Abstract

We have observed electron-hole droplet (EHD) emission enhanced by silicon photonic crystal (Si PhC) nanocavities with a surface oxide. The EHD is employed as a massive emitter that remains inside the nanocavity to achieve efficient cavity-emitter coupling. Time-resolved emission measurements demonstrate that the surface oxide greatly reduces the nonradiative annihilation of the EHDs and maintains them in the PhC nanocavities. It is found that the surface-oxidized Si PhC nanocavity enhances EHD emission in addition to the Purcell enhancement of the resonant cavity, which will contribute to works on Si light emission and the cavity quantum electrodynamics of electron-hole condensates.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single germanium quantum dot embedded in photonic crystal nanocavity for light emitter on silicon chip

Cheng Zeng, Yingjie Ma, Yong Zhang, Danping Li, Zengzhi Huang, Yi Wang, Qingzhong Huang, Juntao Li, Zhenyang Zhong, Jinzhong Yu, Zuimin Jiang, and Jinsong Xia
Opt. Express 23(17) 22250-22261 (2015)

Hydrogen induced optically-active defects in silicon photonic nanocavities

S. Boninelli, G. Franzò, P. Cardile, F. Priolo, R. Lo Savio, M. Galli, A. Shakoor, L. O’Faolain, T. F. Krauss, L. Vines, and B. G. Svensson
Opt. Express 22(8) 8843-8855 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
    [Crossref]
  2. M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
    [Crossref]
  3. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  4. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
    [Crossref] [PubMed]
  5. B. Julsgaard, J. Johansen, S. Stobbe, T. Stolberg-Rohr, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes,” Appl. Phys. Lett. 93(9), 094102 (2008).
    [Crossref]
  6. S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
    [Crossref]
  7. M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1090–1097 (2008).
    [Crossref]
  8. N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
    [Crossref]
  9. M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97(12), 121111 (2010).
    [Crossref]
  10. M. Capizzi, M. Voos, C. Benoit à la Guillaume, and J. C. McGroddy, “Electron-hole drops in silicon,” Solid State Commun. 16(6), 709–712 (1975).
    [Crossref]
  11. M. A. Tamor and J. P. Wolfe, “Electron-hole droplet transport up to near-sonic velocity in Si,” Phys. Rev. B 26(10), 5743–5755 (1982).
    [Crossref]
  12. M. A. Tamor and J. P. Wolfe, “Drift and diffusion of free excitons in Si,” Phys. Rev. Lett. 44(25), 1703–1706 (1980).
    [Crossref]
  13. W. Schmid, “Formation and decay of electron-hole drops in Si,” Solid State Commun. 19(4), 347–349 (1976).
    [Crossref]
  14. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
    [Crossref] [PubMed]
  15. S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
    [Crossref] [PubMed]
  16. R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolain, L. C. Andreani, and M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(20), 201106 (2011).
    [Crossref]
  17. H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity,” Sci. Rep. 4, 5040 (2014).
    [Crossref] [PubMed]
  18. J. Shah, M. Combescot, and A. H. Dayem, “Investigation of exciton-plasma Mott transition in Si,” Phys. Rev. Lett. 38(25), 1497–1500 (1977).
    [Crossref]
  19. S. Ibuka and M. Tajima, “Temporal decay measurement of condensate luminescence and its application to characterization of silicon-on-insulator wafers,” J. Appl. Phys. 91(8), 5035 (2002).
    [Crossref]
  20. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref] [PubMed]
  21. M. Tajima, S. Ibuka, and S. Arai, “Condensate luminescence under ultraviolet excitation: application to the study of ultrathin SOI layers,” Mater. Sci. Eng. B 91–92, 10–15 (2002).
    [Crossref]
  22. M. Tajima, S. Ibuka, H. Aga, and T. Abe, “Characterization of bond and etch-back silicon-on-insulator wafers by photoluminescence under ultraviolet excitation,” Appl. Phys. Lett. 70(2), 231 (1997).
    [Crossref]
  23. C. Benoît à la Guillaume, M. Voos, and F. Salvan, “Condensation of free excitons into electron-hole drops in pure Germanium,” Phys. Rev. B 5(8), 3079–3087 (1972).
    [Crossref]
  24. J. C. Hensel, T. G. Phillips, and G. A. Thomas, “Electron-hole liquid in semiconductors: Experimental,” in Solid State Physics, Advances in Research and Applications, vol. 32, H. Ehrenreich, F. Seitz, and D. Turnbull, ed. (Academic, 1977).
  25. P. L. Gourley and J. P. Wolfe, “Properties of the electron-hole liquid in Si: zero stress to the high-stress limit,” Phys. Rev. B 24(10), 5970–5998 (1981).
    [Crossref]
  26. J. D. Cuthbert, “Recombination kinetics of excitonic molecules and free excitons in intrinsic silicon,” Phys. Rev. B 1(4), 1552–1557 (1970).
    [Crossref]
  27. Y. Pokrovskii, “Condensation of non-equilibrium charge carriers in semiconductors,” Phys. Status Solidi. A 11(2), 385–410 (1972).
    [Crossref]
  28. M. J. Kerr and A. Cuevas, “Very low bulk and surface recombination in oxidized silicon wafers,” Semicond. Sci. Technol. 17(1), 35–38 (2002).
    [Crossref]
  29. C. D. Jeffries, “Electron-hole condensation in semiconductors: Electrons and holes condense into freely moving liquid metallic droplets, a plasma phase with novel properties,” Science 189(4207), 955–964 (1975).
    [Crossref] [PubMed]
  30. H. Y. Ryu and M. Notomi, “Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity,” Opt. Lett. 28(23), 2390–2392 (2003).
    [Crossref] [PubMed]
  31. S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(17), 171102 (2011).
    [Crossref]
  32. T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85(18), 3989 (2004).
    [Crossref]

