett. 32(12), 1605–1607 (2007).
    [Crossref] [PubMed]
  22. K. Yun, J. Li, G. Zhang, L. Chen, W. Yang, and Z. Zhang, “Simple and highly accurate technique for time delay measurement in optical fibers by free-running laser configuration,” Opt. Lett. 33(15), 1732–1734 (2008).
    [Crossref] [PubMed]

2015 (1)

B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometer array telescope - precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5, 13851 (2015).
[Crossref] [PubMed]

2012 (2)

B. Wang, C. Gao, W. L. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level,” Sci. Rep. 2, 556 (2012).
[Crossref] [PubMed]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

2008 (1)

2007 (2)

Y. L. Hu, L. Zhan, Z. X. Zhang, S. Y. Luo, and Y. X. Xia, “High-resolution measurement of fiber length by using a mode-locked fiber laser configuration,” Opt. Lett. 32(12), 1605–1607 (2007).
[Crossref] [PubMed]

K. H. Yoon, J. W. Song, and H. D. Kim, “Fiber length measurement technique employing self-seeding laser oscillation of fabry–perot laser diode,” Jpn. J. Appl. Phys. 46(1), 415–416 (2007).
[Crossref]

2006 (2)

B. Vidal, T. Mengual, C. Ibáňez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, “Simplified WDM optical beamforming network for large antenna arrays,” IEEE Photonics Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

B. Vidal, T. Mengual, and J. Marti, “Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays,” IEEE Photonics Technol. Lett. 18(24), 2590–2592 (2006).
[Crossref]

2005 (1)

2004 (1)

J. Kalisz, “Review of methods for time interval measurements with picosecond resolution,” Metrologia 41(1), 17–32 (2004).
[Crossref]

2003 (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

2000 (1)

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
[Crossref]

1998 (1)

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
[Crossref]

1997 (1)

S. R. Jefferts, M. A. Weiss, J. Levine, S. Dilla, E. W. Bell, and T. E. Parker, “Two-way time and frequency transfer using optical fibers,” IEEE Trans. Instrum. Meas. 46(2), 209–211 (1997).
[Crossref]

1991 (2)

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

D. Dolfi, F. Michel-Gabriel, S. Bann, and J. P. Huignard, “Two-dimensional optical architecture for time-delay beam forming in a phased-array antenna,” Opt. Lett. 16(4), 255–257 (1991).
[Crossref] [PubMed]

1982 (1)

D. L. Philen, I. A. White, J. F. Kuhl, and S. C. Mettler, “Single-mode fiber OTDR: experiment and theory,” IEEE Trans. Microw. Theory Tech. 30(10), 1487–1496 (1982).
[Crossref]

Alnis, J.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Bai, Y.

B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometer array telescope - precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5, 13851 (2015).
[Crossref] [PubMed]

B. Wang, C. Gao, W. L. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level,” Sci. Rep. 2, 556 (2012).
[Crossref] [PubMed]

Bann, S.

Bell, E. W.

S. R. Jefferts, M. A. Weiss, J. Levine, S. Dilla, E. W. Bell, and T. E. Parker, “Two-way time and frequency transfer using optical fibers,” IEEE Trans. Instrum. Meas. 46(2), 209–211 (1997).
[Crossref]

Bernstein, N.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Chen, L.

Chen, W. L.

B. Wang, C. Gao, W. L. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level,” Sci. Rep. 2, 556 (2012).
[Crossref] [PubMed]

Dalmases, F.

B. Vidal, T. Mengual, C. Ibáňez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, “Simplified WDM optical beamforming network for large antenna arrays,” IEEE Photonics Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

Dilla, S.

S. R. Jefferts, M. A. Weiss, J. Levine, S. Dilla, E. W. Bell, and T. E. Parker, “Two-way time and frequency transfer using optical fibers,” IEEE Trans. Instrum. Meas. 46(2), 209–211 (1997).
[Crossref]

Dolfi, D.

Dong, J. W.

B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometer array telescope - precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5, 13851 (2015).
[Crossref] [PubMed]

Droste, S.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Feng, Y. Y.

