Abstract

High-gain mid-infrared optical-parametric generation was demonstrated by simple single-pass configuration using PPMgLN devices pumped by giant-pulse microchip laser. Effective mid-infrared wavelength conversion with 1 mJ output energy from 2.4 mJ pumping using conventional PPMgLN could be realized. Broadband optical-parametric generation from 1.7 to 2.6 µm could be also measured using chirped PPMgLN.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact high power mid-infrared optical parametric oscillator pumped by a gain-switched fiber laser with “figure-of-h” pulse shape

Peipei Jiang, Tao Chen, Bo Wu, Dingzhong Yang, Chengzhi Hu, Pinghui Wu, and Yonghang Shen
Opt. Express 23(3) 2633-2638 (2015)

Millijoule-level picosecond mid-infrared optical parametric amplifier based on MgO-doped periodically poled lithium niobate

Hongyan Xu, Feng Yang, Ying Chen, Ke Liu, Shifeng Du, Nan Zong, Jing Yang, Yong Bo, Qinjun Peng, Jingyuan Zhang, Dafu Cui, and Zuyan Xu
Appl. Opt. 54(9) 2489-2494 (2015)

Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne
Opt. Lett. 31(1) 71-73 (2006)

References

  • View by:
  • |
  • |
  • |

  1. K. L. Vodopyanov and P. G. Schunemann, “Broadly tunable noncritically phase-matched ZnGeP2 optical parametric oscillator with a 2-µJ pump threshold,” Opt. Lett. 28(6), 441–443 (2003).
    [Crossref] [PubMed]
  2. G. Marchev, F. Pirzio, R. Piccoli, A. Agnesi, G. Reali, P. G. Schunemann, K. T. Zawilski, A. Tyazhev, and V. Petrov, “Narrow-bandwidth, mid-infrared, seeded optical parametric generation in 90° phase-matched CdSiP2 crystal pumped by diffraction limited 500 ps pulses at 1064 nm,” Opt. Lett. 37(15), 3219–3221 (2012).
    [Crossref] [PubMed]
  3. M. Gebhardt, C. Gaida, P. Kadwani, A. Sincore, N. Gehlich, C. Jeon, L. Shah, and M. Richardson, “High peak-power mid-infrared ZnGeP₂ optical parametric oscillator pumped by a Tm:fiber master oscillator power amplifier system,” Opt. Lett. 39(5), 1212–1215 (2014).
    [Crossref] [PubMed]
  4. J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14(1), 24–26 (1989).
    [Crossref] [PubMed]
  5. J. J. Zayhowski and C. Dill, “Diode-pumped microchip lasers electro-optically Q switched at high pulse repetition rates,” Opt. Lett. 17(17), 1201–1203 (1992).
    [Crossref] [PubMed]
  6. T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
    [Crossref]
  7. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
    [Crossref]
  8. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped grating,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
    [Crossref]
  9. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [Crossref]
  10. J. J. Zayhowski, “Periodically poled lithium niobate optical parametric amplifiers pumped by high-power passively Q-switched microchip lasers,” Opt. Lett. 22(3), 169–171 (1997).
    [Crossref] [PubMed]
  11. K. W. Aniolek, R. L. Schmitt, T. J. Kulp, B. A. Richman, S. E. Bisson, and P. E. Powers, “Microlaser-pumped periodically poled lithium niobate optical parametric generator-optical parametric amplifier,” Opt. Lett. 25(8), 557–559 (2000).
    [Crossref] [PubMed]
  12. A. V. Kir’yanov, S. M. Klimentov, P. E. Powers, I. V. Mel’nikov, and Y. N. Korkishko, “IR tunable narrow-band nanosecond converter with a microchip pump source and periodically-poled lithium niobate,” Laser Phys. Lett. 5(4), 281–285 (2008).
    [Crossref]
  13. M. D. Cocuzzi, K. L. Schepler, and P. E. Powers, “Narrow-bandwidth, subnanosecond, infrared pulse generation in PPLN pumped by a fiber amplifier–microchip oscillator,” IEEE J. Sel. Top. Quantum Electron. 15(2), 372–376 (2009).
    [Crossref]
  14. P. K. Upputuri and H. Wang, “A picosecond near-infrared laser source based on a self-seeded optical parametric generator,” Appl. Phys. B 112(4), 521–527 (2013).
    [Crossref]
  15. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
    [Crossref] [PubMed]
  16. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [Crossref]
  17. R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng. 52, 076102 (2013).
  18. S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser,” Opt. Express 20(3), 2881–2886 (2012).
    [Crossref] [PubMed]
  19. K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
    [Crossref]
  20. H. Ishizuki, I. Shoji, and T. Taira, “Periodic poling characteristics of congruent MgO:LiNbO3 crystal at elevated temperatures,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
    [Crossref]
  21. H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3.,” Opt. Express 20(18), 20002–20010 (2012).
    [Crossref] [PubMed]