2014 (1)

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity,” Sci. Rep. 4, 5040 (2014).
[Crossref] [PubMed]

2013 (1)

M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

2011 (2)

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolain, L. C. Andreani, and M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(20), 201106 (2011).
[Crossref]

S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(17), 171102 (2011).
[Crossref]

2010 (2)

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97(12), 121111 (2010).
[Crossref]

2008 (2)

B. Julsgaard, J. Johansen, S. Stobbe, T. Stolberg-Rohr, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes,” Appl. Phys. Lett. 93(9), 094102 (2008).
[Crossref]

M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1090–1097 (2008).
[Crossref]

2007 (2)

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

2005 (2)

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[Crossref] [PubMed]

2004 (1)

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85(18), 3989 (2004).
[Crossref]

2003 (2)

H. Y. Ryu and M. Notomi, “Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity,” Opt. Lett. 28(23), 2390–2392 (2003).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

2002 (3)

M. Tajima, S. Ibuka, and S. Arai, “Condensate luminescence under ultraviolet excitation: application to the study of ultrathin SOI layers,” Mater. Sci. Eng. B 91–92, 10–15 (2002).
[Crossref]

S. Ibuka and M. Tajima, “Temporal decay measurement of condensate luminescence and its application to characterization of silicon-on-insulator wafers,” J. Appl. Phys. 91(8), 5035 (2002).
[Crossref]

M. J. Kerr and A. Cuevas, “Very low bulk and surface recombination in oxidized silicon wafers,” Semicond. Sci. Technol. 17(1), 35–38 (2002).
[Crossref]

2000 (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

1997 (1)

M. Tajima, S. Ibuka, H. Aga, and T. Abe, “Characterization of bond and etch-back silicon-on-insulator wafers by photoluminescence under ultraviolet excitation,” Appl. Phys. Lett. 70(2), 231 (1997).
[Crossref]

1982 (1)

M. A. Tamor and J. P. Wolfe, “Electron-hole droplet transport up to near-sonic velocity in Si,” Phys. Rev. B 26(10), 5743–5755 (1982).
[Crossref]

1981 (1)

P. L. Gourley and J. P. Wolfe, “Properties of the electron-hole liquid in Si: zero stress to the high-stress limit,” Phys. Rev. B 24(10), 5970–5998 (1981).
[Crossref]

1980 (1)

M. A. Tamor and J. P. Wolfe, “Drift and diffusion of free excitons in Si,” Phys. Rev. Lett. 44(25), 1703–1706 (1980).
[Crossref]

1977 (1)

