Abstract

In this manuscript, a high power broadband superfluorescent source (SFS) with linear polarization and near-diffraction-limited beam quality is achieved based on an ytterbium-doped (Yb-doped), all fiberized and polarization-maintained master oscillator power amplifier (MOPA) configuration. The MOPA structure generates a linearly polarized output power of 1427 W with a slope efficiency of 80% and a full width at half maximum (FWHM) of 11 nm, which is power scaled by an order of magnitude compared with the previously reported SFSs with linear polarization. In the experiment, both the polarization extinction ratio (PER) and beam quality (M2 factor) are degraded little during the power scaling process. At maximal output power, the PER and M2 factor are measured to be 19.1dB and 1.14, respectively. The root-mean-square (RMS) and peak-vale (PV) values of the power fluctuation at maximal output power are just 0.48% and within 3%, respectively. Further power scaling of the whole system is limited by the available pump sources. To the best of our knowledge, this is the first demonstration of kilowatt level broadband SFS with linear polarization and near-diffraction-limited beam quality.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality

Pengfei Ma, Rumao Tao, Rongtao Su, Xiaolin Wang, Pu Zhou, and Zejin Liu
Opt. Express 24(4) 4187-4195 (2016)

Single-frequency 332  W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality

Pengfei Ma, Pu Zhou, Yanxing Ma, Rongtao Su, Xiaojun Xu, and Zejin Liu
Appl. Opt. 52(20) 4854-4857 (2013)