B. Wang, C. Gao, W. L. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level,” Sci. Rep. 2, 556 (2012).
[Crossref] [PubMed]

Fujima, I.

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
[Crossref]

Gao, C.

B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometer array telescope - precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5, 13851 (2015).
[Crossref] [PubMed]

B. Wang, C. Gao, W. L. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level,” Sci. Rep. 2, 556 (2012).
[Crossref] [PubMed]

Grosche, G.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Hänsch, T. W.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Holzwarth, R.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Hu, Y. L.

Huignard, J. P.

Ibánez-López, C.

B. Vidal, T. Mengual, C. Ibáňez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, “Simplified WDM optical beamforming network for large antenna arrays,” IEEE Photonics Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

Iwasaki, S.

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
[Crossref]

Jefferts, S. R.

S. R. Jefferts, M. A. Weiss, J. Levine, S. Dilla, E. W. Bell, and T. E. Parker, “Two-way time and frequency transfer using optical fibers,” IEEE Trans. Instrum. Meas. 46(2), 209–211 (1997).
[Crossref]

Jofre, L.

B. Vidal, T. Mengual, C. Ibáňez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, “Simplified WDM optical beamforming network for large antenna arrays,” IEEE Photonics Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

Journet, B.

L. D. Nguyen, B. Journet, I. Ledoux-Rak, J. Zyss, L. Nam, and V. V. Luc, “Opto-electronic oscillator: applications to sensors,” in Proceedings of IEEE International Meeting on Microwave Photonics/2008 Asia-Pacific Microwave Photonics Conference (IEEE, 2008), pp. 131–134.

Kalisz, J.

J. Kalisz, “Review of methods for time interval measurements with picosecond resolution,” Metrologia 41(1), 17–32 (2004).
[Crossref]

Kim, H. D.

K. H. Yoon, J. W. Song, and H. D. Kim, “Fiber length measurement technique employing self-seeding laser oscillation of fabry–perot laser diode,” Jpn. J. Appl. Phys. 46(1), 415–416 (2007).
[Crossref]

Kuhl, J. F.

D. L. Philen, I. A. White, J. F. Kuhl, and S. C. Mettler, “Single-mode fiber OTDR: experiment and theory,” IEEE Trans. Microw. Theory Tech. 30(10), 1487–1496 (1982).
[Crossref]

Ledoux-Rak, I.

L. D. Nguyen, B. Journet, I. Ledoux-Rak, J. Zyss, L. Nam, and V. V. Luc, “Opto-electronic oscillator: applications to sensors,” in Proceedings of IEEE International Meeting on Microwave Photonics/2008 Asia-Pacific Microwave Photonics Conference (IEEE, 2008), pp. 131–134.

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Lee, J. J.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Legero, T.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Levine, J.

S. R. Jefferts, M. A. Weiss, J. Levine, S. Dilla, E. W. Bell, and T. E. Parker, “Two-way time and frequency transfer using optical fibers,” IEEE Trans. Instrum. Meas. 46(2), 209–211 (1997).
[Crossref]

Li, J.

Li, T. C.

B. Wang, C. Gao, W. L. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level,” Sci. Rep. 2, 556 (2012).
[Crossref] [PubMed]

Lo, H. K.

Luc, V. V.

L. D. Nguyen, B. Journet, I. Ledoux-Rak, J. Zyss, L. Nam, and V. V. Luc, “Opto-electronic oscillator: applications to sensors,” in Proceedings of IEEE International Meeting on Microwave Photonics/2008 Asia-Pacific Microwave Photonics Conference (IEEE, 2008), pp. 131–134.

Luo, S. Y.

Marti, J.

B. Vidal, T. Mengual, and J. Marti, “Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays,” IEEE Photonics Technol. Lett. 18(24), 2590–2592 (2006).
[Crossref]

Martí, J.

B. Vidal, T. Mengual, C. Ibáňez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, “Simplified WDM optical beamforming network for large antenna arrays,” IEEE Photonics Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

McKenzie, I.