J. Shah, M. Combescot, and A. H. Dayem, “Investigation of exciton-plasma Mott transition in Si,” Phys. Rev. Lett. 38(25), 1497–1500 (1977).
[Crossref]

1976 (1)

W. Schmid, “Formation and decay of electron-hole drops in Si,” Solid State Commun. 19(4), 347–349 (1976).
[Crossref]

1975 (2)

M. Capizzi, M. Voos, C. Benoit à la Guillaume, and J. C. McGroddy, “Electron-hole drops in silicon,” Solid State Commun. 16(6), 709–712 (1975).
[Crossref]

C. D. Jeffries, “Electron-hole condensation in semiconductors: Electrons and holes condense into freely moving liquid metallic droplets, a plasma phase with novel properties,” Science 189(4207), 955–964 (1975).
[Crossref] [PubMed]

1972 (2)

Y. Pokrovskii, “Condensation of non-equilibrium charge carriers in semiconductors,” Phys. Status Solidi. A 11(2), 385–410 (1972).
[Crossref]

C. Benoît à la Guillaume, M. Voos, and F. Salvan, “Condensation of free excitons into electron-hole drops in pure Germanium,” Phys. Rev. B 5(8), 3079–3087 (1972).
[Crossref]

1970 (1)

J. D. Cuthbert, “Recombination kinetics of excitonic molecules and free excitons in intrinsic silicon,” Phys. Rev. B 1(4), 1552–1557 (1970).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Abe, T.

M. Tajima, S. Ibuka, H. Aga, and T. Abe, “Characterization of bond and etch-back silicon-on-insulator wafers by photoluminescence under ultraviolet excitation,” Appl. Phys. Lett. 70(2), 231 (1997).
[Crossref]

Abstreiter, G.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

Aga, H.

M. Tajima, S. Ibuka, H. Aga, and T. Abe, “Characterization of bond and etch-back silicon-on-insulator wafers by photoluminescence under ultraviolet excitation,” Appl. Phys. Lett. 70(2), 231 (1997).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Andreani, L. C.

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolain, L. C. Andreani, and M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(20), 201106 (2011).
[Crossref]

Arai, S.

M. Tajima, S. Ibuka, and S. Arai, “Condensate luminescence under ultraviolet excitation: application to the study of ultrathin SOI layers,” Mater. Sci. Eng. B 91–92, 10–15 (2002).
[Crossref]

Arakawa, Y.

S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(17), 171102 (2011).
[Crossref]

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[Crossref]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Baba, T.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85(18), 3989 (2004).
[Crossref]

Benoit à la Guillaume, C.

M. Capizzi, M. Voos, C. Benoit à la Guillaume, and J. C. McGroddy, “Electron-hole drops in silicon,” Solid State Commun. 16(6), 709–712 (1975).
[Crossref]

Benoît à la Guillaume, C.

C. Benoît à la Guillaume, M. Voos, and F. Salvan, “Condensation of free excitons into electron-hole drops in pure Germanium,” Phys. Rev. B 5(8), 3079–3087 (1972).
[Crossref]

Bougeard, D.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

Capizzi, M.

M. Capizzi, M. Voos, C. Benoit à la Guillaume, and J. C. McGroddy, “Electron-hole drops in silicon,” Solid State Commun. 16(6), 709–712 (1975).
[Crossref]

Cloutier, S. G.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[Crossref] [PubMed]

Combescot, M.

J. Shah, M. Combescot, and A. H. Dayem, “Investigation of exciton-plasma Mott transition in Si,” Phys. Rev. Lett. 38(25), 1497–1500 (1977).
[Crossref]

Cuevas, A.

M. J. Kerr and A. Cuevas, “Very low bulk and surface recombination in oxidized silicon wafers,” Semicond. Sci. Technol. 17(1), 35–38 (2002).
[Crossref]

Cuthbert, J. D.

J. D. Cuthbert, “Recombination kinetics of excitonic molecules and free excitons in intrinsic silicon,” Phys. Rev. B 1(4), 1552–1557 (1970).
[Crossref]

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Dayem, A. H.

J. Shah, M. Combescot, and A. H. Dayem, “Investigation of exciton-plasma Mott transition in Si,” Phys. Rev. Lett. 38(25), 1497–1500 (1977).
[Crossref]

Finley, J. J.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

Forchel, A.