560  W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality

Yang Ran, Rumao Tao, Pengfei Ma, Xiaolin Wang, Rongtao Su, Pu Zhou, and Lei Si
Appl. Opt. 54(24) 7258-7263 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. J. F. Digonnet, “Status of broadband rare-earth doped fiber sources or FOG applications,” Proc. SPIE 2070, 113–131 (1994).
    [Crossref]
  2. L. Goldberg, J. P. Koplow, R. P. Moeller, and D. A. V. Kliner, “High-power superfluorescent source with a side-pumped Yb-doped double-cladding fiber,” Opt. Lett. 23(13), 1037–1039 (1998).
    [Crossref] [PubMed]
  3. Z. C. Hsu, Z. S. Peng, L. A. Wang, R. Y. Liu, and F. I. Chou, “Gamma ray effects on double pass backward superfluorescent fiber sources for gyroscope applications,” Proc. SPIE 7004, 70044M (2008).
    [Crossref]
  4. M. Bashkansky, M. Duncan, L. Goldberg, J. Koplow, and J. Reintjes, “Characteristics of a Yb-doped superfluorescent fiber source for use in optical coherence tomography,” Opt. Express 3(8), 305–310 (1998).
    [Crossref] [PubMed]
  5. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  6. P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
    [Crossref]
  7. S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fiber sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
    [Crossref]
  8. I. Trifanov, P. Caldas, L. Neagu, R. Romero, M. O. Berendt, J. R. Salcedo, A. G. Podoleanu, and A. B. L. Ribeiro, “20mW, 70nm bandwidth ASE fibre optic source at 1060 nm wavelength region for optical coherence tomography,” Proc. SPIE 7580, 75800O (2010).
    [Crossref]
  9. A. B. L. Ribeiro, M. Melo, and J. R. Salcedo, “Optical fiber sources for measurement and imaging,” Proc. SPIE 7139, 713903 (2008).
    [Crossref]
  10. K. Oh, A. Kilian, L. Reinhart, Q. Zhang, T. F. Morse, and P. M. Weber, “Broadband superfluorescent emission of the 3H4→ 3H6 transition in a Tm-doped multicomponent silicate fiber,” Opt. Lett. 19(15), 1131–1133 (1994).
    [Crossref] [PubMed]
  11. Y. H. Tsang, T. A. King, D. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt. 53(7), 991–1001 (2006).
    [Crossref]
  12. A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photonics J. 4(1), 14–18 (2012).
    [Crossref]
  13. P. Kuan, K. Li, G. Zhang, X. Wang, L. Zhang, G. Bai, Y. Tsang, and L. Hu, “Compact broadband amplified spontaneous emission in Tm3+-doped tungsten tellurite glass double-cladding single-mode fiber,” Opt. Mater. Express 3(6), 723–728 (2013).
    [Crossref]
  14. P. Honzatko, Y. Baravets, I. Kasik, and O. Podrazky, “Wideband thulium-holmium-doped fiber source with combined forward and backward amplified spontaneous emission at 1600-2300 nm spectral band,” Opt. Lett. 39(12), 3650–3653 (2014).
    [Crossref] [PubMed]
  15. K. E. Riumkin, M. A. Melkumov, I. A. Bufetov, A. V. Shubin, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Superfluorescent 1.44 μm bismuth-doped fiber source,” Opt. Lett. 37(23), 4817–4819 (2012).
    [Crossref] [PubMed]
  16. D. M. Dagenais, L. Goldberg, R. P. Moeller, and W. K. Burns, “Wavelength stability characteristics of a high-power, amplified superfluorescent source,” J. Lightwave Technol. 17(8), 1415–1422 (1999).
    [Crossref]
  17. D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a Faraday rotator mirror,” IEEE Photonics Technol. Lett. 12(11), 1465–1467 (2000).
    [Crossref]
  18. A. Wang, “High stability Er-doped superfluorescent fiber source improved by incorporating band pass filter,” IEEE Photonics Technol. Lett. 23(4), 227–229 (2011).
    [Crossref]
  19. Y. Li, M. Jiang, C. X. Zhang, and H. J. Xu, “High stability Er-Doped superfluorescent fiber source incorporating an Er-Doped fiber filter and a faraday rotator mirror,” IEEE Photonics Technol. Lett. 25(8), 731–733 (2013).
    [Crossref]
  20. B. Levit, A. Bekker, V. Smulakovsky, and B. Fischer, “Amplified-spontaneous-emission pumped Raman fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest Series (Optical Society of America, 2009), paper JThE73.
    [Crossref]
  21. P. Wang, J. K. Sahu, and W. A. Clarkson, “Power scaling of ytterbium doped fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 13(3), 580–587 (2007).
    [Crossref]
  22. O. Schmidt, M. Rekas, C. Wirth, J. Rothhardt, S. Rhein, A. Kliner, M. Strecker, T. Schreiber, J. Limpert, R. Eberhardt, and A. Tünnermann, “High power narrow-band fiber-based ASE source,” Opt. Express 19(5), 4421–4427 (2011).
    [Crossref] [PubMed]
  23. P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
    [Crossref]
  24. J. Xu, W. Liu, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Opt. Lett. 40(13), 2973–2976 (2015).
    [Crossref] [PubMed]
  25. J. Liu, H. Shi, C. Liu, and P. Wang, “Widely tunable high power narrow-linewidth thulium-doped all-fiber superfluorescent source,” in Conference on Lasers and Electro-Optics/ QELS Fundamental Science, OSA Technical Digest Series (Optical Society of America), paper JTh2A.98, 2015.
    [Crossref]
  26. X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
    [Crossref] [PubMed]
  27. V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, “Double clad tapered fiber for high power applications,” Opt. Express 16(3), 1929–1944 (2008).
    [Crossref] [PubMed]
  28. Q. Xiao, P. Yan, Y. Wang, J. Hao, and M. Gong, “High-power all-fiber superfluorescent source with fused angle-polished side-pumping configuration,” Appl. Opt. 50(8), 1164–1169 (2011).
    [Crossref] [PubMed]
  29. W. Chen, D. Shen, T. Zhao, and X. Yang, “High power Er,Yb-doped superfluorescent fiber source with over 16 W output near 1.55 μm,” Opt. Express 20(13), 14542–14546 (2012).
    [Crossref] [PubMed]
  30. D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson, “Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power,” Opt. Express 16(15), 11021–11026 (2008).
    [Crossref] [PubMed]
  31. J. Xu, L. Huang, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “1.01 kW superfluorescent source in all-fiberized MOPA configuration,” Opt. Express 23(5), 5485–5490 (2015).
    [Crossref] [PubMed]
  32. J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20, 3100306 (2014).
  33. P. Wang and W. A. Clarkson, “High-power, single-mode, linearly polarized, ytterbium-doped fiber superfluorescent source,” Opt. Lett. 32(17), 2605–2607 (2007).
    [Crossref] [PubMed]
  34. D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Lett. 22(3), 160–162 (1997).
    [Crossref] [PubMed]