B. Vidal, T. Mengual, C. Ibáňez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, “Simplified WDM optical beamforming network for large antenna arrays,” IEEE Photonics Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

Mengual, T.

B. Vidal, T. Mengual, C. Ibáňez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, “Simplified WDM optical beamforming network for large antenna arrays,” IEEE Photonics Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

B. Vidal, T. Mengual, and J. Marti, “Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays,” IEEE Photonics Technol. Lett. 18(24), 2590–2592 (2006).
[Crossref]

Mettler, S. C.

D. L. Philen, I. A. White, J. F. Kuhl, and S. C. Mettler, “Single-mode fiber OTDR: experiment and theory,” IEEE Trans. Microw. Theory Tech. 30(10), 1487–1496 (1982).
[Crossref]

Miao, J.

B. Wang, C. Gao, W. L. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level,” Sci. Rep. 2, 556 (2012).
[Crossref] [PubMed]

Michel-Gabriel, F.

Mukherjee, B.

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
[Crossref]

Nam, L.

L. D. Nguyen, B. Journet, I. Ledoux-Rak, J. Zyss, L. Nam, and V. V. Luc, “Opto-electronic oscillator: applications to sensors,” in Proceedings of IEEE International Meeting on Microwave Photonics/2008 Asia-Pacific Microwave Photonics Conference (IEEE, 2008), pp. 131–134.

Newberg, I. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Ng, W.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Nguyen, L. D.

L. D. Nguyen, B. Journet, I. Ledoux-Rak, J. Zyss, L. Nam, and V. V. Luc, “Opto-electronic oscillator: applications to sensors,” in Proceedings of IEEE International Meeting on Microwave Photonics/2008 Asia-Pacific Microwave Photonics Conference (IEEE, 2008), pp. 131–134.

Parker, T. E.

S. R. Jefferts, M. A. Weiss, J. Levine, S. Dilla, E. W. Bell, and T. E. Parker, “Two-way time and frequency transfer using optical fibers,” IEEE Trans. Instrum. Meas. 46(2), 209–211 (1997).
[Crossref]

Philen, D. L.

D. L. Philen, I. A. White, J. F. Kuhl, and S. C. Mettler, “Single-mode fiber OTDR: experiment and theory,” IEEE Trans. Microw. Theory Tech. 30(10), 1487–1496 (1982).
[Crossref]

Predehl, K.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Qi, B.

Qian, L.

Raupach, S. M. F.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Santamaría, J.

B. Vidal, T. Mengual, C. Ibáňez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, “Simplified WDM optical beamforming network for large antenna arrays,” IEEE Photonics Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

Schnatz, H.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Seta, K.

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
[Crossref]

Song, J. W.

K. H. Yoon, J. W. Song, and H. D. Kim, “Fiber length measurement technique employing self-seeding laser oscillation of fabry–perot laser diode,” Jpn. J. Appl. Phys. 46(1), 415–416 (2007).
[Crossref]

Tangonan, G. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Tausz, A.

Terra, O.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Udem, T.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Vez, E.

B. Vidal, T. Mengual, C. Ibáňez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, “Simplified WDM optical beamforming network for large antenna arrays,” IEEE Photonics Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

Vidal, B.

B. Vidal, T. Mengual, and J. Marti, “Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays,” IEEE Photonics Technol. Lett. 18(24), 2590–2592 (2006).
[Crossref]

B. Vidal, T. Mengual, C. Ibáňez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, “Simplified WDM optical beamforming network for large antenna arrays,” IEEE Photonics Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

Walston, A. A.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Wang, B.

B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometer array telescope - precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5, 13851 (2015).
[Crossref] [PubMed]

B. Wang, C. Gao, W. L. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level,” Sci. Rep. 2, 556 (2012).
[Crossref] [PubMed]

Wang, L. J.

B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometer array telescope - precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5, 13851 (2015).
[Crossref] [PubMed]

B. Wang, C. Gao, W. L. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level,” Sci. Rep. 2, 556 (2012).
[Crossref] [PubMed]

Weiss, M. A.

