Abstract

We report the influence of water content, droplet displacement and laser fluence on the laser-induced breakdown spectroscopy (LIBS) signal of precisely controlled single droplets. For the first time in single particle LIBS scheme, the degree of evaporation of an additive-free droplet was followed and the position of the residual particle was adjusted at micrometer resolution using electrodynamic trapping. The results show signal intensification throughout the 6 s period of the complete evaporation of the droplet into a dry residual particle. The analyte line emission remained stable when the particle was moved within the focal spot area and almost tenfold compared with situation where the particle lies 15 μm outside the laser beam path. Combination of low, about 6 mJ, excitation laser pulse energy and short, about 1 μs detection delay time was found to be the optimal in the detection of most metals. The presented findings will pave the way for more sensitive and reproducible single particle elemental analysis exploited in the real-time monitoring of water, atmospheric aerosols or industrial emissions.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Standoff monitoring of aqueous aerosols using nanosecond laser-induced breakdown spectroscopy: droplet size and matrix effects

Luis Alonso Álvarez-Trujillo, Violeta Lazic, Javier Moros, and J. Javier Laserna
Appl. Opt. 56(13) 3773-3782 (2017)

Laser-induced breakdown spectroscopy of liquid solutions: a comparative study on the forms of liquid surface and liquid aerosol

Xinyan Yang, Lianbo Guo, Jiaming Li, Rongxing Yi, Zhongqi Hao, Meng Shen, Ran Zhou, Kuohu Li, Xiangyou Li, Yongfeng Lu, and Xiaoyan Zeng
Appl. Opt. 55(26) 7406-7411 (2016)

Single-pollen analysis by laser-induced breakdown spectroscopy and Raman microscopy

Ana R. Boyain-Goitia, David C. S. Beddows, Ben C. Griffiths, and Helmut H. Telle
Appl. Opt. 42(30) 6119-6132 (2003)

