Abstract

We propose a new scheme of the resonant four-wave mixing (FWM) for the frequency up or down conversion, which is more efficient than the commonly-used scheme of the non-resonant FWM. In this new scheme, two control fields are spatially varied such that a probe field at the input can be converted to a signal field at the output. The efficiency of probe-to-signal energy conversion can be 90% at medium’s optical depth of about 100. Our proposed scheme works for both the continuous-wave and pulse cases, and is flexible in choosing the control field intensity. This work provides a very useful tool in the nonlinear frequency conversion.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Level-splitting effects in resonant four-wave mixing

S. A. Babin, S. I. Kablukov, U. Hinze, E. Tiemann, and B. Wellegehausen
Opt. Lett. 26(2) 81-83 (2001)

Adiabatic four-wave mixing frequency conversion

Eyal Bahar, Xiaoyue Ding, Asaf Dahan, Haim Suchowski, and Jeffrey Moses
Opt. Express 26(20) 25582-25601 (2018)

Phase control of highly efficient four-wave mixing in a six-level tripod atomic system

Hongjun Zhang, Ximei Li, Dong Sun, Huijing Li, and Hui Sun
Appl. Opt. 57(3) 567-572 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
    [Crossref] [PubMed]
  2. B. S. Ham, M. S. Shahriar, and P. R. Hemmer, “Enhanced nondegenerate four-wave mixing owing to electromagnetically induced transparency in a spectral hole-burning crystal,” Opt. Lett. 22, 1138–1140 (1997).
    [Crossref] [PubMed]
  3. M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant Enhancement of Parametric Processes via Radiative Interference and Induced Coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
    [Crossref]
  4. B. Lü, W. H. Burkett, and M. Xiao, “Nondegenerate four-wave mixing in a double-Λ system under the influence of coherent population trapping,” Opt. Lett. 23, 804–806 (1998).
    [Crossref]
  5. S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
    [Crossref]
  6. B. S. Ham, M. S. Shahriar, and P. R. Hemmer, “Enhancement of four-wave mixing and line narrowing by use of quantum coherence in an optically dense double-Λ solid,” Opt. Lett. 24, 86–88 (1999).
    [Crossref]
  7. A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient Nonlinear Frequency Conversion in an All-Resonant Double-Λ System,” Phys. Rev. Lett. 84, 5308–5311 (2000).
    [Crossref] [PubMed]
  8. M. G. Payne and L. Deng, “Consequences of induced transparency in a double-Λ scheme: Destructive interference in four-wave mixing,” Phys. Rev. A 65, 063806 (2002).
    [Crossref]
  9. H. Kang, G. Hernandez, and Y. F. Zhu, “Slow-Light Six-Wave Mixing at Low Light Intensities,” Phys. Rev. Lett. 93, 073601 (2004).
    [Crossref] [PubMed]
  10. D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms,” Phys. Rev. Lett. 93, 183601 (2004).
    [Crossref] [PubMed]
  11. Y. Wu and X. X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
    [Crossref]
  12. H. Kang, G. Hernandez, and Y. F. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70, 061804(R) (2004).
    [Crossref]
  13. H. Shpaisman, A. D. Wilson-Gordon, and H. Friedmann, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 063814 (2004).
    [Crossref]
  14. Z. Li, L. Xu, and K. Wang, “The dark-state polaritons of a double-Λ atomic ensemble,” Phys. Lett. A 346, 269–274 (2005).
    [Crossref]
  15. A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic pulses in a double Λ system driven by two pumps with and without carrier beams,” Opt. Commun. 277, 186–195 (2007).
    [Crossref]
  16. G. Wang, Y. Xue, J. H. Wu, Z. H. Kang, Y. Jiang, S. S. Liu, and J. Y Gao, “Efficient frequency conversion induced by quantum constructive interference,” Opt. Lett. 35, 3778–3780 (2010).
    [Crossref] [PubMed]
  17. G. Wang, L. Cen, Y. Qu, Y. Xue, J. H. We, and J. Y. Gao, “Intensity-dependent effects on four-wave mixing based on electromagnetically induced transparency,” Opt. Express 19, 21614–21619 (2011).
    [Crossref] [PubMed]
  18. X. Yang, J. Sheng, U. Khadka, and M. Xiao, “Simultaneous control of two four-wave-mixing fields via atomic spin coherence,” Phys. Rev. A 83, 063812 (2011).
    [Crossref]
  19. C. K. Chiu, Y. H. Chen, Y. C. Chen, I. A. Yu, Y. C. Chen, and Y. F. Chen, “Low-light-level four-wave mixing by quantum interference,” Phys. Rev. A 89, 023839 (2014).