2014 (2)

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

M. Gebhardt, C. Gaida, P. Kadwani, A. Sincore, N. Gehlich, C. Jeon, L. Shah, and M. Richardson, “High peak-power mid-infrared ZnGeP₂ optical parametric oscillator pumped by a Tm:fiber master oscillator power amplifier system,” Opt. Lett. 39(5), 1212–1215 (2014).
[Crossref] [PubMed]

2013 (2)

R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng. 52, 076102 (2013).

P. K. Upputuri and H. Wang, “A picosecond near-infrared laser source based on a self-seeded optical parametric generator,” Appl. Phys. B 112(4), 521–527 (2013).
[Crossref]

2012 (3)

2010 (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

2009 (1)

M. D. Cocuzzi, K. L. Schepler, and P. E. Powers, “Narrow-bandwidth, subnanosecond, infrared pulse generation in PPLN pumped by a fiber amplifier–microchip oscillator,” IEEE J. Sel. Top. Quantum Electron. 15(2), 372–376 (2009).
[Crossref]

2008 (2)

A. V. Kir’yanov, S. M. Klimentov, P. E. Powers, I. V. Mel’nikov, and Y. N. Korkishko, “IR tunable narrow-band nanosecond converter with a microchip pump source and periodically-poled lithium niobate,” Laser Phys. Lett. 5(4), 281–285 (2008).
[Crossref]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[Crossref] [PubMed]

2003 (2)

K. L. Vodopyanov and P. G. Schunemann, “Broadly tunable noncritically phase-matched ZnGeP2 optical parametric oscillator with a 2-µJ pump threshold,” Opt. Lett. 28(6), 441–443 (2003).
[Crossref] [PubMed]

H. Ishizuki, I. Shoji, and T. Taira, “Periodic poling characteristics of congruent MgO:LiNbO3 crystal at elevated temperatures,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
[Crossref]

2000 (1)

1997 (1)

1994 (1)

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
[Crossref]

1992 (2)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

J. J. Zayhowski and C. Dill, “Diode-pumped microchip lasers electro-optically Q switched at high pulse repetition rates,” Opt. Lett. 17(17), 1201–1203 (1992).
[Crossref] [PubMed]

1990 (1)

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped grating,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

1989 (1)

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Agnesi, A.

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Aniolek, K. W.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Bhandari, R.

R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng. 52, 076102 (2013).

Bisson, S. E.

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Cocuzzi, M. D.

M. D. Cocuzzi, K. L. Schepler, and P. E. Powers, “Narrow-bandwidth, subnanosecond, infrared pulse generation in PPLN pumped by a fiber amplifier–microchip oscillator,” IEEE J. Sel. Top. Quantum Electron. 15(2), 372–376 (2009).
[Crossref]

Dill, C.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Fan, S.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Gaida, C.

Gebhardt, M.

Gehlich, N.

Hayashi, S.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser,” Opt. Express 20(3), 2881–2886 (2012).
[Crossref] [PubMed]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Ishizuki, H.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3.,” Opt. Express 20(18), 20002–20010 (2012).
[Crossref] [PubMed]

H. Ishizuki, I. Shoji, and T. Taira, “Periodic poling characteristics of congruent MgO:LiNbO3 crystal at elevated temperatures,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
[Crossref]

Jeon, C.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Kadwani, P.

Kan, H.

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kawase, K.

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kir’yanov, A. V.

A. V. Kir’yanov, S. M. Klimentov, P. E. Powers, I. V. Mel’nikov, and Y. N. Korkishko, “IR tunable narrow-band nanosecond converter with a microchip pump source and periodically-poled lithium niobate,” Laser Phys. Lett. 5(4), 281–285 (2008).
[Crossref]

Klimentov, S. M.

A. V. Kir’yanov, S. M. Klimentov, P. E. Powers, I. V. Mel’nikov, and Y. N. Korkishko, “IR tunable narrow-band nanosecond converter with a microchip pump source and periodically-poled lithium niobate,” Laser Phys. Lett. 5(4), 281–285 (2008).
[Crossref]

Kobayashi, T.