References

  • View by:
  • |
  • |
  • |

  1. D. W. Hahn, W. L. Flower, and K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51(12), 1836–1844 (1997).
    [Crossref]
  2. D. Beddows and H. Telle, “Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry,” Spectrochim. Acta, Part B 60(7–8), 1040–1059 (2005).
    [Crossref]
  3. F. J. Fortes, A. Fernández-Bravo, and J. J. Laserna, “Chemical characterization of single micro- and nanoparticles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 100, 78–85 (2014).
    [Crossref]
  4. V. Lazic and S. Jovićević, “Laser induced breakdown spectroscopy inside liquids: Processes and analytical aspects,” Spectrochim. Acta, Part B 101, 288–311 (2014).
    [Crossref]
  5. A. D. Giacomo, A. D. Bonis, M. Dell’Aglio, O. D. Pascale, R. Gaudiuso, S. Orlando, A. Santagata, G. S. Senesi, F. Taccogna, and R. Teghil, “Laser ablation of graphite in water in a range of pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon nanostructures,” J. Phys. Chem. C 115, 5123–5130 (2011).
    [Crossref]
  6. C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60(7–8), 993–1001 (2005).
    [Crossref]
  7. S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: Implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
    [Crossref] [PubMed]
  8. E. M. Cahoon and J. R. Almirall, “Quantitative analysis of liquids from aerosols and microdrops using laser induced breakdown spectroscopy,” Anal. Chem. 84(5), 2239–2244 (2012).
    [Crossref] [PubMed]
  9. S. T. Järvinen, S. Saari, J. Keskinen, and J. Toivonen, “Detection of Ni, Pb and Zn in water using electrodynamic single-particle levitation and laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 99, 9–14 (2014).
    [Crossref]
  10. S. T. Järvinen, J. Saarela, and J. Toivonen, “Detection of zinc and lead in water using evaporative preconcentration and single-particle laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 86, 55–59 (2013).
    [Crossref]
  11. H. A. Archontaki and S. R. Crouch, “Evaluation of an isolated droplet sample introduction system for laser-induced breakdown spectroscopy,” Appl. Spectrosc. 42(5), 741–746 (1988).
    [Crossref]
  12. E. S. Simpson, G. A. Lithgow, and S. G. Buckley, “Three-dimensional distribution of signal from single monodisperse aerosol particles in a laser induced plasma: Initial measurements,” Spectrochim. Acta, Part B 62(12), 1460–1465 (2007).
    [Crossref]
  13. G. Lithgow and S. Buckley, “Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 60(7–8), 1060–1069 (2005).
    [Crossref]
  14. P. K. Diwakar, S. Groh, K. Niemax, and D. W. Hahn, “Study of analyte dissociation and diffusion in laser-induced plasmas: implications for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 25(12), 1921–1930 (2010).
    [Crossref]
  15. V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: Implications for laser-induced breakdown spectroscopy,” Anal. Chem. 78(5), 1509–1514 (2006).
    [Crossref] [PubMed]
  16. M. Asgill and D. Hahn, “Particle size limits for quantitative aerosol analysis using laser-induced breakdown spectroscopy: Temporal considerations,” Spectrochim. Acta, Part B 64(10), 1153–1158 (2009).
    [Crossref]
  17. E. J. Davis, “Electrodynamic levitation of particles,” in Aerosol Measurement - Principles, Techniques, and Applications, P. A. Baron and K. Willeke, eds. (John Wiley & Sons, 2001).
  18. R. Warren, “Laser induced breakdown spectroscopy on suspended particulate matter in an electrodynamic balance: Interaction processes and analytical considerations,” Ph.D. thesis, University of Florida (2013).
  19. C. Dutouquet, G. Wattieaux, L. Meyer, E. Frejafon, and L. Boufendi, “Determination of the elemental composition of micrometric and submicrometric particles levitating in a low pressure radio-frequency plasma discharge using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 83–84, 14–20 (2013).
    [Crossref]
  20. P. Diwakar, P. Jackson, and D. Hahn, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: Consideration of localized matrix effects,” Spectrochim. Acta Part B 62(12), 1466–1474 (2007).
    [Crossref]
  21. W. C. Hinds, Aerosol Technology (John Wiley & Sons, 1999). Chap. 13.7.
  22. M. Chen, T. Yuan, Z. Hou, Z. Wang, and Y. Wang, “Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 112, 23–33 (2015).
    [Crossref]
  23. D. R. Wood and K. L. Andrew, “Arc spectrum of lead,” J. Opt. Soc. Am. 58(6), 818–828 (1968).
    [Crossref]
  24. D. Gullberg and U. Litzn, “Accurately measured wavelengths of Zn I and Zn II lines of astrophysical interest,” Phys. Scr. 61(6), 652–656 (2000).
    [Crossref]

2015 (1)

M. Chen, T. Yuan, Z. Hou, Z. Wang, and Y. Wang, “Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 112, 23–33 (2015).
[Crossref]

2014 (3)

F. J. Fortes, A. Fernández-Bravo, and J. J. Laserna, “Chemical characterization of single micro- and nanoparticles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 100, 78–85 (2014).
[Crossref]

V. Lazic and S. Jovićević, “Laser induced breakdown spectroscopy inside liquids: Processes and analytical aspects,” Spectrochim. Acta, Part B 101, 288–311 (2014).
[Crossref]

S. T. Järvinen, S. Saari, J. Keskinen, and J. Toivonen, “Detection of Ni, Pb and Zn in water using electrodynamic single-particle levitation and laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 99, 9–14 (2014).
[Crossref]

2013 (2)

S. T. Järvinen, J. Saarela, and J. Toivonen, “Detection of zinc and lead in water using evaporative preconcentration and single-particle laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 86, 55–59 (2013).
[Crossref]

C. Dutouquet, G. Wattieaux, L. Meyer, E. Frejafon, and L. Boufendi, “Determination of the elemental composition of micrometric and submicrometric particles levitating in a low pressure radio-frequency plasma discharge using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 83–84, 14–20 (2013).
[Crossref]

2012 (1)

E. M. Cahoon and J. R. Almirall, “Quantitative analysis of liquids from aerosols and microdrops using laser induced breakdown spectroscopy,” Anal. Chem. 84(5), 2239–2244 (2012).
[Crossref] [PubMed]

