Abstract

By investigating the intensity correlation function, we study the spectral/temporal mode properties of twin beams generated by the pulse-pumped high gain spontaneous four wave mixing (SFWM) in optical fiber from both the theoretical and experimental aspects. The results show that the temporal property depends not only on the phase matching condition and the filters applied in the signal and idler fields, but also on the gain of SFWM. When the gain of SFWM is low, the spectral/temporal mode properties of the twin beams are determined by the phase matching condition and optical filtering and are usually of multi-mode nature, which leads to a value larger than 1 but distinctly smaller than 2 for the normalized intensity correlation function of individual signal/idler beam. However, when the gain of SFWM is very high, we demonstrate the normalized intensity correlation function of individual signal/idler beam approaches to 2, which is a signature of single temporal mode. This is so even if the frequencies of signal and idler fields are highly correlated so that the twin beams have multiple modes in low gain regime. We find that the reason for this behavior is the dominance of the fundamental mode over other higher order modes at high gain. Our investigation is useful for constructing high quality multi-mode squeezed and entangled states by using pulse-pumped spontaneous parametric down-conversion and SFWM.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation

Xueshi Guo, Nannan Liu, Xiaoying Li, and Z. Y. Ou
Opt. Express 23(23) 29369-29383 (2015)

State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing

Bin Fang, Offir Cohen, Jamy B. Moreno, and Virginia O. Lorenz
Opt. Express 21(3) 2707-2717 (2013)

Generation of two-temporal-mode photon states by vector four-wave mixing

C. J. McKinstrie, J. B. Christensen, K. Rottwitt, and M. G. Raymer
Opt. Express 25(17) 20877-20893 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. E. Slusher, P. Grangier, and A. Laporta, “Pulsed squeezed light,” Phys. Rev. Lett. 59, 2566–2569 (1987).
    [Crossref] [PubMed]
  2. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
    [Crossref]
  3. Y. Shih, “Entangled biphoton source-property and preparation,” Rep. Prog. Phys. 66, 1009–1044 (2003).
    [Crossref]
  4. J. Wenger, R. Tualle-Brouri, and P. Grangier, “Pulsed homodyne measurement of femtosecond squeezed pulses generated by single-pass parametric deamplification,” Opt. Lett. 29, 1267–1269 (2004).
    [Crossref] [PubMed]
  5. W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: Simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
    [Crossref]
  6. A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
    [Crossref] [PubMed]
  7. X. Guo, X. Li, N. Liu, L. Yang, and Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
    [Crossref]
  8. Z. Y. Ou, J. K. Rhee, and L. J. Wang, “Photon bunching and multiphoton interference in parametric down-conversion,” Phys. Rev. A 60, 593–604 (1999).
    [Crossref]
  9. Z. Y. Ou, “Parametric down-conversion with coherent pulse pumping and quantum interference between independent fields,” Quantum Semiclass Opt. 9, 599–614 (1997).
    [Crossref]
  10. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
    [Crossref]
  11. A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).
  12. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
    [Crossref]
  13. J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
    [Crossref]
  14. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  15. O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
    [Crossref] [PubMed]
  16. X. Guo, N. Liu, X. Li, and Z. Y. Ou, “Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation,” Opt. Express 23, 29369–29384 (2015).
    [Crossref] [PubMed]
  17. B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
    [Crossref] [PubMed]
  18. K. Y. Spasibko, T. S. Iskhakov, and M. V. Chekhova, “Spectral properties of high-gain parametric down-conversion,” Opt. Express 20, 7507–7515 (2012).
    [Crossref] [PubMed]
  19. T. S. Iskhakov, K. Y. Spasibko, M. V. Chekhova, and G. Leuchs, “Macroscopic hong-ou-mandel interference,” New J. Phys. 15, 093036 (2013).
    [Crossref]
  20. A. Allevi, O. Jedrkiewicz, E. Brambilla, A. Gatti, J. Peřina, O. Haderka, and M. Bondani, “Coherence properties of high-gain twin beams,” Phys. Rev. A 90, 063812 (2014).
    [Crossref]
  21. P. Sharapova, A. M. Peŕez, O. V. Tikhonova, and M. V. Chekhova, “Schmidt modes in the angular spectrum of bright squeezed vacuum,” Phys. Rev. A 91, 043816 (2015).
    [Crossref]
  22. I. V. Dyakonov, P. R. Sharapova, T. S. Iskhakov, and G. Leuchs, “Direct Schmidt number measurement of high-gain parametric down conversion,” Laser Phys. Lett. 12, 065202 (2015).
    [Crossref]
  23. L. Yang, F. Sun, N. Zhao, and X. Li, “Generation of frequency degenerate twin photons in pulse pumped fiber optical parametric amplifiers: Influence of background noise,” Opt. Express 22, 2553–2561 (2014).
    [Crossref] [PubMed]
  24. B. Yurke and M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464–3466 (1987).
    [Crossref] [PubMed]
  25. A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
    [Crossref]
  26. X. Guo, X. Li, N. Liu, and Z. Y. Ou, “Multi-mode theory of generating pulsed twin beams from a high gain fiber optical parametric amplifier,” Phys. Rev. A 88, 023841 (2013).
    [Crossref]
  27. O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
    [Crossref]
  28. X. Li, X. Ma, Z. Y. Ou, L. Yang, L. Cui, and D. Yu, “Spectral study of photon pairs generated in dispersion shifted fiber with a pulsed pump,” Opt. Express 16, 32–44 (2008).
    [Crossref] [PubMed]
  29. L. Cui, X. Li, and N. Zhao, “Minimizing the frequency correlation of photon pairs in photonic crystal fibers,” New J. Phys. 14, 123001 (2012).
    [Crossref]
  30. C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett 84, 5304–5307 (2000).
    [Crossref] [PubMed]
  31. M. Avenhaus, K. Laiho, M. V. Chekhova, and C. Silberhorn, “Accessing higher order correlations in quantum optical states by time multiplexing,” Phys. Rev. Lett 104, 063602 (2010).
    [Crossref] [PubMed]
  32. M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
    [Crossref] [PubMed]
  33. A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
    [Crossref]
  34. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
    [Crossref] [PubMed]
  35. S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
    [Crossref] [PubMed]