B. Julsgaard, J. Johansen, S. Stobbe, T. Stolberg-Rohr, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes,” Appl. Phys. Lett. 93(9), 094102 (2008).
[Crossref]

Franzò, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Fujita, M.

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97(12), 121111 (2010).
[Crossref]

M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1090–1097 (2008).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Galli, M.

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolain, L. C. Andreani, and M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(20), 201106 (2011).
[Crossref]

Gelloz, B.

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97(12), 121111 (2010).
[Crossref]

Gerace, D.

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolain, L. C. Andreani, and M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(20), 201106 (2011).
[Crossref]

Gomyo, A.

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[Crossref]

Gourley, P. L.

P. L. Gourley and J. P. Wolfe, “Properties of the electron-hole liquid in Si: zero stress to the high-stress limit,” Phys. Rev. B 24(10), 5970–5998 (1981).
[Crossref]

Hauke, N.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

Ibuka, S.

S. Ibuka and M. Tajima, “Temporal decay measurement of condensate luminescence and its application to characterization of silicon-on-insulator wafers,” J. Appl. Phys. 91(8), 5035 (2002).
[Crossref]

M. Tajima, S. Ibuka, and S. Arai, “Condensate luminescence under ultraviolet excitation: application to the study of ultrathin SOI layers,” Mater. Sci. Eng. B 91–92, 10–15 (2002).
[Crossref]

M. Tajima, S. Ibuka, H. Aga, and T. Abe, “Characterization of bond and etch-back silicon-on-insulator wafers by photoluminescence under ultraviolet excitation,” Appl. Phys. Lett. 70(2), 231 (1997).
[Crossref]

Inoshita, K.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85(18), 3989 (2004).
[Crossref]

Ishida, S.

S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(17), 171102 (2011).
[Crossref]

Iwamoto, S.

S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(17), 171102 (2011).
[Crossref]

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[Crossref]

Jeffries, C. D.

C. D. Jeffries, “Electron-hole condensation in semiconductors: Electrons and holes condense into freely moving liquid metallic droplets, a plasma phase with novel properties,” Science 189(4207), 955–964 (1975).
[Crossref] [PubMed]

Johansen, J.

B. Julsgaard, J. Johansen, S. Stobbe, T. Stolberg-Rohr, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes,” Appl. Phys. Lett. 93(9), 094102 (2008).
[Crossref]

Julsgaard, B.

B. Julsgaard, J. Johansen, S. Stobbe, T. Stolberg-Rohr, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes,” Appl. Phys. Lett. 93(9), 094102 (2008).
[Crossref]

Kamp, M.

B. Julsgaard, J. Johansen, S. Stobbe, T. Stolberg-Rohr, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes,” Appl. Phys. Lett. 93(9), 094102 (2008).
[Crossref]

Kaniber, M.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

Kerr, M. J.

M. J. Kerr and A. Cuevas, “Very low bulk and surface recombination in oxidized silicon wafers,” Semicond. Sci. Technol. 17(1), 35–38 (2002).
[Crossref]

Kim, M. S.

M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Koshida, N.

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97(12), 121111 (2010).
[Crossref]

Kossyrev, P. A.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[Crossref] [PubMed]

Koyama, F.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85(18), 3989 (2004).
[Crossref]

Krauss, T. F.

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolain, L. C. Andreani, and M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(20), 201106 (2011).
[Crossref]

Kuramochi, E.

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity,” Sci. Rep. 4, 5040 (2014).
[Crossref] [PubMed]

Kuroki, Y.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85(18), 3989 (2004).
[Crossref]

Laucht, A.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

Lee, J.

M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Lo Savio, R.

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolain, L. C. Andreani, and M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(20), 201106 (2011).
[Crossref]

Lodahl, P.

B. Julsgaard, J. Johansen, S. Stobbe, T. Stolberg-Rohr, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes,” Appl. Phys. Lett. 93(9), 094102 (2008).
[Crossref]

Maier, S. A.

M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

McEnery, K. R.

M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

McGroddy, J. C.