2011 (1)

A. D. Giacomo, A. D. Bonis, M. Dell’Aglio, O. D. Pascale, R. Gaudiuso, S. Orlando, A. Santagata, G. S. Senesi, F. Taccogna, and R. Teghil, “Laser ablation of graphite in water in a range of pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon nanostructures,” J. Phys. Chem. C 115, 5123–5130 (2011).
[Crossref]

2010 (2)

S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: Implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
[Crossref] [PubMed]

P. K. Diwakar, S. Groh, K. Niemax, and D. W. Hahn, “Study of analyte dissociation and diffusion in laser-induced plasmas: implications for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 25(12), 1921–1930 (2010).
[Crossref]

2009 (1)

M. Asgill and D. Hahn, “Particle size limits for quantitative aerosol analysis using laser-induced breakdown spectroscopy: Temporal considerations,” Spectrochim. Acta, Part B 64(10), 1153–1158 (2009).
[Crossref]

2007 (2)

P. Diwakar, P. Jackson, and D. Hahn, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: Consideration of localized matrix effects,” Spectrochim. Acta Part B 62(12), 1466–1474 (2007).
[Crossref]

E. S. Simpson, G. A. Lithgow, and S. G. Buckley, “Three-dimensional distribution of signal from single monodisperse aerosol particles in a laser induced plasma: Initial measurements,” Spectrochim. Acta, Part B 62(12), 1460–1465 (2007).
[Crossref]

2006 (1)

V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: Implications for laser-induced breakdown spectroscopy,” Anal. Chem. 78(5), 1509–1514 (2006).
[Crossref] [PubMed]

2005 (3)

D. Beddows and H. Telle, “Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry,” Spectrochim. Acta, Part B 60(7–8), 1040–1059 (2005).
[Crossref]

G. Lithgow and S. Buckley, “Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 60(7–8), 1060–1069 (2005).
[Crossref]

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60(7–8), 993–1001 (2005).
[Crossref]

2000 (1)

D. Gullberg and U. Litzn, “Accurately measured wavelengths of Zn I and Zn II lines of astrophysical interest,” Phys. Scr. 61(6), 652–656 (2000).
[Crossref]

1997 (1)

1988 (1)

1968 (1)

Almirall, J. R.

E. M. Cahoon and J. R. Almirall, “Quantitative analysis of liquids from aerosols and microdrops using laser induced breakdown spectroscopy,” Anal. Chem. 84(5), 2239–2244 (2012).
[Crossref] [PubMed]

Andrew, K. L.

Archontaki, H. A.

Asgill, M.

M. Asgill and D. Hahn, “Particle size limits for quantitative aerosol analysis using laser-induced breakdown spectroscopy: Temporal considerations,” Spectrochim. Acta, Part B 64(10), 1153–1158 (2009).
[Crossref]

Beaven, P.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60(7–8), 993–1001 (2005).
[Crossref]

Beddows, D.

D. Beddows and H. Telle, “Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry,” Spectrochim. Acta, Part B 60(7–8), 1040–1059 (2005).
[Crossref]

Bonis, A. D.

A. D. Giacomo, A. D. Bonis, M. Dell’Aglio, O. D. Pascale, R. Gaudiuso, S. Orlando, A. Santagata, G. S. Senesi, F. Taccogna, and R. Teghil, “Laser ablation of graphite in water in a range of pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon nanostructures,” J. Phys. Chem. C 115, 5123–5130 (2011).
[Crossref]

Boufendi, L.

C. Dutouquet, G. Wattieaux, L. Meyer, E. Frejafon, and L. Boufendi, “Determination of the elemental composition of micrometric and submicrometric particles levitating in a low pressure radio-frequency plasma discharge using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 83–84, 14–20 (2013).
[Crossref]

Buckley, S.

G. Lithgow and S. Buckley, “Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 60(7–8), 1060–1069 (2005).
[Crossref]

Buckley, S. G.