2015 (4)

P. Sharapova, A. M. Peŕez, O. V. Tikhonova, and M. V. Chekhova, “Schmidt modes in the angular spectrum of bright squeezed vacuum,” Phys. Rev. A 91, 043816 (2015).
[Crossref]

I. V. Dyakonov, P. R. Sharapova, T. S. Iskhakov, and G. Leuchs, “Direct Schmidt number measurement of high-gain parametric down conversion,” Laser Phys. Lett. 12, 065202 (2015).
[Crossref]

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

X. Guo, N. Liu, X. Li, and Z. Y. Ou, “Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation,” Opt. Express 23, 29369–29384 (2015).
[Crossref] [PubMed]

2014 (3)

L. Yang, F. Sun, N. Zhao, and X. Li, “Generation of frequency degenerate twin photons in pulse pumped fiber optical parametric amplifiers: Influence of background noise,” Opt. Express 22, 2553–2561 (2014).
[Crossref] [PubMed]

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

A. Allevi, O. Jedrkiewicz, E. Brambilla, A. Gatti, J. Peřina, O. Haderka, and M. Bondani, “Coherence properties of high-gain twin beams,” Phys. Rev. A 90, 063812 (2014).
[Crossref]

2013 (3)

X. Guo, X. Li, N. Liu, and Z. Y. Ou, “Multi-mode theory of generating pulsed twin beams from a high gain fiber optical parametric amplifier,” Phys. Rev. A 88, 023841 (2013).
[Crossref]

M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

T. S. Iskhakov, K. Y. Spasibko, M. V. Chekhova, and G. Leuchs, “Macroscopic hong-ou-mandel interference,” New J. Phys. 15, 093036 (2013).
[Crossref]

2012 (4)

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

X. Guo, X. Li, N. Liu, L. Yang, and Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[Crossref]

L. Cui, X. Li, and N. Zhao, “Minimizing the frequency correlation of photon pairs in photonic crystal fibers,” New J. Phys. 14, 123001 (2012).
[Crossref]

K. Y. Spasibko, T. S. Iskhakov, and M. V. Chekhova, “Spectral properties of high-gain parametric down-conversion,” Opt. Express 20, 7507–7515 (2012).
[Crossref] [PubMed]

2011 (2)

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

2010 (1)

M. Avenhaus, K. Laiho, M. V. Chekhova, and C. Silberhorn, “Accessing higher order correlations in quantum optical states by time multiplexing,” Phys. Rev. Lett 104, 063602 (2010).
[Crossref] [PubMed]