2015 (4)

2014 (2)

2013 (2)

P. Kuan, K. Li, G. Zhang, X. Wang, L. Zhang, G. Bai, Y. Tsang, and L. Hu, “Compact broadband amplified spontaneous emission in Tm3+-doped tungsten tellurite glass double-cladding single-mode fiber,” Opt. Mater. Express 3(6), 723–728 (2013).
[Crossref]

Y. Li, M. Jiang, C. X. Zhang, and H. J. Xu, “High stability Er-Doped superfluorescent fiber source incorporating an Er-Doped fiber filter and a faraday rotator mirror,” IEEE Photonics Technol. Lett. 25(8), 731–733 (2013).
[Crossref]

2012 (3)

W. Chen, D. Shen, T. Zhao, and X. Yang, “High power Er,Yb-doped superfluorescent fiber source with over 16 W output near 1.55 μm,” Opt. Express 20(13), 14542–14546 (2012).
[Crossref] [PubMed]

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photonics J. 4(1), 14–18 (2012).
[Crossref]

K. E. Riumkin, M. A. Melkumov, I. A. Bufetov, A. V. Shubin, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Superfluorescent 1.44 μm bismuth-doped fiber source,” Opt. Lett. 37(23), 4817–4819 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (1)

I. Trifanov, P. Caldas, L. Neagu, R. Romero, M. O. Berendt, J. R. Salcedo, A. G. Podoleanu, and A. B. L. Ribeiro, “20mW, 70nm bandwidth ASE fibre optic source at 1060 nm wavelength region for optical coherence tomography,” Proc. SPIE 7580, 75800O (2010).
[Crossref]

2008 (4)

A. B. L. Ribeiro, M. Melo, and J. R. Salcedo, “Optical fiber sources for measurement and imaging,” Proc. SPIE 7139, 713903 (2008).
[Crossref]

Z. C. Hsu, Z. S. Peng, L. A. Wang, R. Y. Liu, and F. I. Chou, “Gamma ray effects on double pass backward superfluorescent fiber sources for gyroscope applications,” Proc. SPIE 7004, 70044M (2008).
[Crossref]

V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, “Double clad tapered fiber for high power applications,” Opt. Express 16(3), 1929–1944 (2008).
[Crossref] [PubMed]

D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson, “Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power,” Opt. Express 16(15), 11021–11026 (2008).
[Crossref] [PubMed]

2007 (2)

P. Wang and W. A. Clarkson, “High-power, single-mode, linearly polarized, ytterbium-doped fiber superfluorescent source,” Opt. Lett. 32(17), 2605–2607 (2007).
[Crossref] [PubMed]

P. Wang, J. K. Sahu, and W. A. Clarkson, “Power scaling of ytterbium doped fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 13(3), 580–587 (2007).
[Crossref]

2006 (2)

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fiber sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Y. H. Tsang, T. A. King, D. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

2000 (1)

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a Faraday rotator mirror,” IEEE Photonics Technol. Lett. 12(11), 1465–1467 (2000).
[Crossref]

1999 (1)

1998 (2)

1997 (1)

1994 (3)

M. J. F. Digonnet, “Status of broadband rare-earth doped fiber sources or FOG applications,” Proc. SPIE 2070, 113–131 (1994).
[Crossref]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
[Crossref]

K. Oh, A. Kilian, L. Reinhart, Q. Zhang, T. F. Morse, and P. M. Weber, “Broadband superfluorescent emission of the 3H4→ 3H6 transition in a Tm-doped multicomponent silicate fiber,” Opt. Lett. 19(15), 1131–1133 (1994).
[Crossref] [PubMed]

Ahmad, H.