E. S. Simpson, G. A. Lithgow, and S. G. Buckley, “Three-dimensional distribution of signal from single monodisperse aerosol particles in a laser induced plasma: Initial measurements,” Spectrochim. Acta, Part B 62(12), 1460–1465 (2007).
[Crossref]

Cahoon, E. M.

E. M. Cahoon and J. R. Almirall, “Quantitative analysis of liquids from aerosols and microdrops using laser induced breakdown spectroscopy,” Anal. Chem. 84(5), 2239–2244 (2012).
[Crossref] [PubMed]

Chen, M.

M. Chen, T. Yuan, Z. Hou, Z. Wang, and Y. Wang, “Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 112, 23–33 (2015).
[Crossref]

Crouch, S. R.

Davis, E. J.

E. J. Davis, “Electrodynamic levitation of particles,” in Aerosol Measurement - Principles, Techniques, and Applications, P. A. Baron and K. Willeke, eds. (John Wiley & Sons, 2001).

Dell’Aglio, M.

A. D. Giacomo, A. D. Bonis, M. Dell’Aglio, O. D. Pascale, R. Gaudiuso, S. Orlando, A. Santagata, G. S. Senesi, F. Taccogna, and R. Teghil, “Laser ablation of graphite in water in a range of pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon nanostructures,” J. Phys. Chem. C 115, 5123–5130 (2011).
[Crossref]

Diwakar, P.

P. Diwakar, P. Jackson, and D. Hahn, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: Consideration of localized matrix effects,” Spectrochim. Acta Part B 62(12), 1466–1474 (2007).
[Crossref]

Diwakar, P. K.

P. K. Diwakar, S. Groh, K. Niemax, and D. W. Hahn, “Study of analyte dissociation and diffusion in laser-induced plasmas: implications for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 25(12), 1921–1930 (2010).
[Crossref]

S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: Implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
[Crossref] [PubMed]

Dutouquet, C.

C. Dutouquet, G. Wattieaux, L. Meyer, E. Frejafon, and L. Boufendi, “Determination of the elemental composition of micrometric and submicrometric particles levitating in a low pressure radio-frequency plasma discharge using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 83–84, 14–20 (2013).
[Crossref]

Fernández-Bravo, A.

F. J. Fortes, A. Fernández-Bravo, and J. J. Laserna, “Chemical characterization of single micro- and nanoparticles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 100, 78–85 (2014).
[Crossref]

Fleige, R.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60(7–8), 993–1001 (2005).
[Crossref]

Flower, W. L.

Fortes, F. J.

F. J. Fortes, A. Fernández-Bravo, and J. J. Laserna, “Chemical characterization of single micro- and nanoparticles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 100, 78–85 (2014).
[Crossref]

Frejafon, E.

C. Dutouquet, G. Wattieaux, L. Meyer, E. Frejafon, and L. Boufendi, “Determination of the elemental composition of micrometric and submicrometric particles levitating in a low pressure radio-frequency plasma discharge using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 83–84, 14–20 (2013).
[Crossref]

Garcia, C. C.

S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: Implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
[Crossref] [PubMed]

Gaudiuso, R.

A. D. Giacomo, A. D. Bonis, M. Dell’Aglio, O. D. Pascale, R. Gaudiuso, S. Orlando, A. Santagata, G. S. Senesi, F. Taccogna, and R. Teghil, “Laser ablation of graphite in water in a range of pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon nanostructures,” J. Phys. Chem. C 115, 5123–5130 (2011).
[Crossref]

Giacomo, A. D.

A. D. Giacomo, A. D. Bonis, M. Dell’Aglio, O. D. Pascale, R. Gaudiuso, S. Orlando, A. Santagata, G. S. Senesi, F. Taccogna, and R. Teghil, “Laser ablation of graphite in water in a range of pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon nanostructures,” J. Phys. Chem. C 115, 5123–5130 (2011).
[Crossref]

Groh, S.

S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: Implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
[Crossref] [PubMed]

P. K. Diwakar, S. Groh, K. Niemax, and D. W. Hahn, “Study of analyte dissociation and diffusion in laser-induced plasmas: implications for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 25(12), 1921–1930 (2010).
[Crossref]

Gullberg, D.