2008 (2)

2006 (2)

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[Crossref]

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: Simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

2005 (1)

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

2004 (2)

2003 (1)

Y. Shih, “Entangled biphoton source-property and preparation,” Rep. Prog. Phys. 66, 1009–1044 (2003).
[Crossref]

2002 (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]

2001 (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

2000 (1)

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett 84, 5304–5307 (2000).
[Crossref] [PubMed]

1999 (1)

Z. Y. Ou, J. K. Rhee, and L. J. Wang, “Photon bunching and multiphoton interference in parametric down-conversion,” Phys. Rev. A 60, 593–604 (1999).
[Crossref]

1998 (1)

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

1997 (2)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
[Crossref]

Z. Y. Ou, “Parametric down-conversion with coherent pulse pumping and quantum interference between independent fields,” Quantum Semiclass Opt. 9, 599–614 (1997).
[Crossref]

1987 (2)

R. E. Slusher, P. Grangier, and A. Laporta, “Pulsed squeezed light,” Phys. Rev. Lett. 59, 2566–2569 (1987).
[Crossref] [PubMed]

B. Yurke and M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464–3466 (1987).
[Crossref] [PubMed]

Alibart, O.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[Crossref]

Allevi, A.

A. Allevi, O. Jedrkiewicz, E. Brambilla, A. Gatti, J. Peřina, O. Haderka, and M. Bondani, “Coherence properties of high-gain twin beams,” Phys. Rev. A 90, 063812 (2014).
[Crossref]

Avenhaus, M.

M. Avenhaus, K. Laiho, M. V. Chekhova, and C. Silberhorn, “Accessing higher order correlations in quantum optical states by time multiplexing,” Phys. Rev. Lett 104, 063602 (2010).
[Crossref] [PubMed]

Banaszek, K.

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: Simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

Bondani, M.

A. Allevi, O. Jedrkiewicz, E. Brambilla, A. Gatti, J. Peřina, O. Haderka, and M. Bondani, “Coherence properties of high-gain twin beams,” Phys. Rev. A 90, 063812 (2014).
[Crossref]

Boucher, G.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

Bouwmeester, D.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
[Crossref]

Brambilla, E.

A. Allevi, O. Jedrkiewicz, E. Brambilla, A. Gatti, J. Peřina, O. Haderka, and M. Bondani, “Coherence properties of high-gain twin beams,” Phys. Rev. A 90, 063812 (2014).
[Crossref]

Cai, Y.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

Cassemiro, K. N.

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

Chalopin, B.

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

Chekhova, M. V.

P. Sharapova, A. M. Peŕez, O. V. Tikhonova, and M. V. Chekhova, “Schmidt modes in the angular spectrum of bright squeezed vacuum,” Phys. Rev. A 91, 043816 (2015).
[Crossref]

T. S. Iskhakov, K. Y. Spasibko, M. V. Chekhova, and G. Leuchs, “Macroscopic hong-ou-mandel interference,” New J. Phys. 15, 093036 (2013).
[Crossref]

K. Y. Spasibko, T. S. Iskhakov, and M. V. Chekhova, “Spectral properties of high-gain parametric down-conversion,” Opt. Express 20, 7507–7515 (2012).
[Crossref] [PubMed]

M. Avenhaus, K. Laiho, M. V. Chekhova, and C. Silberhorn, “Accessing higher order correlations in quantum optical states by time multiplexing,” Phys. Rev. Lett 104, 063602 (2010).
[Crossref] [PubMed]

Chen, J.

Christ, A.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

Cui, L.

L. Cui, X. Li, and N. Zhao, “Minimizing the frequency correlation of photon pairs in photonic crystal fibers,” New J. Phys. 14, 123001 (2012).
[Crossref]

X. Li, X. Ma, Z. Y. Ou, L. Yang, L. Cui, and D. Yu, “Spectral study of photon pairs generated in dispersion shifted fiber with a pulsed pump,” Opt. Express 16, 32–44 (2008).
[Crossref] [PubMed]

de Araújo, R. M.

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

Ducci, S.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

Dyakonov, I. V.

I. V. Dyakonov, P. R. Sharapova, T. S. Iskhakov, and G. Leuchs, “Direct Schmidt number measurement of high-gain parametric down conversion,” Laser Phys. Lett. 12, 065202 (2015).
[Crossref]

Eberly, J. H.