S. R. Jefferts, M. A. Weiss, J. Levine, S. Dilla, E. W. Bell, and T. E. Parker, “Two-way time and frequency transfer using optical fibers,” IEEE Trans. Instrum. Meas. 46(2), 209–211 (1997).
[Crossref]

White, I. A.

D. L. Philen, I. A. White, J. F. Kuhl, and S. C. Mettler, “Single-mode fiber OTDR: experiment and theory,” IEEE Trans. Microw. Theory Tech. 30(10), 1487–1496 (1982).
[Crossref]

Xia, Y. X.

Yang, W.

Yoon, K. H.

K. H. Yoon, J. W. Song, and H. D. Kim, “Fiber length measurement technique employing self-seeding laser oscillation of fabry–perot laser diode,” Jpn. J. Appl. Phys. 46(1), 415–416 (2007).
[Crossref]

Yun, K.

Zhan, L.

Zhang, G.

Zhang, J. W.

B. Wang, C. Gao, W. L. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level,” Sci. Rep. 2, 556 (2012).
[Crossref] [PubMed]

Zhang, Z.

Zhang, Z. X.

Zhu, X.

B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometer array telescope - precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5, 13851 (2015).
[Crossref] [PubMed]

B. Wang, C. Gao, W. L. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level,” Sci. Rep. 2, 556 (2012).
[Crossref] [PubMed]

Zyss, J.

L. D. Nguyen, B. Journet, I. Ledoux-Rak, J. Zyss, L. Nam, and V. V. Luc, “Opto-electronic oscillator: applications to sensors,” in Proceedings of IEEE International Meeting on Microwave Photonics/2008 Asia-Pacific Microwave Photonics Conference (IEEE, 2008), pp. 131–134.

IEEE J. Sel. Areas Comm. (1)

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (2)

B. Vidal, T. Mengual, C. Ibáňez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, “Simplified WDM optical beamforming network for large antenna arrays,” IEEE Photonics Technol. Lett. 18(10), 1200–1202 (2006).
[Crossref]

B. Vidal, T. Mengual, and J. Marti, “Optical beamforming network based on fiber-optical delay lines and spatial light modulators for large antenna arrays,” IEEE Photonics Technol. Lett. 18(24), 2590–2592 (2006).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

S. R. Jefferts, M. A. Weiss, J. Levine, S. Dilla, E. W. Bell, and T. E. Parker, “Two-way time and frequency transfer using optical fibers,” IEEE Trans. Instrum. Meas. 46(2), 209–211 (1997).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

D. L. Philen, I. A. White, J. F. Kuhl, and S. C. Mettler, “Single-mode fiber OTDR: experiment and theory,” IEEE Trans. Microw. Theory Tech. 30(10), 1487–1496 (1982).
[Crossref]

J. Lightwave Technol. (1)

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. H. Yoon, J. W. Song, and H. D. Kim, “Fiber length measurement technique employing self-seeding laser oscillation of fabry–perot laser diode,” Jpn. J. Appl. Phys. 46(1), 415–416 (2007).
[Crossref]

Meas. Sci. Technol. (1)

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
[Crossref]

Metrologia (1)

J. Kalisz, “Review of methods for time interval measurements with picosecond resolution,” Metrologia 41(1), 17–32 (2004).
[Crossref]

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Opt. Lett. (4)

Sci. Rep. (2)

B. Wang, C. Gao, W. L. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronisation at the 5×10-19 accuracy level,” Sci. Rep. 2, 556 (2012).
[Crossref] [PubMed]

B. Wang, X. Zhu, C. Gao, Y. Bai, J. W. Dong, and L. J. Wang, “Square kilometer array telescope - precision reference frequency synchronisation via 1f-2f dissemination,” Sci. Rep. 5, 13851 (2015).
[Crossref] [PubMed]

Science (1)

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012).
[Crossref] [PubMed]

Other (5)

W. Shillue, “Fiber distribution of local oscillator for Atacama Large Millimeter Array,” in Optical Fiber Communication/National Fiber Optic Engineers Conference (IEEE, 2008), pp. 1–3.
[Crossref]

https://www.ptb.de/emrp/neatft_publications.html .

