Abstract

We analyze the mobile fronthaul (MFH) bandwidth and the wireless transmission performance in the split-PHY processing (SPP) architecture, which redefines the functional split of centralized/cloud RAN (C-RAN) while preserving high wireless coordinated multi-point (CoMP) transmission/reception performance. The SPP architecture splits the base stations (BS) functions between wireless channel coding/decoding and wireless modulation/demodulation, and employs its own CoMP joint transmission and reception schemes. Simulation results show that the SPP architecture reduces the MFH bandwidth by up to 97% from conventional C-RAN while matching the wireless bit error rate (BER) performance of conventional C-RAN in uplink joint reception with only 2-dB signal to noise ratio (SNR) penalty.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance Evaluation of Ethernet-Based Mobile Fronthaul and Wireless CoMP in Split-PHY Processing

Kenji Miyamoto, Shigeru Kuwano, Tatsuya Shimizu, Jun Terada, and Akihiro Otaka
J. Opt. Commun. Netw. 9(1) A46-A54 (2017)

Utilization Comparison of Small-Cell Accommodation With PON-Based Mobile Fronthaul

Yu Nakayama, Kazuki Maruta, Tatsuya Shimada, Tomoaki Yoshida, Jun Terada, and Akihiro Otaka
J. Opt. Commun. Netw. 8(12) 919-927 (2016)

Low-Latency High-Efficiency Mobile Fronthaul With TDM-PON (Mobile-PON)

Siyu Zhou, Xiang Liu, Frank Effenberger, and Jonathan Chao
J. Opt. Commun. Netw. 10(1) A20-A26 (2018)

References

  • View by:
  • |
  • |
  • |

  1. NTT DOCOMO white paper, “DOCOMO 5G white paper, 5G radio access: requirements, concept and technologies,” https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/whitepaper_5g/DOCOMO_5G_White_Paper.pdf .
  2. NGMN whitepaper, “NGMN 5G white paper,” https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf .
  3. China Mobile Research Institute white paper, “C-RAN the road towards green RAN white paper version 3.0,” http://labs.chinamobile.com/cran/wp-content/uploads/2014/06/20140613-C-RAN-WP-3.0.pdf .
  4. NGMN Technical Report, “Suggestions on potential solutions to C-RAN,” http://www.ngmn-ic.info/uploads/media/NGMN_CRAN_Suggestions_on_Potential_Solutions_to_CRAN.pdf .
  5. 3GPP, TS 36.819, v11.2.0, “Coordinated multi-point operation for LTE physical layer aspects,” http://www.3gpp.org/DynaReport/36819.htm .
  6. CPRI, “CPRI specification v6.1,” (2014), http://www.cpri.info/jp/spec.html .
  7. B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
    [Crossref]
  8. K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu2E.1.
  9. ETSI specification, “Open radio equipment interface (ORI); ORI interface specification (release-4),” (2014), http://www.etsi.org/technologies-clusters/technologies/ori .
  10. U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J. 18(1), 105–128 (2013).
    [Crossref]
  11. A. Maeder, M. Lalam, A. De Domenico, E. Pateromichelakis, D. Wübben, J. Bartelt, R. Fritzsche, and P. Rost, “Towards a flexible functional split for Cloud-RAN networks,” in Proceedings of 2014 European Conference on Networks and Communications (EuCNC, 2014), pp. 1–5.
    [Crossref]
  12. NGMN, “Future study on critical C-RAN technologies,” (2015), https://www.ngmn.org/uploads/media/NGMN_RANEV_D2_Further_Study_on_Critical_C-RAN_Technologes_v1.0.pdf .
  13. China Mobile Research Institute, “White Paper of Next Generation Fronthaul Interface,” (2015), http://labs.chinamobile.com/cran/wp-content/uploads/2015/09/NGFI-Whitepaper_EN_v1.0_201509291.pdf .
  14. K. Miyamoto, S. Kuwano, J. Terada, and A. Otaka, “Split-PHY processing architecture to realize base station coordination and transmission bandwidth reduction in mobile fronthaul,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2J.4.
    [Crossref]
  15. K. Miyamoto, S. Kuwano, J. Terada, and A. Otaka, “Uplink joint reception with LLR forwarding for optical transmission bandwidth reduction in mobile fronthaul,” in Proceedings of Vehicular Technology Conference2015-Spring (VTC2015-Spring), pp. 1–5.
  16. M. Ding, J. Zou, Z. Yang, H. Luo, and W. Chen, “Sequential and incremental precoder design for joint transmission network MIMO systems with imperfect backhaul,” IEEE Trans. Vehicular Technol. 61(6), 2490–2503 (2012).
    [Crossref]
  17. 3GPP, R1–081483, Qualcomm Europe, “Conveying MCS and TB size via PDCCH,” (3GPP, 2008), http://www.3gpp.org/DynaReport/TDocExMtg–R1-52b–26911.htm .
  18. 3GPP, TS 36.300, v13.1.0, “Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (EUTRAN); Overall description; Stage 2,” (3GPP, 2015), http://www.3gpp.org/DynaReport/36300.htm .
  19. S. Schwandter, P. Fertl, C. Novak, and G. Matz, “Log-likelihood ratio clipping in MIMO-BICM systems: Information Geometric Analysis and Impact on System Capacity,” in Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP, 2009), pp. 2433–2436.
    [Crossref]
  20. 3GPP, TS 36.912, v12.0.0, ”Feasibility study for future advancements for E-UTRA (LTE-Advanced),” (3GPP, 2014), http://www.3gpp.org/DynaReport/36912.htm .
  21. 3GPP, TS 36.104, v13.1.0, “Evolved universal terrestrial radio access (E-UTRA); Base station (BS) radio transmission and reception,” (3GPP, 2015), http://www.3gpp.org/DynaReport/36104.htm .