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photonics J. 4(1), 14–18 (2012).
[Crossref]

Bai, G.

Baravets, Y.

Bashkansky, M.

Berendt, M. O.

I. Trifanov, P. Caldas, L. Neagu, R. Romero, M. O. Berendt, J. R. Salcedo, A. G. Podoleanu, and A. B. L. Ribeiro, “20mW, 70nm bandwidth ASE fibre optic source at 1060 nm wavelength region for optical coherence tomography,” Proc. SPIE 7580, 75800O (2010).
[Crossref]

Bhadra, S. K.

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photonics J. 4(1), 14–18 (2012).
[Crossref]

Bufetov, I. A.

Burns, W. K.

Caldas, P.

I. Trifanov, P. Caldas, L. Neagu, R. Romero, M. O. Berendt, J. R. Salcedo, A. G. Podoleanu, and A. B. L. Ribeiro, “20mW, 70nm bandwidth ASE fibre optic source at 1060 nm wavelength region for optical coherence tomography,” Proc. SPIE 7580, 75800O (2010).
[Crossref]

Carrasco-Sanz, A.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fiber sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Chamorovskii, Y.

Chen, J.

Chen, W.

Chou, F. I.

Z. C. Hsu, Z. S. Peng, L. A. Wang, R. Y. Liu, and F. I. Chou, “Gamma ray effects on double pass backward superfluorescent fiber sources for gyroscope applications,” Proc. SPIE 7004, 70044M (2008).
[Crossref]

Clarkson, W. A.

Coen, S.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fiber sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Corredera, P.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fiber sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Dagenais, D. M.

Damanhuri, S. S. A.

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photonics J. 4(1), 14–18 (2012).
[Crossref]

Das, S.

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photonics J. 4(1), 14–18 (2012).
[Crossref]

Dianov, E. M.

Digonnet, M. J. F.

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a Faraday rotator mirror,” IEEE Photonics Technol. Lett. 12(11), 1465–1467 (2000).
[Crossref]

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Lett. 22(3), 160–162 (1997).
[Crossref] [PubMed]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
[Crossref]

M. J. F. Digonnet, “Status of broadband rare-earth doped fiber sources or FOG applications,” Proc. SPIE 2070, 113–131 (1994).
[Crossref]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Duncan, M.

Eberhardt, R.

Falquier, D. G.

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a Faraday rotator mirror,” IEEE Photonics Technol. Lett. 12(11), 1465–1467 (2000).
[Crossref]

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Lett. 22(3), 160–162 (1997).
[Crossref] [PubMed]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Fernandez, H.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fiber sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Filippov, V.

Firstov, S. V.

Golant, K.

Goldberg, L.

Gong, M.

Gonzalez-Herraez, M.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fiber sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Guo, S.

Guryanov, A. N.

Halder, A.

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photonics J. 4(1), 14–18 (2012).
[Crossref]

Hao, J.

Harun, S. W.

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photonics J. 4(1), 14–18 (2012).
[Crossref]

Hernanz, M. L.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fiber sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Honzatko, P.

Hsu, Z. C.

Z. C. Hsu, Z. S. Peng, L. A. Wang, R. Y. Liu, and F. I. Chou, “Gamma ray effects on double pass backward superfluorescent fiber sources for gyroscope applications,” Proc. SPIE 7004, 70044M (2008).
[Crossref]

Hu, L.

Huang, L.

Jiang, M.