D. Gullberg and U. Litzn, “Accurately measured wavelengths of Zn I and Zn II lines of astrophysical interest,” Phys. Scr. 61(6), 652–656 (2000).
[Crossref]

Hahn, D.

M. Asgill and D. Hahn, “Particle size limits for quantitative aerosol analysis using laser-induced breakdown spectroscopy: Temporal considerations,” Spectrochim. Acta, Part B 64(10), 1153–1158 (2009).
[Crossref]

P. Diwakar, P. Jackson, and D. Hahn, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: Consideration of localized matrix effects,” Spectrochim. Acta Part B 62(12), 1466–1474 (2007).
[Crossref]

Hahn, D. W.

P. K. Diwakar, S. Groh, K. Niemax, and D. W. Hahn, “Study of analyte dissociation and diffusion in laser-induced plasmas: implications for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 25(12), 1921–1930 (2010).
[Crossref]

S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: Implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
[Crossref] [PubMed]

V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: Implications for laser-induced breakdown spectroscopy,” Anal. Chem. 78(5), 1509–1514 (2006).
[Crossref] [PubMed]

D. W. Hahn, W. L. Flower, and K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51(12), 1836–1844 (1997).
[Crossref]

Hencken, K. R.

Hinds, W. C.

W. C. Hinds, Aerosol Technology (John Wiley & Sons, 1999). Chap. 13.7.

Hohreiter, V.

V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: Implications for laser-induced breakdown spectroscopy,” Anal. Chem. 78(5), 1509–1514 (2006).
[Crossref] [PubMed]

Hou, Z.

M. Chen, T. Yuan, Z. Hou, Z. Wang, and Y. Wang, “Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 112, 23–33 (2015).
[Crossref]

Jackson, P.

P. Diwakar, P. Jackson, and D. Hahn, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: Consideration of localized matrix effects,” Spectrochim. Acta Part B 62(12), 1466–1474 (2007).
[Crossref]

Jantzen, E.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60(7–8), 993–1001 (2005).
[Crossref]

Janzen, C.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60(7–8), 993–1001 (2005).
[Crossref]

Järvinen, S. T.

S. T. Järvinen, S. Saari, J. Keskinen, and J. Toivonen, “Detection of Ni, Pb and Zn in water using electrodynamic single-particle levitation and laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 99, 9–14 (2014).
[Crossref]

S. T. Järvinen, J. Saarela, and J. Toivonen, “Detection of zinc and lead in water using evaporative preconcentration and single-particle laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 86, 55–59 (2013).
[Crossref]

Jovicevic, S.

V. Lazic and S. Jovićević, “Laser induced breakdown spectroscopy inside liquids: Processes and analytical aspects,” Spectrochim. Acta, Part B 101, 288–311 (2014).
[Crossref]

Keskinen, J.

S. T. Järvinen, S. Saari, J. Keskinen, and J. Toivonen, “Detection of Ni, Pb and Zn in water using electrodynamic single-particle levitation and laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 99, 9–14 (2014).
[Crossref]

Knoth, J.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60(7–8), 993–1001 (2005).
[Crossref]

Koke, P.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60(7–8), 993–1001 (2005).
[Crossref]

Lahmann, W.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60(7–8), 993–1001 (2005).
[Crossref]

Laserna, J. J.

F. J. Fortes, A. Fernández-Bravo, and J. J. Laserna, “Chemical characterization of single micro- and nanoparticles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 100, 78–85 (2014).
[Crossref]

Lazic, V.

V. Lazic and S. Jovićević, “Laser induced breakdown spectroscopy inside liquids: Processes and analytical aspects,” Spectrochim. Acta, Part B 101, 288–311 (2014).
[Crossref]

Lithgow, G.

G. Lithgow and S. Buckley, “Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 60(7–8), 1060–1069 (2005).
[Crossref]

Lithgow, G. A.

E. S. Simpson, G. A. Lithgow, and S. G. Buckley, “Three-dimensional distribution of signal from single monodisperse aerosol particles in a laser induced plasma: Initial measurements,” Spectrochim. Acta, Part B 62(12), 1460–1465 (2007).
[Crossref]

Litzn, U.