2013 (2)

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J. 18(1), 105–128 (2013).
[Crossref]

2012 (1)

M. Ding, J. Zou, Z. Yang, H. Luo, and W. Chen, “Sequential and incremental precoder design for joint transmission network MIMO systems with imperfect backhaul,” IEEE Trans. Vehicular Technol. 61(6), 2490–2503 (2012).
[Crossref]

Bartelt, J.

A. Maeder, M. Lalam, A. De Domenico, E. Pateromichelakis, D. Wübben, J. Bartelt, R. Fritzsche, and P. Rost, “Towards a flexible functional split for Cloud-RAN networks,” in Proceedings of 2014 European Conference on Networks and Communications (EuCNC, 2014), pp. 1–5.
[Crossref]

Cao, W.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

Chen, W.

M. Ding, J. Zou, Z. Yang, H. Luo, and W. Chen, “Sequential and incremental precoder design for joint transmission network MIMO systems with imperfect backhaul,” IEEE Trans. Vehicular Technol. 61(6), 2490–2503 (2012).
[Crossref]

De Domenico, A.

A. Maeder, M. Lalam, A. De Domenico, E. Pateromichelakis, D. Wübben, J. Bartelt, R. Fritzsche, and P. Rost, “Towards a flexible functional split for Cloud-RAN networks,” in Proceedings of 2014 European Conference on Networks and Communications (EuCNC, 2014), pp. 1–5.
[Crossref]

Ding, M.

M. Ding, J. Zou, Z. Yang, H. Luo, and W. Chen, “Sequential and incremental precoder design for joint transmission network MIMO systems with imperfect backhaul,” IEEE Trans. Vehicular Technol. 61(6), 2490–2503 (2012).
[Crossref]

Doll, M.

U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J. 18(1), 105–128 (2013).
[Crossref]

Dötsch, U.

U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J. 18(1), 105–128 (2013).
[Crossref]

Fertl, P.

S. Schwandter, P. Fertl, C. Novak, and G. Matz, “Log-likelihood ratio clipping in MIMO-BICM systems: Information Geometric Analysis and Impact on System Capacity,” in Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP, 2009), pp. 2433–2436.
[Crossref]

Fritzsche, R.

A. Maeder, M. Lalam, A. De Domenico, E. Pateromichelakis, D. Wübben, J. Bartelt, R. Fritzsche, and P. Rost, “Towards a flexible functional split for Cloud-RAN networks,” in Proceedings of 2014 European Conference on Networks and Communications (EuCNC, 2014), pp. 1–5.
[Crossref]

Guo, B.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

Lalam, M.

A. Maeder, M. Lalam, A. De Domenico, E. Pateromichelakis, D. Wübben, J. Bartelt, R. Fritzsche, and P. Rost, “Towards a flexible functional split for Cloud-RAN networks,” in Proceedings of 2014 European Conference on Networks and Communications (EuCNC, 2014), pp. 1–5.
[Crossref]

Luo, H.

