Abstract

The effect of humidity on annealing of poly (methyl methacrylate) (PMMA) based microstructured polymer optical fiber Bragg gratings (mPOFBGs) and the resulting humidity responsivity are investigated. Typically annealing of PMMA POFs is done in an oven without humidity control around 80°C and therefore at low humidity. We demonstrate that annealing at high humidity and high temperature improves the performances of mPOFBGs in terms of stability and sensitivity to humidity. PMMA POFBGs that are not annealed or annealed at low humidity level will have a low and highly temperature dependent sensitivity and a high hysteresis in the humidity response, in particular when operated at high temperature. PMMA mPOFBGs annealed at high humidity show higher and more linear humidity sensitivity with negligible hysteresis. We also report how annealing at high humidity can blue-shift the FBG wavelength more than 230 nm without loss in the grating strength.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

10 February 2016: Corrections were made to Figs. 1–7.


OSA Recommended Articles
Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing

Getinet Woyessa, Andrea Fasano, Christos Markos, Alessio Stefani, Henrik K. Rasmussen, and Ole Bang
Opt. Mater. Express 7(1) 286-295 (2017)

Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

Getinet Woyessa, Andrea Fasano, Alessio Stefani, Christos Markos, Kristian Nielsen, Henrik K. Rasmussen, and Ole Bang
Opt. Express 24(2) 1253-1260 (2016)

Humidity insensitive TOPAS polymer fiber Bragg grating sensor

Wu Yuan, Lutful Khan, David J. Webb, Kyriacos Kalli, Henrik K. Rasmussen, Alessio Stefani, and Ole Bang
Opt. Express 19(20) 19731-19739 (2011)

References

  • View by:
  • |
  • |
  • |

  1. K. Peters, “Polymer optical fiber sensors - A review,” Smart Mater. Struct. 20(1), 013002 (2011).
    [Crossref]
  2. D. J. Webb, “Fiber Bragg grating sensors in polymer optical fibers,” Meas. Sci. Technol. 26(9), 092004 (2015).
    [Crossref]
  3. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
    [Crossref] [PubMed]
  4. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
    [Crossref]
  5. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
    [Crossref]
  6. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [Crossref] [PubMed]
  7. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
    [Crossref] [PubMed]
  8. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
    [Crossref] [PubMed]
  9. N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” PhD Thesis, Lausanne, EPFL (2008).
  10. C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fiber Bragg grating,” Proc. SPIE 7503, 750380 (2009).
    [Crossref]
  11. C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
    [Crossref]
  12. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
    [Crossref] [PubMed]
  13. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
    [Crossref] [PubMed]
  14. Z. F. Zhang and X. M. Tao, “Synergetic effects of humidity and temperature on PMMA based fiber Bragg gratings,” J. Lightwave Technol. 30(6), 841–845 (2012).
    [Crossref]
  15. W. Zhang and D. J. Webb, “Humidity responsivity of poly(methyl methacrylate)-based optical fiber Bragg grating sensors,” Opt. Lett. 39(10), 3026–3029 (2014).
    [Crossref] [PubMed]
  16. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
    [Crossref]
  17. B. T. Kuhlmey, R. C. McPhedran, and C. Martijn de Sterke, “Modal cutoff in microstructured optical fibers,” Opt. Lett. 27(19), 1684–1686 (2002).
    [Crossref] [PubMed]
  18. T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [Crossref] [PubMed]
  19. A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
    [Crossref]
  20. A. Abang and D. J. Webb, “Demountable connection for polymer optical fiber grating sensors,” Opt. Eng. 51(8), 080503 (2012).
    [Crossref]
  21. I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fiber,” Proc. SPIE 7714, 77140D (2010).
    [Crossref]

2015 (1)

D. J. Webb, “Fiber Bragg grating sensors in polymer optical fibers,” Meas. Sci. Technol. 26(9), 092004 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (4)

Z. F. Zhang and X. M. Tao, “Synergetic effects of humidity and temperature on PMMA based fiber Bragg gratings,” J. Lightwave Technol. 30(6), 841–845 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

A. Abang and D. J. Webb, “Demountable connection for polymer optical fiber grating sensors,” Opt. Eng. 51(8), 080503 (2012).
[Crossref]

2011 (4)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

K. Peters, “Polymer optical fiber sensors - A review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[Crossref] [PubMed]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

2010 (2)

I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fiber,” Proc. SPIE 7714, 77140D (2010).
[Crossref]

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

2009 (1)

C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fiber Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[Crossref]

2007 (1)

2005 (2)

2002 (1)

1999 (1)

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

1997 (1)

Abang, A.

A. Abang and D. J. Webb, “Demountable connection for polymer optical fiber grating sensors,” Opt. Eng. 51(8), 080503 (2012).
[Crossref]

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Argyros, A.