M. Capizzi, M. Voos, C. Benoit à la Guillaume, and J. C. McGroddy, “Electron-hole drops in silicon,” Solid State Commun. 16(6), 709–712 (1975).
[Crossref]

Müller, K.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

Nakayama, S.

S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(17), 171102 (2011).
[Crossref]

Noda, S.

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97(12), 121111 (2010).
[Crossref]

M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1090–1097 (2008).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Notomi, M.

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity,” Sci. Rep. 4, 5040 (2014).
[Crossref] [PubMed]

H. Y. Ryu and M. Notomi, “Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity,” Opt. Lett. 28(23), 2390–2392 (2003).
[Crossref] [PubMed]

Nozaki, K.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85(18), 3989 (2004).
[Crossref]

O’Faolain, L.

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolain, L. C. Andreani, and M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(20), 201106 (2011).
[Crossref]

Özdemir, S. K.

M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Pokrovskii, Y.

Y. Pokrovskii, “Condensation of non-equilibrium charge carriers in semiconductors,” Phys. Status Solidi. A 11(2), 385–410 (1972).
[Crossref]

Portalupi, S. L.

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolain, L. C. Andreani, and M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(20), 201106 (2011).
[Crossref]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Ryu, H. Y.

Salvan, F.

C. Benoît à la Guillaume, M. Voos, and F. Salvan, “Condensation of free excitons into electron-hole drops in pure Germanium,” Phys. Rev. B 5(8), 3079–3087 (1972).
[Crossref]

Sano, D.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85(18), 3989 (2004).
[Crossref]

Schmid, W.

W. Schmid, “Formation and decay of electron-hole drops in Si,” Solid State Commun. 19(4), 347–349 (1976).
[Crossref]

Shah, J.

J. Shah, M. Combescot, and A. H. Dayem, “Investigation of exciton-plasma Mott transition in Si,” Phys. Rev. Lett. 38(25), 1497–1500 (1977).
[Crossref]

Shakoor, A.

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolain, L. C. Andreani, and M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(20), 201106 (2011).
[Crossref]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Stobbe, S.

B. Julsgaard, J. Johansen, S. Stobbe, T. Stolberg-Rohr, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes,” Appl. Phys. Lett. 93(9), 094102 (2008).
[Crossref]

Stolberg-Rohr, T.

B. Julsgaard, J. Johansen, S. Stobbe, T. Stolberg-Rohr, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes,” Appl. Phys. Lett. 93(9), 094102 (2008).
[Crossref]

Sumikura, H.

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity,” Sci. Rep. 4, 5040 (2014).
[Crossref] [PubMed]

Sünner, T.

B. Julsgaard, J. Johansen, S. Stobbe, T. Stolberg-Rohr, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes,” Appl. Phys. Lett. 93(9), 094102 (2008).
[Crossref]

Tajima, M.

M. Tajima, S. Ibuka, and S. Arai, “Condensate luminescence under ultraviolet excitation: application to the study of ultrathin SOI layers,” Mater. Sci. Eng. B 91–92, 10–15 (2002).
[Crossref]

S. Ibuka and M. Tajima, “Temporal decay measurement of condensate luminescence and its application to characterization of silicon-on-insulator wafers,” J. Appl. Phys. 91(8), 5035 (2002).
[Crossref]

M. Tajima, S. Ibuka, H. Aga, and T. Abe, “Characterization of bond and etch-back silicon-on-insulator wafers by photoluminescence under ultraviolet excitation,” Appl. Phys. Lett. 70(2), 231 (1997).
[Crossref]

Takahashi, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Tame, M. S.

M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Tamor, M. A.

M. A. Tamor and J. P. Wolfe, “Electron-hole droplet transport up to near-sonic velocity in Si,” Phys. Rev. B 26(10), 5743–5755 (1982).
[Crossref]

M. A. Tamor and J. P. Wolfe, “Drift and diffusion of free excitons in Si,” Phys. Rev. Lett. 44(25), 1703–1706 (1980).
[Crossref]

Tanaka, Y.

M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1090–1097 (2008).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

Taniyama, H.

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity,” Sci. Rep. 4, 5040 (2014).
[Crossref] [PubMed]

Voos, M.