M. Ding, J. Zou, Z. Yang, H. Luo, and W. Chen, “Sequential and incremental precoder design for joint transmission network MIMO systems with imperfect backhaul,” IEEE Trans. Vehicular Technol. 61(6), 2490–2503 (2012).
[Crossref]

Maeder, A.

A. Maeder, M. Lalam, A. De Domenico, E. Pateromichelakis, D. Wübben, J. Bartelt, R. Fritzsche, and P. Rost, “Towards a flexible functional split for Cloud-RAN networks,” in Proceedings of 2014 European Conference on Networks and Communications (EuCNC, 2014), pp. 1–5.
[Crossref]

Matz, G.

S. Schwandter, P. Fertl, C. Novak, and G. Matz, “Log-likelihood ratio clipping in MIMO-BICM systems: Information Geometric Analysis and Impact on System Capacity,” in Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP, 2009), pp. 2433–2436.
[Crossref]

Mayer, H.-P.

U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J. 18(1), 105–128 (2013).
[Crossref]

Novak, C.

S. Schwandter, P. Fertl, C. Novak, and G. Matz, “Log-likelihood ratio clipping in MIMO-BICM systems: Information Geometric Analysis and Impact on System Capacity,” in Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP, 2009), pp. 2433–2436.
[Crossref]

Pateromichelakis, E.

A. Maeder, M. Lalam, A. De Domenico, E. Pateromichelakis, D. Wübben, J. Bartelt, R. Fritzsche, and P. Rost, “Towards a flexible functional split for Cloud-RAN networks,” in Proceedings of 2014 European Conference on Networks and Communications (EuCNC, 2014), pp. 1–5.
[Crossref]

Rost, P.

A. Maeder, M. Lalam, A. De Domenico, E. Pateromichelakis, D. Wübben, J. Bartelt, R. Fritzsche, and P. Rost, “Towards a flexible functional split for Cloud-RAN networks,” in Proceedings of 2014 European Conference on Networks and Communications (EuCNC, 2014), pp. 1–5.
[Crossref]

Samardzija, D.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

Schaich, F.

U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J. 18(1), 105–128 (2013).
[Crossref]

Schwandter, S.

S. Schwandter, P. Fertl, C. Novak, and G. Matz, “Log-likelihood ratio clipping in MIMO-BICM systems: Information Geometric Analysis and Impact on System Capacity,” in Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP, 2009), pp. 2433–2436.
[Crossref]

Segel, J.

U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J. 18(1), 105–128 (2013).
[Crossref]

Sehier, P.

U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J. 18(1), 105–128 (2013).
[Crossref]

Tao, A.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

Wübben, D.

A. Maeder, M. Lalam, A. De Domenico, E. Pateromichelakis, D. Wübben, J. Bartelt, R. Fritzsche, and P. Rost, “Towards a flexible functional split for Cloud-RAN networks,” in Proceedings of 2014 European Conference on Networks and Communications (EuCNC, 2014), pp. 1–5.
[Crossref]

Yang, Z.

M. Ding, J. Zou, Z. Yang, H. Luo, and W. Chen, “Sequential and incremental precoder design for joint transmission network MIMO systems with imperfect backhaul,” IEEE Trans. Vehicular Technol. 61(6), 2490–2503 (2012).
[Crossref]

Zou, J.

M. Ding, J. Zou, Z. Yang, H. Luo, and W. Chen, “Sequential and incremental precoder design for joint transmission network MIMO systems with imperfect backhaul,” IEEE Trans. Vehicular Technol. 61(6), 2490–2503 (2012).
[Crossref]

Bell Labs Tech. J. (2)

U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantative analysis of split base station processing and determination of advantageous architectures for LTE,” Bell Labs Tech. J. 18(1), 105–128 (2013).
[Crossref]

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

IEEE Trans. Vehicular Technol. (1)

M. Ding, J. Zou, Z. Yang, H. Luo, and W. Chen, “Sequential and incremental precoder design for joint transmission network MIMO systems with imperfect backhaul,” IEEE Trans. Vehicular Technol. 61(6), 2490–2503 (2012).
[Crossref]

Other (18)

3GPP, R1–081483, Qualcomm Europe, “Conveying MCS and TB size via PDCCH,” (3GPP, 2008), http://www.3gpp.org/DynaReport/TDocExMtg–R1-52b–26911.htm .