Y. Li, M. Jiang, C. X. Zhang, and H. J. Xu, “High stability Er-Doped superfluorescent fiber source incorporating an Er-Doped fiber filter and a faraday rotator mirror,” IEEE Photonics Technol. Lett. 25(8), 731–733 (2013).
[Crossref]

Jin, X.

Kasik, I.

Kerttula, J.

Khopin, V. F.

Kilian, A.

Kim, B. Y.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
[Crossref]

King, T. A.

Y. H. Tsang, T. A. King, D. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

Kliner, A.

Kliner, D. A. V.

Ko, D.

Y. H. Tsang, T. A. King, D. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

Koplow, J.

Koplow, J. P.

Kuan, P.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Lee, J.

Y. H. Tsang, T. A. King, D. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

Leng, J.

Li, K.

Li, Y.

Y. Li, M. Jiang, C. X. Zhang, and H. J. Xu, “High stability Er-Doped superfluorescent fiber source incorporating an Er-Doped fiber filter and a faraday rotator mirror,” IEEE Photonics Technol. Lett. 25(8), 731–733 (2013).
[Crossref]

Limpert, J.

Liu, J.

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20, 3100306 (2014).

Liu, K.

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20, 3100306 (2014).

Liu, R. Y.

Z. C. Hsu, Z. S. Peng, L. A. Wang, R. Y. Liu, and F. I. Chou, “Gamma ray effects on double pass backward superfluorescent fiber sources for gyroscope applications,” Proc. SPIE 7004, 70044M (2008).
[Crossref]

Liu, W.

Liu, Z.

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

Ma, P.

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

Martin-Lopez, S.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fiber sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Melkumov, M. A.

Melo, M.

A. B. L. Ribeiro, M. Melo, and J. R. Salcedo, “Optical fiber sources for measurement and imaging,” Proc. SPIE 7139, 713903 (2008).
[Crossref]

Moeller, R. P.

Morse, T. F.

Neagu, L.

I. Trifanov, P. Caldas, L. Neagu, R. Romero, M. O. Berendt, J. R. Salcedo, A. G. Podoleanu, and A. B. L. Ribeiro, “20mW, 70nm bandwidth ASE fibre optic source at 1060 nm wavelength region for optical coherence tomography,” Proc. SPIE 7580, 75800O (2010).
[Crossref]

Oh, K.

Okhotnikov, O. G.

Pal, M.

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photonics J. 4(1), 14–18 (2012).
[Crossref]

Paul, M. C.

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photonics J. 4(1), 14–18 (2012).
[Crossref]

Pearson, L.

Peng, Z. S.

Z. C. Hsu, Z. S. Peng, L. A. Wang, R. Y. Liu, and F. I. Chou, “Gamma ray effects on double pass backward superfluorescent fiber sources for gyroscope applications,” Proc. SPIE 7004, 70044M (2008).
[Crossref]

Pessa, M.

Podoleanu, A. G.

I. Trifanov, P. Caldas, L. Neagu, R. Romero, M. O. Berendt, J. R. Salcedo, A. G. Podoleanu, and A. B. L. Ribeiro, “20mW, 70nm bandwidth ASE fibre optic source at 1060 nm wavelength region for optical coherence tomography,” Proc. SPIE 7580, 75800O (2010).
[Crossref]

Podrazky, O.

Reinhart, L.

Reintjes, J.

Rekas, M.

Rhein, S.

Ribeiro, A. B. L.

I. Trifanov, P. Caldas, L. Neagu, R. Romero, M. O. Berendt, J. R. Salcedo, A. G. Podoleanu, and A. B. L. Ribeiro, “20mW, 70nm bandwidth ASE fibre optic source at 1060 nm wavelength region for optical coherence tomography,” Proc. SPIE 7580, 75800O (2010).
[Crossref]

A. B. L. Ribeiro, M. Melo, and J. R. Salcedo, “Optical fiber sources for measurement and imaging,” Proc. SPIE 7139, 713903 (2008).
[Crossref]

Riumkin, K. E.