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett 84, 5304–5307 (2000).
[Crossref] [PubMed]

Eckstein, A.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
[Crossref]

Erdmann, R.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

Fabre, C.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[Crossref] [PubMed]

Favero, I.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

Feng, J.

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

Filloux, P.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

Fiorentino, M.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]

Fulconis, J.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[Crossref]

Gatti, A.

A. Allevi, O. Jedrkiewicz, E. Brambilla, A. Gatti, J. Peřina, O. Haderka, and M. Bondani, “Coherence properties of high-gain twin beams,” Phys. Rev. A 90, 063812 (2014).
[Crossref]

Gerke, S.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

Grangier, P.

Grice, W. P.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

Guo, X.

X. Guo, N. Liu, X. Li, and Z. Y. Ou, “Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation,” Opt. Express 23, 29369–29384 (2015).
[Crossref] [PubMed]

X. Guo, X. Li, N. Liu, and Z. Y. Ou, “Multi-mode theory of generating pulsed twin beams from a high gain fiber optical parametric amplifier,” Phys. Rev. A 88, 023841 (2013).
[Crossref]

X. Guo, X. Li, N. Liu, L. Yang, and Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[Crossref]

Haderka, O.

A. Allevi, O. Jedrkiewicz, E. Brambilla, A. Gatti, J. Peřina, O. Haderka, and M. Bondani, “Coherence properties of high-gain twin beams,” Phys. Rev. A 90, 063812 (2014).
[Crossref]

Iskhakov, T. S.

I. V. Dyakonov, P. R. Sharapova, T. S. Iskhakov, and G. Leuchs, “Direct Schmidt number measurement of high-gain parametric down conversion,” Laser Phys. Lett. 12, 065202 (2015).
[Crossref]

T. S. Iskhakov, K. Y. Spasibko, M. V. Chekhova, and G. Leuchs, “Macroscopic hong-ou-mandel interference,” New J. Phys. 15, 093036 (2013).
[Crossref]

K. Y. Spasibko, T. S. Iskhakov, and M. V. Chekhova, “Spectral properties of high-gain parametric down-conversion,” Opt. Express 20, 7507–7515 (2012).
[Crossref] [PubMed]

Jedrkiewicz, O.

A. Allevi, O. Jedrkiewicz, E. Brambilla, A. Gatti, J. Peřina, O. Haderka, and M. Bondani, “Coherence properties of high-gain twin beams,” Phys. Rev. A 90, 063812 (2014).
[Crossref]

Jian, P.

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Kumar, P.

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[Crossref] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Laiho, K.

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

M. Avenhaus, K. Laiho, M. V. Chekhova, and C. Silberhorn, “Accessing higher order correlations in quantum optical states by time multiplexing,” Phys. Rev. Lett 104, 063602 (2010).
[Crossref] [PubMed]

Lamine, B.

B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[Crossref] [PubMed]

Laporta, A.

R. E. Slusher, P. Grangier, and A. Laporta, “Pulsed squeezed light,” Phys. Rev. Lett. 59, 2566–2569 (1987).
[Crossref] [PubMed]

Law, C. K.

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett 84, 5304–5307 (2000).
[Crossref] [PubMed]

Lemaître, A.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

Leo, G.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

Leuchs, G.

I. V. Dyakonov, P. R. Sharapova, T. S. Iskhakov, and G. Leuchs, “Direct Schmidt number measurement of high-gain parametric down conversion,” Laser Phys. Lett. 12, 065202 (2015).
[Crossref]

T. S. Iskhakov, K. Y. Spasibko, M. V. Chekhova, and G. Leuchs, “Macroscopic hong-ou-mandel interference,” New J. Phys. 15, 093036 (2013).
[Crossref]

Li, X.

Liscidini, M.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

Liu, N.

X. Guo, N. Liu, X. Li, and Z. Y. Ou, “Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation,” Opt. Express 23, 29369–29384 (2015).
[Crossref] [PubMed]

X. Guo, X. Li, N. Liu, and Z. Y. Ou, “Multi-mode theory of generating pulsed twin beams from a high gain fiber optical parametric amplifier,” Phys. Rev. A 88, 023841 (2013).
[Crossref]

X. Guo, X. Li, N. Liu, L. Yang, and Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[Crossref]

Lvovsky, A. I.

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: Simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

Ma, X.

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
[Crossref]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Mosley, P. J.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

Murdoch, S. G.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[Crossref]

Ou, Z. Y.