D. Gullberg and U. Litzn, “Accurately measured wavelengths of Zn I and Zn II lines of astrophysical interest,” Phys. Scr. 61(6), 652–656 (2000).
[Crossref]

Meyer, L.

C. Dutouquet, G. Wattieaux, L. Meyer, E. Frejafon, and L. Boufendi, “Determination of the elemental composition of micrometric and submicrometric particles levitating in a low pressure radio-frequency plasma discharge using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 83–84, 14–20 (2013).
[Crossref]

Murtazin, A.

S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: Implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
[Crossref] [PubMed]

Niemax, K.

S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: Implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
[Crossref] [PubMed]

P. K. Diwakar, S. Groh, K. Niemax, and D. W. Hahn, “Study of analyte dissociation and diffusion in laser-induced plasmas: implications for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 25(12), 1921–1930 (2010).
[Crossref]

Noll, R.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60(7–8), 993–1001 (2005).
[Crossref]

Oest, A.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60(7–8), 993–1001 (2005).
[Crossref]

Orlando, S.

A. D. Giacomo, A. D. Bonis, M. Dell’Aglio, O. D. Pascale, R. Gaudiuso, S. Orlando, A. Santagata, G. S. Senesi, F. Taccogna, and R. Teghil, “Laser ablation of graphite in water in a range of pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon nanostructures,” J. Phys. Chem. C 115, 5123–5130 (2011).
[Crossref]

Pascale, O. D.

A. D. Giacomo, A. D. Bonis, M. Dell’Aglio, O. D. Pascale, R. Gaudiuso, S. Orlando, A. Santagata, G. S. Senesi, F. Taccogna, and R. Teghil, “Laser ablation of graphite in water in a range of pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon nanostructures,” J. Phys. Chem. C 115, 5123–5130 (2011).
[Crossref]

Saarela, J.

S. T. Järvinen, J. Saarela, and J. Toivonen, “Detection of zinc and lead in water using evaporative preconcentration and single-particle laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 86, 55–59 (2013).
[Crossref]

Saari, S.

S. T. Järvinen, S. Saari, J. Keskinen, and J. Toivonen, “Detection of Ni, Pb and Zn in water using electrodynamic single-particle levitation and laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 99, 9–14 (2014).
[Crossref]

Santagata, A.

A. D. Giacomo, A. D. Bonis, M. Dell’Aglio, O. D. Pascale, R. Gaudiuso, S. Orlando, A. Santagata, G. S. Senesi, F. Taccogna, and R. Teghil, “Laser ablation of graphite in water in a range of pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon nanostructures,” J. Phys. Chem. C 115, 5123–5130 (2011).
[Crossref]

Schwenke, H.

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60(7–8), 993–1001 (2005).
[Crossref]

Senesi, G. S.

A. D. Giacomo, A. D. Bonis, M. Dell’Aglio, O. D. Pascale, R. Gaudiuso, S. Orlando, A. Santagata, G. S. Senesi, F. Taccogna, and R. Teghil, “Laser ablation of graphite in water in a range of pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon nanostructures,” J. Phys. Chem. C 115, 5123–5130 (2011).
[Crossref]

Simpson, E. S.

E. S. Simpson, G. A. Lithgow, and S. G. Buckley, “Three-dimensional distribution of signal from single monodisperse aerosol particles in a laser induced plasma: Initial measurements,” Spectrochim. Acta, Part B 62(12), 1460–1465 (2007).
[Crossref]

Taccogna, F.

A. D. Giacomo, A. D. Bonis, M. Dell’Aglio, O. D. Pascale, R. Gaudiuso, S. Orlando, A. Santagata, G. S. Senesi, F. Taccogna, and R. Teghil, “Laser ablation of graphite in water in a range of pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon nanostructures,” J. Phys. Chem. C 115, 5123–5130 (2011).
[Crossref]

Teghil, R.