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
[Crossref]

Korkishko, Y. N.

A. V. Kir’yanov, S. M. Klimentov, P. E. Powers, I. V. Mel’nikov, and Y. N. Korkishko, “IR tunable narrow-band nanosecond converter with a microchip pump source and periodically-poled lithium niobate,” Laser Phys. Lett. 5(4), 281–285 (2008).
[Crossref]

Kulp, T. J.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Marchev, G.

Mel’nikov, I. V.

A. V. Kir’yanov, S. M. Klimentov, P. E. Powers, I. V. Mel’nikov, and Y. N. Korkishko, “IR tunable narrow-band nanosecond converter with a microchip pump source and periodically-poled lithium niobate,” Laser Phys. Lett. 5(4), 281–285 (2008).
[Crossref]

Minamide, H.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser,” Opt. Express 20(3), 2881–2886 (2012).
[Crossref] [PubMed]

Mooradian, A.

Nawata, K.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser,” Opt. Express 20(3), 2881–2886 (2012).
[Crossref] [PubMed]

Nishihara, H.

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped grating,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

Notake, T.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Petrov, V.

Piccoli, R.

Pirzio, F.

Powers, P. E.

M. D. Cocuzzi, K. L. Schepler, and P. E. Powers, “Narrow-bandwidth, subnanosecond, infrared pulse generation in PPLN pumped by a fiber amplifier–microchip oscillator,” IEEE J. Sel. Top. Quantum Electron. 15(2), 372–376 (2009).
[Crossref]

A. V. Kir’yanov, S. M. Klimentov, P. E. Powers, I. V. Mel’nikov, and Y. N. Korkishko, “IR tunable narrow-band nanosecond converter with a microchip pump source and periodically-poled lithium niobate,” Laser Phys. Lett. 5(4), 281–285 (2008).
[Crossref]

K. W. Aniolek, R. L. Schmitt, T. J. Kulp, B. A. Richman, S. E. Bisson, and P. E. Powers, “Microlaser-pumped periodically poled lithium niobate optical parametric generator-optical parametric amplifier,” Opt. Lett. 25(8), 557–559 (2000).
[Crossref] [PubMed]

Qi, F.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

Reali, G.

Richardson, M.

Richman, B. A.

Sakai, H.

Schepler, K. L.

M. D. Cocuzzi, K. L. Schepler, and P. E. Powers, “Narrow-bandwidth, subnanosecond, infrared pulse generation in PPLN pumped by a fiber amplifier–microchip oscillator,” IEEE J. Sel. Top. Quantum Electron. 15(2), 372–376 (2009).
[Crossref]

Schmitt, R. L.

Schunemann, P. G.

Shah, L.

Shoji, I.

H. Ishizuki, I. Shoji, and T. Taira, “Periodic poling characteristics of congruent MgO:LiNbO3 crystal at elevated temperatures,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
[Crossref]

Sincore, A.

Suhara, T.

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped grating,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

Taira, T.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng. 52, 076102 (2013).

H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3.,” Opt. Express 20(18), 20002–20010 (2012).
[Crossref] [PubMed]

S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser,” Opt. Express 20(3), 2881–2886 (2012).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[Crossref] [PubMed]

H. Ishizuki, I. Shoji, and T. Taira, “Periodic poling characteristics of congruent MgO:LiNbO3 crystal at elevated temperatures,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
[Crossref]

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
[Crossref]

Takida, Y.

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

Tsunekane, M.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Tyazhev, A.

Upputuri, P. K.

P. K. Upputuri and H. Wang, “A picosecond near-infrared laser source based on a self-seeded optical parametric generator,” Appl. Phys. B 112(4), 521–527 (2013).
[Crossref]

Vodopyanov, K. L.

Wang, H.

P. K. Upputuri and H. Wang, “A picosecond near-infrared laser source based on a self-seeded optical parametric generator,” Appl. Phys. B 112(4), 521–527 (2013).
[Crossref]

Zawilski, K. T.

Zayhowski, J. J.