X. Guo, N. Liu, X. Li, and Z. Y. Ou, “Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation,” Opt. Express 23, 29369–29384 (2015).
[Crossref] [PubMed]

X. Guo, X. Li, N. Liu, and Z. Y. Ou, “Multi-mode theory of generating pulsed twin beams from a high gain fiber optical parametric amplifier,” Phys. Rev. A 88, 023841 (2013).
[Crossref]

X. Guo, X. Li, N. Liu, L. Yang, and Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[Crossref]

X. Li, X. Ma, Z. Y. Ou, L. Yang, L. Cui, and D. Yu, “Spectral study of photon pairs generated in dispersion shifted fiber with a pulsed pump,” Opt. Express 16, 32–44 (2008).
[Crossref] [PubMed]

Z. Y. Ou, J. K. Rhee, and L. J. Wang, “Photon bunching and multiphoton interference in parametric down-conversion,” Phys. Rev. A 60, 593–604 (1999).
[Crossref]

Z. Y. Ou, “Parametric down-conversion with coherent pulse pumping and quantum interference between independent fields,” Quantum Semiclass Opt. 9, 599–614 (1997).
[Crossref]

Pan, J. W.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
[Crossref]

Perez, A. M.

P. Sharapova, A. M. Peŕez, O. V. Tikhonova, and M. V. Chekhova, “Schmidt modes in the angular spectrum of bright squeezed vacuum,” Phys. Rev. A 91, 043816 (2015).
[Crossref]

Perina, J.

A. Allevi, O. Jedrkiewicz, E. Brambilla, A. Gatti, J. Peřina, O. Haderka, and M. Bondani, “Coherence properties of high-gain twin beams,” Phys. Rev. A 90, 063812 (2014).
[Crossref]

Pinel, O.

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

Potasek, M.

B. Yurke and M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464–3466 (1987).
[Crossref] [PubMed]

Radzewicz, C.

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: Simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

Rarity, J. G.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[Crossref]

Raymer, M. G.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

Rhee, J. K.

Z. Y. Ou, J. K. Rhee, and L. J. Wang, “Photon bunching and multiphoton interference in parametric down-conversion,” Phys. Rev. A 60, 593–604 (1999).
[Crossref]

Roslund, J.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

Sharapova, P.

P. Sharapova, A. M. Peŕez, O. V. Tikhonova, and M. V. Chekhova, “Schmidt modes in the angular spectrum of bright squeezed vacuum,” Phys. Rev. A 91, 043816 (2015).
[Crossref]

Sharapova, P. R.

I. V. Dyakonov, P. R. Sharapova, T. S. Iskhakov, and G. Leuchs, “Direct Schmidt number measurement of high-gain parametric down conversion,” Laser Phys. Lett. 12, 065202 (2015).
[Crossref]

Sharping, J.

Sharping, J. E.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]

Shih, Y.

Y. Shih, “Entangled biphoton source-property and preparation,” Rep. Prog. Phys. 66, 1009–1044 (2003).
[Crossref]

Silberhorn, C.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

M. Avenhaus, K. Laiho, M. V. Chekhova, and C. Silberhorn, “Accessing higher order correlations in quantum optical states by time multiplexing,” Phys. Rev. Lett 104, 063602 (2010).
[Crossref] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

Sipe, J. E.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

Slusher, R. E.

R. E. Slusher, P. Grangier, and A. Laporta, “Pulsed squeezed light,” Phys. Rev. Lett. 59, 2566–2569 (1987).
[Crossref] [PubMed]

Spasibko, K. Y.

T. S. Iskhakov, K. Y. Spasibko, M. V. Chekhova, and G. Leuchs, “Macroscopic hong-ou-mandel interference,” New J. Phys. 15, 093036 (2013).
[Crossref]

K. Y. Spasibko, T. S. Iskhakov, and M. V. Chekhova, “Spectral properties of high-gain parametric down-conversion,” Opt. Express 20, 7507–7515 (2012).
[Crossref] [PubMed]

Sperling, J.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

Sun, F.

Tikhonova, O. V.

P. Sharapova, A. M. Peŕez, O. V. Tikhonova, and M. V. Chekhova, “Schmidt modes in the angular spectrum of bright squeezed vacuum,” Phys. Rev. A 91, 043816 (2015).
[Crossref]

Treps, N.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[Crossref] [PubMed]

Tualle-Brouri, R.