A. D. Giacomo, A. D. Bonis, M. Dell’Aglio, O. D. Pascale, R. Gaudiuso, S. Orlando, A. Santagata, G. S. Senesi, F. Taccogna, and R. Teghil, “Laser ablation of graphite in water in a range of pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon nanostructures,” J. Phys. Chem. C 115, 5123–5130 (2011).
[Crossref]

Telle, H.

D. Beddows and H. Telle, “Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry,” Spectrochim. Acta, Part B 60(7–8), 1040–1059 (2005).
[Crossref]

Toivonen, J.

S. T. Järvinen, S. Saari, J. Keskinen, and J. Toivonen, “Detection of Ni, Pb and Zn in water using electrodynamic single-particle levitation and laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 99, 9–14 (2014).
[Crossref]

S. T. Järvinen, J. Saarela, and J. Toivonen, “Detection of zinc and lead in water using evaporative preconcentration and single-particle laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 86, 55–59 (2013).
[Crossref]

Wang, Y.

M. Chen, T. Yuan, Z. Hou, Z. Wang, and Y. Wang, “Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 112, 23–33 (2015).
[Crossref]

Wang, Z.

M. Chen, T. Yuan, Z. Hou, Z. Wang, and Y. Wang, “Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 112, 23–33 (2015).
[Crossref]

Warren, R.

R. Warren, “Laser induced breakdown spectroscopy on suspended particulate matter in an electrodynamic balance: Interaction processes and analytical considerations,” Ph.D. thesis, University of Florida (2013).

Wattieaux, G.

C. Dutouquet, G. Wattieaux, L. Meyer, E. Frejafon, and L. Boufendi, “Determination of the elemental composition of micrometric and submicrometric particles levitating in a low pressure radio-frequency plasma discharge using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 83–84, 14–20 (2013).
[Crossref]

Wood, D. R.

Yuan, T.

M. Chen, T. Yuan, Z. Hou, Z. Wang, and Y. Wang, “Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 112, 23–33 (2015).
[Crossref]

Anal. Chem. (3)

S. Groh, P. K. Diwakar, C. C. Garcia, A. Murtazin, D. W. Hahn, and K. Niemax, “100% efficient sub-nanoliter sample introduction in laser-induced breakdown spectroscopy and inductively coupled plasma spectrometry: Implications for ultralow sample volumes,” Anal. Chem. 82(6), 2568–2573 (2010).
[Crossref] [PubMed]

E. M. Cahoon and J. R. Almirall, “Quantitative analysis of liquids from aerosols and microdrops using laser induced breakdown spectroscopy,” Anal. Chem. 84(5), 2239–2244 (2012).
[Crossref] [PubMed]

V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: Implications for laser-induced breakdown spectroscopy,” Anal. Chem. 78(5), 1509–1514 (2006).
[Crossref] [PubMed]

Appl. Spectrosc. (2)

J. Anal. At. Spectrom. (1)

P. K. Diwakar, S. Groh, K. Niemax, and D. W. Hahn, “Study of analyte dissociation and diffusion in laser-induced plasmas: implications for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 25(12), 1921–1930 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (1)

A. D. Giacomo, A. D. Bonis, M. Dell’Aglio, O. D. Pascale, R. Gaudiuso, S. Orlando, A. Santagata, G. S. Senesi, F. Taccogna, and R. Teghil, “Laser ablation of graphite in water in a range of pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon nanostructures,” J. Phys. Chem. C 115, 5123–5130 (2011).
[Crossref]

Phys. Scr. (1)

D. Gullberg and U. Litzn, “Accurately measured wavelengths of Zn I and Zn II lines of astrophysical interest,” Phys. Scr. 61(6), 652–656 (2000).
[Crossref]

Spectrochim. Acta Part B (2)

C. Dutouquet, G. Wattieaux, L. Meyer, E. Frejafon, and L. Boufendi, “Determination of the elemental composition of micrometric and submicrometric particles levitating in a low pressure radio-frequency plasma discharge using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 83–84, 14–20 (2013).
[Crossref]