M. Capizzi, M. Voos, C. Benoit à la Guillaume, and J. C. McGroddy, “Electron-hole drops in silicon,” Solid State Commun. 16(6), 709–712 (1975).
[Crossref]

C. Benoît à la Guillaume, M. Voos, and F. Salvan, “Condensation of free excitons into electron-hole drops in pure Germanium,” Phys. Rev. B 5(8), 3079–3087 (1972).
[Crossref]

Wolfe, J. P.

M. A. Tamor and J. P. Wolfe, “Electron-hole droplet transport up to near-sonic velocity in Si,” Phys. Rev. B 26(10), 5743–5755 (1982).
[Crossref]

P. L. Gourley and J. P. Wolfe, “Properties of the electron-hole liquid in Si: zero stress to the high-stress limit,” Phys. Rev. B 24(10), 5970–5998 (1981).
[Crossref]

M. A. Tamor and J. P. Wolfe, “Drift and diffusion of free excitons in Si,” Phys. Rev. Lett. 44(25), 1703–1706 (1980).
[Crossref]

Xu, J.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[Crossref] [PubMed]

Zabel, T.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

Appl. Phys. Lett. (7)

B. Julsgaard, J. Johansen, S. Stobbe, T. Stolberg-Rohr, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes,” Appl. Phys. Lett. 93(9), 094102 (2008).
[Crossref]

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[Crossref]

M. Fujita, B. Gelloz, N. Koshida, and S. Noda, “Reduction in surface recombination and enhancement of light emission in silicon photonic crystals treated by high-pressure water-vapor annealing,” Appl. Phys. Lett. 97(12), 121111 (2010).
[Crossref]

R. Lo Savio, S. L. Portalupi, D. Gerace, A. Shakoor, T. F. Krauss, L. O’Faolain, L. C. Andreani, and M. Galli, “Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(20), 201106 (2011).
[Crossref]

M. Tajima, S. Ibuka, H. Aga, and T. Abe, “Characterization of bond and etch-back silicon-on-insulator wafers by photoluminescence under ultraviolet excitation,” Appl. Phys. Lett. 70(2), 231 (1997).
[Crossref]

S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(17), 171102 (2011).
[Crossref]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85(18), 3989 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1090–1097 (2008).
[Crossref]

J. Appl. Phys. (1)

S. Ibuka and M. Tajima, “Temporal decay measurement of condensate luminescence and its application to characterization of silicon-on-insulator wafers,” J. Appl. Phys. 91(8), 5035 (2002).
[Crossref]

Mater. Sci. Eng. B (1)

M. Tajima, S. Ibuka, and S. Arai, “Condensate luminescence under ultraviolet excitation: application to the study of ultrathin SOI layers,” Mater. Sci. Eng. B 91–92, 10–15 (2002).
[Crossref]

Nat. Mater. (1)

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Nat. Phys. (1)

M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Nature (2)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

Opt. Lett. (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (4)

M. A. Tamor and J. P. Wolfe, “Electron-hole droplet transport up to near-sonic velocity in Si,” Phys. Rev. B 26(10), 5743–5755 (1982).
[Crossref]

C. Benoît à la Guillaume, M. Voos, and F. Salvan, “Condensation of free excitons into electron-hole drops in pure Germanium,” Phys. Rev. B 5(8), 3079–3087 (1972).
[Crossref]

P. L. Gourley and J. P. Wolfe, “Properties of the electron-hole liquid in Si: zero stress to the high-stress limit,” Phys. Rev. B 24(10), 5970–5998 (1981).
[Crossref]

J. D. Cuthbert, “Recombination kinetics of excitonic molecules and free excitons in intrinsic silicon,” Phys. Rev. B 1(4), 1552–1557 (1970).
[Crossref]

Phys. Rev. Lett. (2)

J. Shah, M. Combescot, and A. H. Dayem, “Investigation of exciton-plasma Mott transition in Si,” Phys. Rev. Lett. 38(25), 1497–1500 (1977).
[Crossref]

M. A. Tamor and J. P. Wolfe, “Drift and diffusion of free excitons in Si,” Phys. Rev. Lett. 44(25), 1703–1706 (1980).
[Crossref]

Phys. Status Solidi. A (1)

Y. Pokrovskii, “Condensation of non-equilibrium charge carriers in semiconductors,” Phys. Status Solidi. A 11(2), 385–410 (1972).
[Crossref]