U’Ren, A. B.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

Vogel, W.

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

Voss, P.

Voss, P. L.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]

Wadsworth, W. J.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[Crossref]

Walmsley, I. A.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett 84, 5304–5307 (2000).
[Crossref] [PubMed]

Wang, L. J.

Z. Y. Ou, J. K. Rhee, and L. J. Wang, “Photon bunching and multiphoton interference in parametric down-conversion,” Phys. Rev. A 60, 593–604 (1999).
[Crossref]

Wasilewski, W.

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: Simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

Weinfurter, H.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
[Crossref]

Wenger, J.

Wong, G. K. L.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[Crossref]

Yang, L.

Yu, D.

Yurke, B.

B. Yurke and M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464–3466 (1987).
[Crossref] [PubMed]

Zeilinger, A.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
[Crossref]

Zhao, N.

Appl. Phys. Lett. (1)

X. Guo, X. Li, N. Liu, L. Yang, and Z. Y. Ou, “An all-fiber source of pulsed twin beams for quantum communication,” Appl. Phys. Lett. 101, 261111 (2012).
[Crossref]

Laser Photonics Rev. (1)

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photonics Rev. 8, L76–L80 (2014).
[Crossref]

Laser Phys. (1)

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

Laser Phys. Lett. (1)

I. V. Dyakonov, P. R. Sharapova, T. S. Iskhakov, and G. Leuchs, “Direct Schmidt number measurement of high-gain parametric down conversion,” Laser Phys. Lett. 12, 065202 (2015).
[Crossref]

Nature (2)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

New J. Phys. (4)

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

T. S. Iskhakov, K. Y. Spasibko, M. V. Chekhova, and G. Leuchs, “Macroscopic hong-ou-mandel interference,” New J. Phys. 15, 093036 (2013).
[Crossref]

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[Crossref]

L. Cui, X. Li, and N. Zhao, “Minimizing the frequency correlation of photon pairs in photonic crystal fibers,” New J. Phys. 14, 123001 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Photon. Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]

Phys. Rev. A (7)

A. Allevi, O. Jedrkiewicz, E. Brambilla, A. Gatti, J. Peřina, O. Haderka, and M. Bondani, “Coherence properties of high-gain twin beams,” Phys. Rev. A 90, 063812 (2014).
[Crossref]

P. Sharapova, A. M. Peŕez, O. V. Tikhonova, and M. V. Chekhova, “Schmidt modes in the angular spectrum of bright squeezed vacuum,” Phys. Rev. A 91, 043816 (2015).
[Crossref]

X. Guo, X. Li, N. Liu, and Z. Y. Ou, “Multi-mode theory of generating pulsed twin beams from a high gain fiber optical parametric amplifier,” Phys. Rev. A 88, 023841 (2013).
[Crossref]

B. Yurke and M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. Rev. A 36, 3464–3466 (1987).
[Crossref] [PubMed]

Z. Y. Ou, J. K. Rhee, and L. J. Wang, “Photon bunching and multiphoton interference in parametric down-conversion,” Phys. Rev. A 60, 593–604 (1999).
[Crossref]

W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: Simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006).
[Crossref]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

Phys. Rev. Lett (2)

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite hilbert space and entropy control,” Phys. Rev. Lett 84, 5304–5307 (2000).
[Crossref] [PubMed]

M. Avenhaus, K. Laiho, M. V. Chekhova, and C. Silberhorn, “Accessing higher order correlations in quantum optical states by time multiplexing,” Phys. Rev. Lett 104, 063602 (2010).
[Crossref] [PubMed]

Phys. Rev. Lett. (7)

M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

B. Lamine, C. Fabre, and N. Treps, “Quantum improvement of time transfer between remote clocks,” Phys. Rev. Lett. 101, 123601 (2008).
[Crossref] [PubMed]

S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre, “Full multipartite entanglement of frequency-comb gaussian states,” Phys. Rev. Lett. 114, 050501 (2015).
[Crossref] [PubMed]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett. 108, 083601 (2012).
[Crossref] [PubMed]

R. E. Slusher, P. Grangier, and A. Laporta, “Pulsed squeezed light,” Phys. Rev. Lett. 59, 2566–2569 (1987).
[Crossref] [PubMed]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[Crossref]

Quantum Semiclass Opt. (1)

Z. Y. Ou, “Parametric down-conversion with coherent pulse pumping and quantum interference between independent fields,” Quantum Semiclass Opt. 9, 599–614 (1997).
[Crossref]