P. Diwakar, P. Jackson, and D. Hahn, “The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: Consideration of localized matrix effects,” Spectrochim. Acta Part B 62(12), 1466–1474 (2007).
[Crossref]

Spectrochim. Acta, Part B (10)

M. Chen, T. Yuan, Z. Hou, Z. Wang, and Y. Wang, “Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 112, 23–33 (2015).
[Crossref]

M. Asgill and D. Hahn, “Particle size limits for quantitative aerosol analysis using laser-induced breakdown spectroscopy: Temporal considerations,” Spectrochim. Acta, Part B 64(10), 1153–1158 (2009).
[Crossref]

C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, “Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 60(7–8), 993–1001 (2005).
[Crossref]

D. Beddows and H. Telle, “Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry,” Spectrochim. Acta, Part B 60(7–8), 1040–1059 (2005).
[Crossref]

F. J. Fortes, A. Fernández-Bravo, and J. J. Laserna, “Chemical characterization of single micro- and nanoparticles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 100, 78–85 (2014).
[Crossref]

V. Lazic and S. Jovićević, “Laser induced breakdown spectroscopy inside liquids: Processes and analytical aspects,” Spectrochim. Acta, Part B 101, 288–311 (2014).
[Crossref]

S. T. Järvinen, S. Saari, J. Keskinen, and J. Toivonen, “Detection of Ni, Pb and Zn in water using electrodynamic single-particle levitation and laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 99, 9–14 (2014).
[Crossref]

S. T. Järvinen, J. Saarela, and J. Toivonen, “Detection of zinc and lead in water using evaporative preconcentration and single-particle laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 86, 55–59 (2013).
[Crossref]

E. S. Simpson, G. A. Lithgow, and S. G. Buckley, “Three-dimensional distribution of signal from single monodisperse aerosol particles in a laser induced plasma: Initial measurements,” Spectrochim. Acta, Part B 62(12), 1460–1465 (2007).
[Crossref]

G. Lithgow and S. Buckley, “Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 60(7–8), 1060–1069 (2005).
[Crossref]

Other (3)

E. J. Davis, “Electrodynamic levitation of particles,” in Aerosol Measurement - Principles, Techniques, and Applications, P. A. Baron and K. Willeke, eds. (John Wiley & Sons, 2001).

R. Warren, “Laser induced breakdown spectroscopy on suspended particulate matter in an electrodynamic balance: Interaction processes and analytical considerations,” Ph.D. thesis, University of Florida (2013).

W. C. Hinds, Aerosol Technology (John Wiley & Sons, 1999). Chap. 13.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The EDB-LIBS configuration. L1=pulsed Nd:YAG, L2=532 nm CW laser, DM=dichroic mirror, W=window, EM=energy meter, HC=hexagonal chamber, EL=cylindrical electrodes, DG=droplet generator, CH=droplet charger, IF1&2=interference filters, P=pinhole, FL=flashlamp, H=liquid sample hose.
Fig. 2
Fig. 2 EDB-LIBS spectrum from water sample containing 1 ppm of Mn and Al and 0.6 ppm of Pb using 4 mJ excitation laser pulse energy. The spectrum is an average of 20 single-shot spectra. The CN and N 2 + bands originate from the ambient air.
Fig. 3
Fig. 3 LIBS signal from Al and Mn as function of drying time. The insets show 30μm×30μm CMOS camera images of the particle at 1 s and 6 s after the droplet launch.
Fig. 4
Fig. 4 LIBS signal from Pb and signal RSD as function of particle position. The error bars in the upper graph show the standard deviation of the mean signal whereas the signal fluctuation between successive points is due to a systematic error. Particle displacement versus bias voltage between upper and lower electrodes is shown in the inset.
Fig. 5
Fig. 5 a) LIBS SNR of 20 ppm Pb as function of excitation laser pulse energy using 700 ns, 1 μs and 5 μs gate delays. The spline fit curves are guides for the eye and have no physical interpretation. b) Pb 405.8 nm emission from plasma using different pulse energies and 1 μs (1 and 2) and 5 μs (3 and 4) gate delays. Imaged through a bandpass interference filter using 100 ns ICCD gate width.

Metrics