Sci. Rep. (1)

H. Sumikura, E. Kuramochi, H. Taniyama, and M. Notomi, “Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity,” Sci. Rep. 4, 5040 (2014).
[Crossref] [PubMed]

Science (2)

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref] [PubMed]

C. D. Jeffries, “Electron-hole condensation in semiconductors: Electrons and holes condense into freely moving liquid metallic droplets, a plasma phase with novel properties,” Science 189(4207), 955–964 (1975).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

M. J. Kerr and A. Cuevas, “Very low bulk and surface recombination in oxidized silicon wafers,” Semicond. Sci. Technol. 17(1), 35–38 (2002).
[Crossref]

Solid State Commun. (2)

W. Schmid, “Formation and decay of electron-hole drops in Si,” Solid State Commun. 19(4), 347–349 (1976).
[Crossref]

M. Capizzi, M. Voos, C. Benoit à la Guillaume, and J. C. McGroddy, “Electron-hole drops in silicon,” Solid State Commun. 16(6), 709–712 (1975).
[Crossref]

Other (1)

J. C. Hensel, T. G. Phillips, and G. A. Thomas, “Electron-hole liquid in semiconductors: Experimental,” in Solid State Physics, Advances in Research and Applications, vol. 32, H. Ehrenreich, F. Seitz, and D. Turnbull, ed. (Academic, 1977).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Dimensions of a fabricated L3 cavity. The yellow and blue balls indicate a simplistic picture of the EHD formed by electrons and holes. (b) Top view of a typical L3 cavity taken with a scanning electron microscope. This is a sample without surface oxide. The scale bar indicates 1 μm. (c) Spatial distribution of the cavity-confined electric field directed to the y-axis (Ey ). This mode is a fundamental cavity mode. (d) Set up for photoluminescence measurements. DM: dichroic mirror, L: objective, LPF: optical low-pass filter, P: polarizer, BPF: optical band-pass filter.
Fig. 2
Fig. 2 (a) PL spectra for unpatterned SOI samples with and without surface oxide. The average excitation laser power is 120 μW. (b) Normalized PL decays of the EHD emission mediated with TO and LO phonon emission with and without surface oxide. The detection wavelength and bandwidth are 1149 nm and 1 nm, respectively. The integration time is 3600 s. The broken white lines are the single exponential lines fitted to the measured data.
Fig. 3
Fig. 3 (a) PL spectra for PhC cavities with and without surface oxide on a logarithmic scale. The cavity resonance was adjusted to the peak of the EHD emission by changing the lattice period of the air-hole arrays. The lattice periods are 294 nm and 301 nm, respectively, for the samples without and with surface oxide. The average excitation laser power is 120 μW. The arrows indicate the detection wavelengths for time-resolved measurements. (b) Normalized PL decays at a wavelength far from the cavity resonance with a lattice period of 298 nm. The detection wavelength is 1150 nm for the bare sample and 1160 nm for the oxidized sample. The integration time is 3600 s. The bandwidth is 1 nm. These show the EHD emissions from the off-resonant PhC structure surrounding the PhC cavity. The PL lifetime is defined as the time it takes for the normalized PL intensity to reach e −1.
Fig. 4
Fig. 4 (a) PL spectrum of the PhC cavity with a lattice period of 298 nm. This lattice period is different from that shown in Fig. 3(a). The cavity resonance is located at the peak of the EHD emission. The average excitation laser power is 30 μW. The two shaded areas show the spectral window for the PL decay measurements. (b) PL decays of the EHD emission at the cavity resonance (1162.1 nm) and at an out-of-resonance wavelength (1160.1 nm). The integration times for on- and off-resonant emissions are 120 and 3600 s, respectively. The bandwidth is 1 nm. (c) Excitation and detection areas on a PhC cavity sample. The spectral filter for a cavity-enhanced PL enables to detect only the emission from a cavity area. The surrounding PhC area is determined by the excitation spot. (d) Simulated cross-sectional maps of the normalized electric field intensity for the cavity (upper) and PhC slab (lower) in a logarithmic scale. The detectable portions are also displayed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I c / I p = η c V c ζ c Q t / η p V p ζ p Q v

Metrics