L. D. Nguyen, B. Journet, I. Ledoux-Rak, J. Zyss, L. Nam, and V. V. Luc, “Opto-electronic oscillator: applications to sensors,” in Proceedings of IEEE International Meeting on Microwave Photonics/2008 Asia-Pacific Microwave Photonics Conference (IEEE, 2008), pp. 131–134.

C. Lopes and B. Riondet, “Ultra precise time dissemination system,” in Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum, 1999 and the IEEE International Frequency Control Symposium,1999 (IEEE, 1999), pp. 296–299.
[Crossref]

M. Rost, M. Fujieda, and D. Piester, “Time transfer through optical fibers (TTTOF): progress on calibrated clock comparisons,” in Proceedings of 24th European Frequency and Time Forum (2010), paper 6.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of FTD measurement system. VCO, 100 MHz voltage control oscillator; FPD, fast photo detector with a typical 3dB bandwidth of 16 GHz; FUT, fiber under test; PLL, phase locked loop; TIC, time interval counter; WDM, 1547/1550 nm wavelength division multiplexer; REF, reference signal; PI, proportional integral controller. (a) FTD measurement loop. The microwave signal and the pulse signal are switched to modulate the amplitude of a 1550 nm laser light. After transferred in the 5 km long internal fiber, the laser light is coupled into the FUT through an optical circulator. The reflected light is detected by FPD1. The pulse signals before and after transmission are used for coarse FTD measurement by a TIC. The microwave signals before and after transmission are used to generator an error signal through frequency filtering and mixing operations. The PLL uses the error signal to control the frequency of the VCO, making the microwave signal frequency-locked to the transfer delay. (b) SDC loop. A 1547 nm laser light modulated by a 1 GHz signal is coupled into the internal preset fiber together with the 1550 nm laser light through a 50/50 optical coupler. Two laser lights are separated by a WDM. The 1547 nm laser light is detected by FPD2. Via frequency mixing and filtering operations, an error signal proportional to the system phase delay is obtained. Through changing the temperature of a part of the internal fiber (2 km long), a PI controller uses the error signal to cancel out the variation of the system delay.
Fig. 2
Fig. 2 Measurement results of the uncompensated and compensated system delays. (a) The system delay fluctuation. The black line is the result when the system internal fiber is running freely, showing a fluctuation of ± 100 ps. The red line is the result with the system delay fluctuation compensated, showing a fluctuation of ± 1 ps. (b) The time deviation of the system delay derived from the measured system delay fluctuation.
Fig. 3
Fig. 3 Measurement results of the compensated system delay fluctuations using two methods. The black line is the result measured by TIC, showing a fluctuation of ± 25 ps. The red line is the result measured by proposed method, showing a fluctuation of ± 1 ps.
Fig. 4
Fig. 4 FTD measurement results of a 2 m long fiber. The averaging period is 100 s. The error bar is the standard deviation of each measurement. The black line is the FTD measured by TIC, showing a long-term fluctuation of ± 20 ps with a statistical error of 20 ps. The red line is the FTD measured by proposed method. The long-term fluctuation is reduced to ± 1 ps with a statistical error below 0.2 ps.
Fig. 5
Fig. 5 FTD measurement results of a 50 km long fiber. The averaging period is 10 s. The error bar is the standard deviation of the measurement. The long-term fluctuation is around 600 ps. The black line is the FTD measured by TIC, showing a statistical error of about 75 ps. The red line is the FTD measured by proposed method, the statistical error of which is around 0.2 ps.

Tables (1)

Tables Icon

Table 1 Uncertainty budget of the FTD measurement.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ϕ p = 2 π f t = 2 π f L o p c ,
δ ϕ p = 2 π δ f t .
ϕ p = ( N + 1 2 ) π .
t = 2 N + 1 4 f .
N = 2 f t c o a r s e 1 2 .
Δ N = 2 f Δ t + 2 t Δ f .
t F = 1 2 ( t t 0 ) .
t F = 1 2 ( t t 0 ) = 1 2 ( 2 N + 1 4 f t 0 ) .

Metrics