Abstract

We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured POFs.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

10 February 2016: Corrections were made to Figs. 1–5.


OSA Recommended Articles
Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing

Getinet Woyessa, Andrea Fasano, Christos Markos, Alessio Stefani, Henrik K. Rasmussen, and Ole Bang
Opt. Mater. Express 7(1) 286-295 (2017)

High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees

Christos Markos, Alessio Stefani, Kristian Nielsen, Henrik K. Rasmussen, Wu Yuan, and Ole Bang
Opt. Express 21(4) 4758-4765 (2013)

Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials

A. Leal-Junior, A. Frizera, M. J. Pontes, A. Fasano, G. Woyessa, O. Bang, and C. A. F. Marques
Opt. Mater. Express 8(4) 804-815 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Kaino, M. Fujiki, and S. Nara, “Low‐loss polystyrene core‐optical fibers,” J. Appl. Phys. 52(12), 7061–7063 (1981).
    [Crossref]
  2. T. Kaino, M. Fujiki, S. Oikawa, and S. Nara, “Low-loss plastic optical fibers,” Appl. Opt. 20(17), 2886–2888 (1981).
    [Crossref] [PubMed]
  3. Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater. 1(1), 22–28 (2009).
    [Crossref]
  4. K. Peters, “Polymer optical fiber sensors – a review,” Smart Mater. Struct. 20(1), 013002 (2011).
    [Crossref]
  5. D. J. Webb, “Fiber Bragg grating sensors in polymer optical fibers,” Meas. Sci. Technol. 26(9), 092004 (2015).
    [Crossref]
  6. D. J. Webb and K. Kalli, “Polymer fiber bragg gratings,” in Fiber Bragg Grating Sensors: Thirty Years From Research to Market, A. Cusano, A. Cutolo, and J. Albert eds. (Bentham Science, 2010).
  7. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [Crossref] [PubMed]
  8. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
    [Crossref] [PubMed]
  9. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
    [Crossref] [PubMed]
  10. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
    [Crossref] [PubMed]
  11. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
    [Crossref]
  12. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
    [Crossref]
  13. G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-Doped Step-Index Polymer Optical Fiber for Broadband Optical Amplification,” J. Lightwave Technol. 14(10), 2215–2223 (1996).
    [Crossref]
  14. G. Zhou, C.-F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-Mode Perfluorinated Polymer Optical Fibers With Refractive Index of 1.34 for Biomedical Applications,” IEEE Photonics Technol. Lett. 22(2), 106–108 (2010).
    [Crossref]
  15. Y. Koike, Y. Takezawa, and Y. Ohtsuka, “New interfacial-gel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays,” Appl. Opt. 27(3), 486–491 (1988).
    [Crossref] [PubMed]
  16. M. Beckers, T. Schlüter, T. Vad, T. Gries, and C.-A. Bunge, “An overview on fabrication methods for polymer optical fibers,” Polym. Int. 64(1), 25–36 (2015).
    [Crossref]
  17. M. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. McPhedran, C. M. de Sterke, and N. A. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
    [Crossref] [PubMed]
  18. A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
    [Crossref]
  19. A. Abang and D. J. Webb, “Demountable connection for polymer optical fiber grating sensors,” Opt. Eng. 51(8), 080503 (2012).
    [Crossref]
  20. G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Opt. Express 15(12), 7876–7887 (2007).
    [Crossref] [PubMed]
  21. I.-L. Bundalo, K. Nielsen, and O. Bang, “Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers,” Opt. Express 23(3), 3699–3707 (2015).
    [Crossref] [PubMed]
  22. H. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” PhD Thesis, Lausanne, EPFL (2008).
  23. C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
    [Crossref]
  24. G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
    [Crossref]
  25. http://www.zeonex.com
  26. http://www.topas.com
  27. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
    [Crossref]
  28. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
    [Crossref] [PubMed]
  29. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
    [Crossref] [PubMed]
  30. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [Crossref] [PubMed]
  31. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013–1018 (2011).
    [Crossref]
  32. Y. Zhang, K. Li, L. Wang, L. Ren, W. Zhao, R. Miao, M. C J Large, and M. A. van Eijkelenborg, “Casting preforms for microstructured polymer optical fibre fabrication,” Opt. Express 14(12), 5541–5547 (2006).
    [Crossref] [PubMed]
  33. https://www.thorlabs.com/thorcat/6800/780HP-SpecSheet.pdf
  34. https://www.thorlabs.com/thorcat/22100/SM800G80-SpecSheet.pdf
  35. A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
    [Crossref]
  36. I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
    [PubMed]
  37. R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
    [Crossref] [PubMed]
  38. I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010).
    [Crossref]