Romero, R.

I. Trifanov, P. Caldas, L. Neagu, R. Romero, M. O. Berendt, J. R. Salcedo, A. G. Podoleanu, and A. B. L. Ribeiro, “20mW, 70nm bandwidth ASE fibre optic source at 1060 nm wavelength region for optical coherence tomography,” Proc. SPIE 7580, 75800O (2010).
[Crossref]

Rothhardt, J.

Sahu, J. K.

D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson, “Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power,” Opt. Express 16(15), 11021–11026 (2008).
[Crossref] [PubMed]

P. Wang, J. K. Sahu, and W. A. Clarkson, “Power scaling of ytterbium doped fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 13(3), 580–587 (2007).
[Crossref]

Saidin, N.

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photonics J. 4(1), 14–18 (2012).
[Crossref]

Salcedo, J. R.

I. Trifanov, P. Caldas, L. Neagu, R. Romero, M. O. Berendt, J. R. Salcedo, A. G. Podoleanu, and A. B. L. Ribeiro, “20mW, 70nm bandwidth ASE fibre optic source at 1060 nm wavelength region for optical coherence tomography,” Proc. SPIE 7580, 75800O (2010).
[Crossref]

A. B. L. Ribeiro, M. Melo, and J. R. Salcedo, “Optical fiber sources for measurement and imaging,” Proc. SPIE 7139, 713903 (2008).
[Crossref]

Schmidt, O.

Schreiber, T.

Shahabuddin, N. S.

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photonics J. 4(1), 14–18 (2012).
[Crossref]

Shaw, H. J.

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a Faraday rotator mirror,” IEEE Photonics Technol. Lett. 12(11), 1465–1467 (2000).
[Crossref]

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Lett. 22(3), 160–162 (1997).
[Crossref] [PubMed]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
[Crossref]

Shen, D.

Shen, D. Y.

Shubin, A. V.

Solis, J.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fiber sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Strecker, M.

Tan, F.

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20, 3100306 (2014).

Tao, R.

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

Trifanov, I.

I. Trifanov, P. Caldas, L. Neagu, R. Romero, M. O. Berendt, J. R. Salcedo, A. G. Podoleanu, and A. B. L. Ribeiro, “20mW, 70nm bandwidth ASE fibre optic source at 1060 nm wavelength region for optical coherence tomography,” Proc. SPIE 7580, 75800O (2010).
[Crossref]

Tsang, Y.

Tsang, Y. H.

Y. H. Tsang, T. A. King, D. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

Tünnermann, A.

Vanholsbeeck, F.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fiber sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Wagener, J. L.

Wang, A.

A. Wang, “High stability Er-doped superfluorescent fiber source improved by incorporating band pass filter,” IEEE Photonics Technol. Lett. 23(4), 227–229 (2011).
[Crossref]

Wang, L. A.

Z. C. Hsu, Z. S. Peng, L. A. Wang, R. Y. Liu, and F. I. Chou, “Gamma ray effects on double pass backward superfluorescent fiber sources for gyroscope applications,” Proc. SPIE 7004, 70044M (2008).
[Crossref]

Wang, P.

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20, 3100306 (2014).

D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson, “Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power,” Opt. Express 16(15), 11021–11026 (2008).
[Crossref] [PubMed]

P. Wang and W. A. Clarkson, “High-power, single-mode, linearly polarized, ytterbium-doped fiber superfluorescent source,” Opt. Lett. 32(17), 2605–2607 (2007).
[Crossref] [PubMed]

P. Wang, J. K. Sahu, and W. A. Clarkson, “Power scaling of ytterbium doped fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 13(3), 580–587 (2007).
[Crossref]

Wang, X.

Wang, Y.

Weber, P. M.

Wirth, C.

Wysocki, P. F.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
[Crossref]

Xiao, H.