I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fiber,” Proc. SPIE 7714, 77140D (2010).
[Crossref]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[Crossref] [PubMed]

Bache, M.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Bang, O.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[Crossref] [PubMed]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[Crossref] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

Birks, T. A.

Bjarklev, A.

Chen, X.

C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fiber Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[Crossref]

Chu, P. L.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Dobb, H.

Emiliyanov, G.

Hansen, K. S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Hoiby, P.

Hoiby, P. E.

Jacobsen, T.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Jensen, J.

Jensen, J. B.

Johnson, I. P.

I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fiber,” Proc. SPIE 7714, 77140D (2010).
[Crossref]

Kalli, K.

Khan, L.

Kjaer, E. M.

Knight, J. C.

Kuhlmey, B. T.

Large, M. C. J.

I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fiber,” Proc. SPIE 7714, 77140D (2010).
[Crossref]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[Crossref] [PubMed]

Lindvold, L.

Markos, C.

Martijn de Sterke, C.

McPhedran, R. C.

Nielsen, F. K.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Nielsen, K.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

Pedersen, L.

Pedersen, L. H.

Peng, G. D.

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fiber Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Peters, K.

K. Peters, “Polymer optical fiber sensors - A review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Rasmussen, H. K.

Rose, B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Russell, P. S.

Sørensen, O. B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Stefani, A.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Tao, X. M.

Town, G. E.

van Eijkelenborg, M. A.

Vlachos, K.

Webb, D. J.

D. J. Webb, “Fiber Bragg grating sensors in polymer optical fibers,” Meas. Sci. Technol. 26(9), 092004 (2015).
[Crossref]

W. Zhang and D. J. Webb, “Humidity responsivity of poly(methyl methacrylate)-based optical fiber Bragg grating sensors,” Opt. Lett. 39(10), 3026–3029 (2014).
[Crossref] [PubMed]

A. Abang and D. J. Webb, “Demountable connection for polymer optical fiber grating sensors,” Opt. Eng. 51(8), 080503 (2012).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fiber,” Proc. SPIE 7714, 77140D (2010).
[Crossref]

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fiber Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[Crossref]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[Crossref] [PubMed]

Wu, B.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Xiong, Z.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Yuan, W.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[Crossref] [PubMed]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fiber Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[Crossref]

Zhang, W.

W. Zhang and D. J. Webb, “Humidity responsivity of poly(methyl methacrylate)-based optical fiber Bragg grating sensors,” Opt. Lett. 39(10), 3026–3029 (2014).
[Crossref] [PubMed]

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

Zhang, Z. F.

Electron. Lett. (1)

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photonics Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

D. J. Webb, “Fiber Bragg grating sensors in polymer optical fibers,” Meas. Sci. Technol. 26(9), 092004 (2015).
[Crossref]

Opt. Commun. (2)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

Opt. Eng. (1)

A. Abang and D. J. Webb, “Demountable connection for polymer optical fiber grating sensors,” Opt. Eng. 51(8), 080503 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Proc. SPIE (2)

I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fiber,” Proc. SPIE 7714, 77140D (2010).
[Crossref]

C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fiber Bragg grating,” Proc. SPIE 7503, 750380 (2009).
[Crossref]

Smart Mater. Struct. (1)

K. Peters, “Polymer optical fiber sensors - A review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Other (1)

N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” PhD Thesis, Lausanne, EPFL (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for annealing and humidity response measurement of PMMA mPOFBGs. Inset: microscope image of the end facet of PMMA mPOF.

Fig. 2
Fig. 2

Complete annealing process of PMMA mPOFBGs annealed at 80°C and up to a relative humidity of 90% (black), 70% (red), 50% (blue), 30% (pink) and 10% (green). The relative humidity sequence is shown only for the pre-annealing and annealing phases.

Fig. 3
Fig. 3

(a) Measured humidity response at 25°C of PMMA mPOFBG annealed up to 90% RH versus time and humidity. The steps are defined in the text. (b) Corresponding stabilized response of the PMMA mPOFBGs annealed up to 90% and 10%.

Fig. 4
Fig. 4

Humidity sensitivity at 25°C and 50°C for PMMA mPOFBGs annealed to 90%, 70%, 50%, 30% and 10% RH and at 75°C for PMMA mPOFBG annealed to 90%.

Fig. 5
Fig. 5

Humidity responsivity at 75°C of PMMA POFBGs annealed up to 90%, 70%, 50%, 30%, and 10% RH.

Fig. 6
Fig. 6

(a) Annealing history of PMMA mPOFBGs annealed at 80°C and 90% RH. (b) Bragg reflection of PMMA mPOFBG before and after annealing at 80°C and at 90% RH both normalized to the non-annealed grating.

Fig. 7
Fig. 7

Bragg wavelength change versus increasing in relative humidity at 25°C, 50°C and 75°C.

Metrics