2015 (4)

D. J. Webb, “Fiber Bragg grating sensors in polymer optical fibers,” Meas. Sci. Technol. 26(9), 092004 (2015).
[Crossref]

M. Beckers, T. Schlüter, T. Vad, T. Gries, and C.-A. Bunge, “An overview on fabrication methods for polymer optical fibers,” Polym. Int. 64(1), 25–36 (2015).
[Crossref]

I.-L. Bundalo, K. Nielsen, and O. Bang, “Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers,” Opt. Express 23(3), 3699–3707 (2015).
[Crossref] [PubMed]

R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (3)

A. Abang and D. J. Webb, “Demountable connection for polymer optical fiber grating sensors,” Opt. Eng. 51(8), 080503 (2012).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

2011 (6)

K. Peters, “Polymer optical fiber sensors – a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
[Crossref]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[Crossref] [PubMed]

J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013–1018 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

2010 (3)

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010).
[Crossref]

G. Zhou, C.-F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-Mode Perfluorinated Polymer Optical Fibers With Refractive Index of 1.34 for Biomedical Applications,” IEEE Photonics Technol. Lett. 22(2), 106–108 (2010).
[Crossref]

2009 (2)

2007 (2)

2006 (1)

2005 (2)

2001 (2)

1999 (1)

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

1996 (1)

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-Doped Step-Index Polymer Optical Fiber for Broadband Optical Amplification,” J. Lightwave Technol. 14(10), 2215–2223 (1996).
[Crossref]

1988 (1)

1981 (2)

T. Kaino, M. Fujiki, and S. Nara, “Low‐loss polystyrene core‐optical fibers,” J. Appl. Phys. 52(12), 7061–7063 (1981).
[Crossref]

T. Kaino, M. Fujiki, S. Oikawa, and S. Nara, “Low-loss plastic optical fibers,” Appl. Opt. 20(17), 2886–2888 (1981).
[Crossref] [PubMed]

Abang, A.

A. Abang and D. J. Webb, “Demountable connection for polymer optical fiber grating sensors,” Opt. Eng. 51(8), 080503 (2012).
[Crossref]

Adam, A. J. L.

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

Anthony, J.

Argyros, A.

Asai, M.

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater. 1(1), 22–28 (2009).
[Crossref]

Asatryan, A. A.

Bang, O.

I.-L. Bundalo, K. Nielsen, and O. Bang, “Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers,” Opt. Express 23(3), 3699–3707 (2015).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[Crossref] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
[Crossref]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[Crossref] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

Bassett, I.

Beckers, M.

M. Beckers, T. Schlüter, T. Vad, T. Gries, and C.-A. Bunge, “An overview on fabrication methods for polymer optical fibers,” Polym. Int. 64(1), 25–36 (2015).
[Crossref]

Bilro, L.

Bjarklev, A.

Botten, L. C.

Bundalo, I.-L.

Bunge, C.-A.

M. Beckers, T. Schlüter, T. Vad, T. Gries, and C.-A. Bunge, “An overview on fabrication methods for polymer optical fibers,” Polym. Int. 64(1), 25–36 (2015).
[Crossref]

C J Large, M.

Celanese, H.

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[Crossref]

Chaplin, R. P.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-Doped Step-Index Polymer Optical Fiber for Broadband Optical Amplification,” J. Lightwave Technol. 14(10), 2215–2223 (1996).
[Crossref]

Chu, P. L.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-Doped Step-Index Polymer Optical Fiber for Broadband Optical Amplification,” J. Lightwave Technol. 14(10), 2215–2223 (1996).
[Crossref]

de Sterke, C. M.

Dobb, H.

Emiliyanov, G.

Fleming, S.

Fujiki, M.

T. Kaino, M. Fujiki, S. Oikawa, and S. Nara, “Low-loss plastic optical fibers,” Appl. Opt. 20(17), 2886–2888 (1981).
[Crossref] [PubMed]

T. Kaino, M. Fujiki, and S. Nara, “Low‐loss polystyrene core‐optical fibers,” J. Appl. Phys. 52(12), 7061–7063 (1981).
[Crossref]

Gries, T.

M. Beckers, T. Schlüter, T. Vad, T. Gries, and C.-A. Bunge, “An overview on fabrication methods for polymer optical fibers,” Polym. Int. 64(1), 25–36 (2015).
[Crossref]

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

Hoiby, P.