Xiao, Q.

Xu, H. J.

Y. Li, M. Jiang, C. X. Zhang, and H. J. Xu, “High stability Er-Doped superfluorescent fiber source incorporating an Er-Doped fiber filter and a faraday rotator mirror,” IEEE Photonics Technol. Lett. 25(8), 731–733 (2013).
[Crossref]

Xu, J.

Yan, P.

Yang, X.

Zhang, C. X.

Y. Li, M. Jiang, C. X. Zhang, and H. J. Xu, “High stability Er-Doped superfluorescent fiber source incorporating an Er-Doped fiber filter and a faraday rotator mirror,” IEEE Photonics Technol. Lett. 25(8), 731–733 (2013).
[Crossref]

Zhang, G.

Zhang, L.

Zhang, Q.

Zhao, T.

Zhou, P.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (2)

P. Wang, J. K. Sahu, and W. A. Clarkson, “Power scaling of ytterbium doped fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 13(3), 580–587 (2007).
[Crossref]

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20, 3100306 (2014).

IEEE Photonics J. (1)

A. Halder, M. C. Paul, N. S. Shahabuddin, S. W. Harun, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “Wideband spectrum-sliced ASE source operating at 1900-nm region based on a double clad Ytterbium-sensitized Thulium-doped fiber,” IEEE Photonics J. 4(1), 14–18 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (4)

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a Faraday rotator mirror,” IEEE Photonics Technol. Lett. 12(11), 1465–1467 (2000).
[Crossref]

A. Wang, “High stability Er-doped superfluorescent fiber source improved by incorporating band pass filter,” IEEE Photonics Technol. Lett. 23(4), 227–229 (2011).
[Crossref]

Y. Li, M. Jiang, C. X. Zhang, and H. J. Xu, “High stability Er-Doped superfluorescent fiber source incorporating an Er-Doped fiber filter and a faraday rotator mirror,” IEEE Photonics Technol. Lett. 25(8), 731–733 (2013).
[Crossref]

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

J. Lightwave Technol. (2)

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
[Crossref]

D. M. Dagenais, L. Goldberg, R. P. Moeller, and W. K. Burns, “Wavelength stability characteristics of a high-power, amplified superfluorescent source,” J. Lightwave Technol. 17(8), 1415–1422 (1999).
[Crossref]

J. Mod. Opt. (1)

Y. H. Tsang, T. A. King, D. Ko, and J. Lee, “Broadband amplified spontaneous emission double-clad fibre source with central wavelengths near 2 μm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

Meas. Sci. Technol. (1)

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fiber sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Opt. Express (7)

M. Bashkansky, M. Duncan, L. Goldberg, J. Koplow, and J. Reintjes, “Characteristics of a Yb-doped superfluorescent fiber source for use in optical coherence tomography,” Opt. Express 3(8), 305–310 (1998).
[Crossref] [PubMed]

W. Chen, D. Shen, T. Zhao, and X. Yang, “High power Er,Yb-doped superfluorescent fiber source with over 16 W output near 1.55 μm,” Opt. Express 20(13), 14542–14546 (2012).
[Crossref] [PubMed]

V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, “Double clad tapered fiber for high power applications,” Opt. Express 16(3), 1929–1944 (2008).
[Crossref] [PubMed]

D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson, “Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power,” Opt. Express 16(15), 11021–11026 (2008).
[Crossref] [PubMed]

O. Schmidt, M. Rekas, C. Wirth, J. Rothhardt, S. Rhein, A. Kliner, M. Strecker, T. Schreiber, J. Limpert, R. Eberhardt, and A. Tünnermann, “High power narrow-band fiber-based ASE source,” Opt. Express 19(5), 4421–4427 (2011).
[Crossref] [PubMed]

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

J. Xu, L. Huang, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “1.01 kW superfluorescent source in all-fiberized MOPA configuration,” Opt. Express 23(5), 5485–5490 (2015).
[Crossref] [PubMed]