3GPP, TS 36.300, v13.1.0, “Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (EUTRAN); Overall description; Stage 2,” (3GPP, 2015), http://www.3gpp.org/DynaReport/36300.htm .

S. Schwandter, P. Fertl, C. Novak, and G. Matz, “Log-likelihood ratio clipping in MIMO-BICM systems: Information Geometric Analysis and Impact on System Capacity,” in Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP, 2009), pp. 2433–2436.
[Crossref]

3GPP, TS 36.912, v12.0.0, ”Feasibility study for future advancements for E-UTRA (LTE-Advanced),” (3GPP, 2014), http://www.3gpp.org/DynaReport/36912.htm .

3GPP, TS 36.104, v13.1.0, “Evolved universal terrestrial radio access (E-UTRA); Base station (BS) radio transmission and reception,” (3GPP, 2015), http://www.3gpp.org/DynaReport/36104.htm .

K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu2E.1.

ETSI specification, “Open radio equipment interface (ORI); ORI interface specification (release-4),” (2014), http://www.etsi.org/technologies-clusters/technologies/ori .

A. Maeder, M. Lalam, A. De Domenico, E. Pateromichelakis, D. Wübben, J. Bartelt, R. Fritzsche, and P. Rost, “Towards a flexible functional split for Cloud-RAN networks,” in Proceedings of 2014 European Conference on Networks and Communications (EuCNC, 2014), pp. 1–5.
[Crossref]

NGMN, “Future study on critical C-RAN technologies,” (2015), https://www.ngmn.org/uploads/media/NGMN_RANEV_D2_Further_Study_on_Critical_C-RAN_Technologes_v1.0.pdf .

China Mobile Research Institute, “White Paper of Next Generation Fronthaul Interface,” (2015), http://labs.chinamobile.com/cran/wp-content/uploads/2015/09/NGFI-Whitepaper_EN_v1.0_201509291.pdf .

K. Miyamoto, S. Kuwano, J. Terada, and A. Otaka, “Split-PHY processing architecture to realize base station coordination and transmission bandwidth reduction in mobile fronthaul,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2J.4.
[Crossref]

K. Miyamoto, S. Kuwano, J. Terada, and A. Otaka, “Uplink joint reception with LLR forwarding for optical transmission bandwidth reduction in mobile fronthaul,” in Proceedings of Vehicular Technology Conference2015-Spring (VTC2015-Spring), pp. 1–5.

NTT DOCOMO white paper, “DOCOMO 5G white paper, 5G radio access: requirements, concept and technologies,” https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/whitepaper_5g/DOCOMO_5G_White_Paper.pdf .

NGMN whitepaper, “NGMN 5G white paper,” https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf .

China Mobile Research Institute white paper, “C-RAN the road towards green RAN white paper version 3.0,” http://labs.chinamobile.com/cran/wp-content/uploads/2014/06/20140613-C-RAN-WP-3.0.pdf .

NGMN Technical Report, “Suggestions on potential solutions to C-RAN,” http://www.ngmn-ic.info/uploads/media/NGMN_CRAN_Suggestions_on_Potential_Solutions_to_CRAN.pdf .

3GPP, TS 36.819, v11.2.0, “Coordinated multi-point operation for LTE physical layer aspects,” http://www.3gpp.org/DynaReport/36819.htm .

CPRI, “CPRI specification v6.1,” (2014), http://www.cpri.info/jp/spec.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 C-RAN architecture.
Fig. 2
Fig. 2 Functional split point for SPP architecture.
Fig. 3
Fig. 3 Joint transmission schemes for SPP architecture and conventional C-RAN.
Fig. 4
Fig. 4 Joint reception schemes for SPP architecture and conventional C-RAN.
Fig. 5
Fig. 5 MFH bandwidth versus UE number.
Fig. 6
Fig. 6 Wireless BER performance of uplink CoMP joint reception.

Tables (2)

Tables Icon

Table 1 Simulation Parameters for Bandwidth Evaluation

Tables Icon

Table 2 Simulation Parameters for Wireless Transmission Performance Evaluation

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

B SPPDL = k 1 T TTI N modDL,k N sym N SC N RB N stDL
B SPPUL = k 1 T TTI N modUL,k N sym N SC N RB N stUL N qLLR
B C =2 f s N qIQ N ant N CA

Metrics