Hoiby, P. E.

Issa, N.

Jensen, J.

Jensen, J. B.

Jepsen, P. U.

Johnson, I. P.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010).
[Crossref]

Kaino, T.

T. Kaino, M. Fujiki, S. Oikawa, and S. Nara, “Low-loss plastic optical fibers,” Appl. Opt. 20(17), 2886–2888 (1981).
[Crossref] [PubMed]

T. Kaino, M. Fujiki, and S. Nara, “Low‐loss polystyrene core‐optical fibers,” J. Appl. Phys. 52(12), 7061–7063 (1981).
[Crossref]

Kalli, K.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010).
[Crossref]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[Crossref] [PubMed]

Kan, D. J.

Khan, L.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Khanarian, G.

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[Crossref]

Kjaer, E. M.

Koike, Y.

Large, M.

Large, M. C. J.

Leonhardt, R.

Li, K.

Lindvold, L.

Lu, C.

G. Zhou, C.-F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-Mode Perfluorinated Polymer Optical Fibers With Refractive Index of 1.34 for Biomedical Applications,” IEEE Photonics Technol. Lett. 22(2), 106–108 (2010).
[Crossref]

Manos, S.

Markos, C.

Marshall, G. D.

McPhedran, R.

Miao, R.

Nara, S.

T. Kaino, M. Fujiki, and S. Nara, “Low‐loss polystyrene core‐optical fibers,” J. Appl. Phys. 52(12), 7061–7063 (1981).
[Crossref]

T. Kaino, M. Fujiki, S. Oikawa, and S. Nara, “Low-loss plastic optical fibers,” Appl. Opt. 20(17), 2886–2888 (1981).
[Crossref] [PubMed]

Nicorovici, N. A.

Nielsen, K.

Nogueira, R.

Ohtsuka, Y.

Oikawa, S.

Oliveira, R.

Pedersen, L.

Pedersen, L. H.

Peng, G. D.

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-Doped Step-Index Polymer Optical Fiber for Broadband Optical Amplification,” J. Lightwave Technol. 14(10), 2215–2223 (1996).
[Crossref]

Peters, K.

K. Peters, “Polymer optical fiber sensors – a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Planken, P. C. M.

Pun, C.-F. J.

G. Zhou, C.-F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-Mode Perfluorinated Polymer Optical Fibers With Refractive Index of 1.34 for Biomedical Applications,” IEEE Photonics Technol. Lett. 22(2), 106–108 (2010).
[Crossref]

Rasmussen, H. K.

Ren, L.

Schlüter, T.

M. Beckers, T. Schlüter, T. Vad, T. Gries, and C.-A. Bunge, “An overview on fabrication methods for polymer optical fibers,” Polym. Int. 64(1), 25–36 (2015).
[Crossref]

Stefani, A.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
[Crossref]

Takezawa, Y.

Tam, H.

G. Zhou, C.-F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-Mode Perfluorinated Polymer Optical Fibers With Refractive Index of 1.34 for Biomedical Applications,” IEEE Photonics Technol. Lett. 22(2), 106–108 (2010).
[Crossref]

Town, G. E.

Vad, T.

M. Beckers, T. Schlüter, T. Vad, T. Gries, and C.-A. Bunge, “An overview on fabrication methods for polymer optical fibers,” Polym. Int. 64(1), 25–36 (2015).
[Crossref]

van Eijkelenborg, M.

van Eijkelenborg, M. A.

Vlachos, K.

Wai, P. K. A.

G. Zhou, C.-F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-Mode Perfluorinated Polymer Optical Fibers With Refractive Index of 1.34 for Biomedical Applications,” IEEE Photonics Technol. Lett. 22(2), 106–108 (2010).
[Crossref]

Wang, L.

Webb, D. J.

D. J. Webb, “Fiber Bragg grating sensors in polymer optical fibers,” Meas. Sci. Technol. 26(9), 092004 (2015).
[Crossref]

A. Abang and D. J. Webb, “Demountable connection for polymer optical fiber grating sensors,” Opt. Eng. 51(8), 080503 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010).
[Crossref]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[Crossref] [PubMed]

Whitbread, T. W.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-Doped Step-Index Polymer Optical Fiber for Broadband Optical Amplification,” J. Lightwave Technol. 14(10), 2215–2223 (1996).
[Crossref]

Withford, M. J.

Wong, A. C. L.