Opt. Lett. (7)

J. Xu, W. Liu, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Opt. Lett. 40(13), 2973–2976 (2015).
[Crossref] [PubMed]

P. Honzatko, Y. Baravets, I. Kasik, and O. Podrazky, “Wideband thulium-holmium-doped fiber source with combined forward and backward amplified spontaneous emission at 1600-2300 nm spectral band,” Opt. Lett. 39(12), 3650–3653 (2014).
[Crossref] [PubMed]

K. E. Riumkin, M. A. Melkumov, I. A. Bufetov, A. V. Shubin, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Superfluorescent 1.44 μm bismuth-doped fiber source,” Opt. Lett. 37(23), 4817–4819 (2012).
[Crossref] [PubMed]

P. Wang and W. A. Clarkson, “High-power, single-mode, linearly polarized, ytterbium-doped fiber superfluorescent source,” Opt. Lett. 32(17), 2605–2607 (2007).
[Crossref] [PubMed]

K. Oh, A. Kilian, L. Reinhart, Q. Zhang, T. F. Morse, and P. M. Weber, “Broadband superfluorescent emission of the 3H4→ 3H6 transition in a Tm-doped multicomponent silicate fiber,” Opt. Lett. 19(15), 1131–1133 (1994).
[Crossref] [PubMed]

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Lett. 22(3), 160–162 (1997).
[Crossref] [PubMed]

L. Goldberg, J. P. Koplow, R. P. Moeller, and D. A. V. Kliner, “High-power superfluorescent source with a side-pumped Yb-doped double-cladding fiber,” Opt. Lett. 23(13), 1037–1039 (1998).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Proc. SPIE (4)

M. J. F. Digonnet, “Status of broadband rare-earth doped fiber sources or FOG applications,” Proc. SPIE 2070, 113–131 (1994).
[Crossref]

Z. C. Hsu, Z. S. Peng, L. A. Wang, R. Y. Liu, and F. I. Chou, “Gamma ray effects on double pass backward superfluorescent fiber sources for gyroscope applications,” Proc. SPIE 7004, 70044M (2008).
[Crossref]

I. Trifanov, P. Caldas, L. Neagu, R. Romero, M. O. Berendt, J. R. Salcedo, A. G. Podoleanu, and A. B. L. Ribeiro, “20mW, 70nm bandwidth ASE fibre optic source at 1060 nm wavelength region for optical coherence tomography,” Proc. SPIE 7580, 75800O (2010).
[Crossref]

A. B. L. Ribeiro, M. Melo, and J. R. Salcedo, “Optical fiber sources for measurement and imaging,” Proc. SPIE 7139, 713903 (2008).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Other (2)

J. Liu, H. Shi, C. Liu, and P. Wang, “Widely tunable high power narrow-linewidth thulium-doped all-fiber superfluorescent source,” in Conference on Lasers and Electro-Optics/ QELS Fundamental Science, OSA Technical Digest Series (Optical Society of America), paper JTh2A.98, 2015.
[Crossref]

B. Levit, A. Bekker, V. Smulakovsky, and B. Fischer, “Amplified-spontaneous-emission pumped Raman fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest Series (Optical Society of America, 2009), paper JThE73.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The experimental setup of the high power, linearly polarized, all fiberized broadband SFS based on MOPA configuration.
Fig. 2
Fig. 2 The output spectra of the SFS seed with figure (a), the first pre-amplifier (AMP-I) with figure (b), and the second pre-amplifier (AMP-II) with figure (c).
Fig. 3
Fig. 3 The output power and backward power as a function of the absorbed pump power with figure (a) and the emission spectra at different power levels with figure (b).
Fig. 4
Fig. 4 The M2 factor and the PER of the amplified superfluorescent light at different power-level with figure (a) and the measured temporal stability results at maximal output power with figure (b).

Metrics