Rep. Prog. Phys. (1)

Y. Shih, “Entangled biphoton source-property and preparation,” Rep. Prog. Phys. 66, 1009–1044 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Conceptual representation of the scheme for generating the twin beams via SFWM in fiber and the Hanbury Brown-Twiss (HBT) interferometer for measuring the intensity correlation function of individual signal (idler) beam g s ( i ) ( 2 ) F s ( i ) filter in signal (idler) band; FC, fiber coupler; D1–D2, detector.
Fig. 2
Fig. 2 (a) The normalized contour map of JSF | F ( ω s , ω i ) / F ( ω s 0 , ω i 0 ) | and (b) the corresponding amplitude of the kth order decomposed mode rk . (c) and (d) are the spectra of the first three decomposed modes in signal and idler fields (k = 1,2, 3), respectively. The red, blue and grey curves are for the mode with index k = 1, k = 2, and k = 3, respectively. In the simulation, we have Δ k = Ω s 0.6 σ p L + Ω i 0.9 σ p L in Eq. (5).
Fig. 3
Fig. 3 The normalized Green function | h 2 s ( i ) ( ω s ( i ) , ω i ( s ) ) / h 2 s ( i ) ( ω s 0 ( i 0 ) , ω i 0 ( s 0 ) ) | and the normalized amplitude of the kth order mode λ k = sinh ( r k G ) k sinh 2 ( r k G ) for the gain coefficient of (a) G = 0.1, (b) G = 5 and (c) G = 20, respectively. In the calculation, the JSF is the same as Fig. 2.
Fig. 4
Fig. 4 Intensity correlation function of individual signal and idler beams, g s ( 2 ) and g i ( 2 ) , versus G for filter with different ratio R = σs ( i )/σp . R → ∞ is equivalent to no filter is applied in signal (idler) band, i.e., fs (ωs ) = 1 = fi (ωi ). In the calculation, the JSF is the same as Fig. 2.
Fig. 5
Fig. 5 Experimental setup. DSF: dispersion shift fiber; EDFA: erbium-doped fiber amplifier; F1-F2: filter; FC1: 90/10 fiber coupler; FC2: 50/50 fiber coupler; FPC1-FPC3: fiber polarization controller; PBS1-PBS2: polarization beam splitter; VOA: variable optical attenuator; SPD1-SPD2: single photon detector.
Fig. 6
Fig. 6 (a) Power gain of amplified signal as a function of pump power when the power of the seeded reference signal is about 1 μW. The intensity correlation function in (b) signal and (c) idler bands, g s ( 2 ) and g i ( 2 ) , versus pump power for the filter F2 with different ratio R = σs ( i ) p .
Fig. 7
Fig. 7 Sketch map of the spectra of the first three decomposed modes in DSF, ϕk (ωs ) (k = 1,2,3), for the average pump power of about (a) 0.5 mW and (b) 2 mW, respectively. The red, blue and grey curves are for the mode with index k = 1, k = 2, and k = 3, respectively.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