G. Zhou, C.-F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-Mode Perfluorinated Polymer Optical Fibers With Refractive Index of 1.34 for Biomedical Applications,” IEEE Photonics Technol. Lett. 22(2), 106–108 (2010).
[Crossref]

Wu, B.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Xiong, Z.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-Doped Step-Index Polymer Optical Fiber for Broadband Optical Amplification,” J. Lightwave Technol. 14(10), 2215–2223 (1996).
[Crossref]

Yuan, W.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[Crossref] [PubMed]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Zagari, J.

Zhang, C.

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

Zhang, W.

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

Zhang, Y.

Zhao, W.

Zhou, G.

G. Zhou, C.-F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-Mode Perfluorinated Polymer Optical Fibers With Refractive Index of 1.34 for Biomedical Applications,” IEEE Photonics Technol. Lett. 22(2), 106–108 (2010).
[Crossref]

Appl. Opt. (2)

Electron. Lett. (3)

I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010).
[Crossref]

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fiber Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (4)

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 23(10), 660–662 (2011).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

G. Zhou, C.-F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-Mode Perfluorinated Polymer Optical Fibers With Refractive Index of 1.34 for Biomedical Applications,” IEEE Photonics Technol. Lett. 22(2), 106–108 (2010).
[Crossref]

J. Appl. Phys. (1)

T. Kaino, M. Fujiki, and S. Nara, “Low‐loss polystyrene core‐optical fibers,” J. Appl. Phys. 52(12), 7061–7063 (1981).
[Crossref]

J. Lightwave Technol. (1)

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-Doped Step-Index Polymer Optical Fiber for Broadband Optical Amplification,” J. Lightwave Technol. 14(10), 2215–2223 (1996).
[Crossref]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

D. J. Webb, “Fiber Bragg grating sensors in polymer optical fibers,” Meas. Sci. Technol. 26(9), 092004 (2015).
[Crossref]

NPG Asia Mater. (1)

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater. 1(1), 22–28 (2009).
[Crossref]

Opt. Commun. (1)

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

Opt. Eng. (2)

A. Abang and D. J. Webb, “Demountable connection for polymer optical fiber grating sensors,” Opt. Eng. 51(8), 080503 (2012).
[Crossref]

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[Crossref]

Opt. Express (11)

Y. Zhang, K. Li, L. Wang, L. Ren, W. Zhao, R. Miao, M. C J Large, and M. A. van Eijkelenborg, “Casting preforms for microstructured polymer optical fibre fabrication,” Opt. Express 14(12), 5541–5547 (2006).
[Crossref] [PubMed]

M. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. McPhedran, C. M. de Sterke, and N. A. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
[Crossref] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[PubMed]

I.-L. Bundalo, K. Nielsen, and O. Bang, “Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers,” Opt. Express 23(3), 3699–3707 (2015).
[Crossref] [PubMed]

R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[Crossref] [PubMed]

G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Opt. Express 15(12), 7876–7887 (2007).
[Crossref] [PubMed]

Opt. Lett. (2)

Polym. Int. (1)

M. Beckers, T. Schlüter, T. Vad, T. Gries, and C.-A. Bunge, “An overview on fabrication methods for polymer optical fibers,” Polym. Int. 64(1), 25–36 (2015).
[Crossref]

Smart Mater. Struct. (1)

K. Peters, “Polymer optical fiber sensors – a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Other (6)

D. J. Webb and K. Kalli, “Polymer fiber bragg gratings,” in Fiber Bragg Grating Sensors: Thirty Years From Research to Market, A. Cusano, A. Cutolo, and J. Albert eds. (Bentham Science, 2010).

http://www.zeonex.com

http://www.topas.com

H. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” PhD Thesis, Lausanne, EPFL (2008).

https://www.thorlabs.com/thorcat/6800/780HP-SpecSheet.pdf

https://www.thorlabs.com/thorcat/22100/SM800G80-SpecSheet.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Measured refractive index contrast of SIPOF at 850 nm. Inset: microscope image of the end facet of the SIPOF. (b) Measured transmission loss of the SIPOF.
Fig. 2
Fig. 2 (a) Bragg reflection of the SIPOFBG before and after annealing both normalized to the power of non-annealed grating. (b) Growth dynamic of the peak intensity of the 2 mm SIPOFBG during writing.
Fig. 3
Fig. 3 Setup used for humidity and temperature measurement.
Fig. 4
Fig. 4 (a) Humidity response of single-mode SIPOFBG at 25°C. (b) Temperature response single-mode SIPOFBG at 50% RH.
Fig. 5
Fig. 5 Strain response of single-mode SIPOFBG.

Metrics