Appl. Phys. B (1)

P. K. Upputuri and H. Wang, “A picosecond near-infrared laser source based on a self-seeded optical parametric generator,” Appl. Phys. B 112(4), 521–527 (2013).
[Crossref]

Appl. Phys. Lett. (2)

K. Nawata, T. Notake, H. Ishizuki, F. Qi, Y. Takida, S. Fan, S. Hayashi, T. Taira, and H. Minamide, “Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO3,” Appl. Phys. Lett. 104(9), 091125 (2014).
[Crossref]

H. Ishizuki, I. Shoji, and T. Taira, “Periodic poling characteristics of congruent MgO:LiNbO3 crystal at elevated temperatures,” Appl. Phys. Lett. 82(23), 4062–4064 (2003).
[Crossref]

IEEE J. Quantum Electron. (4)

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
[Crossref]

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped grating,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. D. Cocuzzi, K. L. Schepler, and P. E. Powers, “Narrow-bandwidth, subnanosecond, infrared pulse generation in PPLN pumped by a fiber amplifier–microchip oscillator,” IEEE J. Sel. Top. Quantum Electron. 15(2), 372–376 (2009).
[Crossref]

Laser Phys. Lett. (1)

A. V. Kir’yanov, S. M. Klimentov, P. E. Powers, I. V. Mel’nikov, and Y. N. Korkishko, “IR tunable narrow-band nanosecond converter with a microchip pump source and periodically-poled lithium niobate,” Laser Phys. Lett. 5(4), 281–285 (2008).
[Crossref]

Opt. Eng. (1)

R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng. 52, 076102 (2013).

Opt. Express (3)

Opt. Lett. (7)

M. Gebhardt, C. Gaida, P. Kadwani, A. Sincore, N. Gehlich, C. Jeon, L. Shah, and M. Richardson, “High peak-power mid-infrared ZnGeP₂ optical parametric oscillator pumped by a Tm:fiber master oscillator power amplifier system,” Opt. Lett. 39(5), 1212–1215 (2014).
[Crossref] [PubMed]

G. Marchev, F. Pirzio, R. Piccoli, A. Agnesi, G. Reali, P. G. Schunemann, K. T. Zawilski, A. Tyazhev, and V. Petrov, “Narrow-bandwidth, mid-infrared, seeded optical parametric generation in 90° phase-matched CdSiP2 crystal pumped by diffraction limited 500 ps pulses at 1064 nm,” Opt. Lett. 37(15), 3219–3221 (2012).
[Crossref] [PubMed]

K. W. Aniolek, R. L. Schmitt, T. J. Kulp, B. A. Richman, S. E. Bisson, and P. E. Powers, “Microlaser-pumped periodically poled lithium niobate optical parametric generator-optical parametric amplifier,” Opt. Lett. 25(8), 557–559 (2000).
[Crossref] [PubMed]

J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14(1), 24–26 (1989).
[Crossref] [PubMed]

J. J. Zayhowski and C. Dill, “Diode-pumped microchip lasers electro-optically Q switched at high pulse repetition rates,” Opt. Lett. 17(17), 1201–1203 (1992).
[Crossref] [PubMed]

J. J. Zayhowski, “Periodically poled lithium niobate optical parametric amplifiers pumped by high-power passively Q-switched microchip lasers,” Opt. Lett. 22(3), 169–171 (1997).
[Crossref] [PubMed]

K. L. Vodopyanov and P. G. Schunemann, “Broadly tunable noncritically phase-matched ZnGeP2 optical parametric oscillator with a 2-µJ pump threshold,” Opt. Lett. 28(6), 441–443 (2003).
[Crossref] [PubMed]

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) The GP-MCL head, (b) Output-beam shape, and (c) Temporal-pulse shape of the GP-MCL.

Fig. 2
Fig. 2

Experimental set up for OPG using a conventional PPMgLN. HWP: Half-wave plate, ISO: Faraday isolator, PBS: Polarization beam splitter, OSA: Optical spectrum analyzer.

Fig. 3
Fig. 3

OPG output characteristics on pump energy with S = 0.59 mm2 at L = 500 mm.

Fig. 4
Fig. 4

(a) Pump beam-area size S and maximum pumping intensity Imax, (b) Maximum OPG-signal and -idler energy, on Length L at pumping energy of 2.4 mJ.

Fig. 5
Fig. 5

OPG-signal (measured) and -idler (calculated) wavelength on the QPM period.

Fig. 6
Fig. 6

Set up for OPG using a chirped PPMgLN.

Fig. 7
Fig. 7

Detected total OPG energy Esi on input pump energy.

Fig. 8
Fig. 8

Measured OPG spectrum on various pumping energy.

Metrics