E p ( t ) = E 0 e i γ P p z e ( ω p ω p 0 ) 2 2 σ p 2 e i ( k p z ω p t ) d ω p ,
E ^ s ( ) ( t ) = 1 2 π d ω s a ^ s ( ω s ) e i ( k s z ω s t )
E ^ i ( ) ( t ) = 1 2 π d ω i a ^ i ( ω i ) e i ( k i z ω i t )
b ^ s ( ω s ) = U ^ a ^ s ( ω s ) U ^ = S h 1 s ( ω s , ω s ) a ^ s ( ω s ) d ω s + I h 2 s ( ω s , ω i ) a ^ i ( ω i ) d ω i
b ^ i ( ω i ) = U ^ a ^ i ( ω i ) U ^ = I h 1 i ( ω i , ω i ) a ^ i ( ω i ) d ω i + I h 2 i ( ω i , ω s ) a ^ s ( ω s ) d ω s ,
U ^ = exp { G [ F ( ω s , ω i ) a ^ s ( ω s ) a ^ i ( ω i ) d ω s d ω i h . c . ] } ,
F ( ω s , ω i ) = C N 2 π σ p exp [ ( ω s + ω i 2 ω p 0 ) 2 4 σ p 2 ] sin c ( Δ k L 2 )
Δ k Ω s A + Ω i B ,
F ( ω s , ω i ) = k r k ϕ k ( ω s ) ψ k ( ω i ) ( k = 1 , 2 , ) ,
ϕ k 1 ( ω s ) ϕ k 2 ( ω s ) d ω s = δ k 1 , k 2 , ϕ k 1 ( ω i ) ϕ k 2 ( ω i ) d ω i = δ k 1 , k 2 ,
h 1 s ( ω s , ω s ) = δ ( ω s ω s ) + k [ cosh ( r k G ) 1 ] ϕ k ( ω s ) ϕ k ( ω s )
h 2 s ( ω s , ω i ) = k sinh ( r k G ) ϕ k ( ω s ) ψ k ( ω i )
h 1 i ( ω i , ω i ) = δ ( ω i ω i ) + k [ cosh ( r k G ) 1 ] ψ k ( ω i ) ψ k ( ω i )
h 2 s ( ω i , ω s ) = k sinh ( r k G ) ψ k ( ω i ) ϕ k ( ω s ) .
c ^ s ( i ) ( ω s ( i ) ) = η s ( i ) f ( ω s ( i ) ) b ^ s ( i ) ( ω s ( i ) ) + 1 η s ( i ) f 2 ( ω s ( i ) ) v ^ s ( i ) ( ω s ( i ) )
E D 1 ( ) ( t ) = η D 1 2 π d ω s ( i ) c s ( i ) ( ω s ( i ) ) e i ( k s ( i ) z ω s ( i ) t ) + 1 η D 1 2 π d ω s ( i ) v s ( i ) ( ω s ( i ) ) e i ( k s ( i ) z ω s ( i ) t )
E D 2 ( ) ( t ) = η D 2 2 π d ω s ( i ) c s ( i ) ( ω s ( i ) ) e i ( k s ( i ) z ω s ( i ) t ) + 1 η D 2 2 π d ω s ( i ) v s ( i ) ( ω s ( i ) ) e i ( k s ( i ) z ω s ( i ) t ) ,
g ( 2 ) = d t 1 d t 2 0 | E D 1 ( t 1 ) E D 2 ( t 2 ) E D 2 + ( t 2 ) E D 1 + ( t 1 ) | 0 d t 1 0 | E D 1 ( t 1 ) E D 1 + ( t 1 ) | 0 d t 2 0 | E D 2 ( t 2 ) E D 2 + ( t 2 ) | 0 .
g s ( i ) ( 2 ) = 1 + s ( i ) A s ( i )
s ( i ) d ω s ( i ) d ω s ( i ) d ω 1 d ω 2 | f s ( i ) ( ω s ( i ) ) | 2 | f s ( i ) ( ω s ( i ) ) | 2 × h 2 s ( i ) ( ω s ( i ) , ω 2 ) h 2 s ( i ) ( ω s ( i ) , ω 1 ) h 2 s ( i ) ( ω s ( i ) , ω 2 ) h 2 s ( i ) ( ω s ( i ) , ω 1 ) ,
A s ( i ) [ d ω s ( i ) d ω | f s ( i ) ( ω s ( i ) ) h 2 s ( i ) ( ω s ( i ) , ω ) | 2 ] 2 .
s ( i ) = k 1 , k 2 sinh 2 ( r k 1 G ) sinh 2 ( r k 2 G ) | Δ k 1 k 2 s ( i ) | 2 ,
A s ( i ) = k 1 , k 2 sinh 2 ( r k 1 G ) sinh 2 ( r k 2 G ) Δ k 1 k 1 s ( i ) Δ k 2 k 2 s ( i )
Δ k 1 k 2 s d ω s | f s ( ω s ) | 2 ϕ k 1 ( ω s ) ϕ k 2 ( ω s ) , Δ k 1 k 2 i d ω s | f i ( ω i ) | 2 ψ k 1 ( ω i ) ψ k 2 ( ω i ) .
s ( i ) = k sinh 4 ( r k G ) ,
A s ( i ) = [ k sinh 2 ( r k G ) ] 2 .
g ( 2 ) = 1 + k λ k 4 .
g ( 2 ) 1 + k r k 4 .
g ( 2 ) = 1 + k 1 v k 2 [ 1 + k 1 v k ] 2
g ( 2 ) 2 ( 1 k 1 v k ) .
S ( ω s ) = k ξ s k ϕ k ( ω s ) .
g = k | ξ s k | 2 cosh 2 ( r k G ) ,

Metrics