    [Crossref]
  20. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum Frequency Translation of Single-Photon States in a Photonic Crystal Fiber,” Phys. Rev. Lett. 105, 093604 (2010).
    [Crossref] [PubMed]
  21. A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
    [Crossref]
  22. M. G. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Phys. Today 65(11), 32–37 (2012).
    [Crossref]
  23. C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
    [Crossref]
  24. Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Quantum correlations by four-wave mixing in an atomic vapor in a nonamplifying regime: Quantum beam splitter for photons,” Phys. Rev. A 84, 053826 (2011).
    [Crossref]
  25. M. Jasperse, L. D. Turner, and R. E. Scholten, “Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic,” Opt. Express 19, 3765–3774 (2011).
    [Crossref] [PubMed]
  26. Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor,” Opt. Lett. 37, 3141–3143 (2012).
    [Crossref] [PubMed]
  27. M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
    [Crossref]
  28. V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of Paired Photons with Controllable Waveforms,” Phys. Rev. Lett. 94, 183601 (2005).
    [Crossref]
  29. S. W. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural Linewidth Biphotons with Controllable Temporal Length,” Phys. Rev. Lett. 100, 183603 (2008).
    [Crossref] [PubMed]
  30. B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow Band Source of Transform-Limited Photon Pairs via Four-Wave Mixing in a Cold Atomic Ensemble,” Phys. Rev. Lett 111, 123602 (2013).
    [Crossref] [PubMed]
  31. R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photon. 3, 103–106 (2009).
    [Crossref]
  32. N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four-wave mixing,” Phys. Rev. A 83, 063823 (2011).
    [Crossref]
  33. G. Romanov, T. Horrom, E. E. Mikhailov, and I. Novikova, “Slow and stored light with atom-based squeezed light,” Proc. SPIE 8273, 827307 (2012).
    [Crossref]
  34. D. Viscor, V. Ahufinger, J. Mompart, A. Zavatta, G. C. La Rocca, and M. Artoni, “Two-color quantum memory in double-Λ media,” Phys. Rev. A 86, 053827 (2012).
    [Crossref]
  35. J. Wu, Y. Liu, D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
    [Crossref]
  36. N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88, 013823 (2013).
    [Crossref]
  37. Y. F. Hsiao, P. J. Tsai, C. C. Lin, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Coherence properties of amplified slow light by four-wave mixing,” Opt. Lett. 39, 3394–3397 (2014).
    [Crossref] [PubMed]
  38. J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
    [Crossref]
  39. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859–862 (2009).
    [Crossref] [PubMed]
  40. N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature 478, 360–363 (2011).
    [Crossref] [PubMed]
  41. M. J. Lee, Y. H. Chen, I. C. Wang, and I. A. Yu, “EIT-based all-optical switching and cross-phase modulation under the influence of four-wave mixing,” Opt. Express 20, 11057–11063 (2012).
    [Crossref] [PubMed]
  42. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [Crossref]
  43. M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
    [Crossref]
  44. M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77633–673 (2005).
    [Crossref]
  45. Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
    [Crossref] [PubMed]
  46. M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriašov, K. F. Chang, H. W. Cho, G. Juzeliūnas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
    [Crossref] [PubMed]
  47. Y. W. Lin, H. C. Chou, P. P. Dwivedi, Y. C. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
    [Crossref] [PubMed]
  48. U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463–468 (1988).
    [Crossref]

2014 (4)

C. K. Chiu, Y. H. Chen, Y. C. Chen, I. A. Yu, Y. C. Chen, and Y. F. Chen, “Low-light-level four-wave mixing by quantum interference,” Phys. Rev. A 89, 023839 (2014).
[Crossref]

Y. F. Hsiao, P. J. Tsai, C. C. Lin, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Coherence properties of amplified slow light by four-wave mixing,” Opt. Lett. 39, 3394–3397 (2014).
[Crossref] [PubMed]

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriašov, K. F. Chang, H. W. Cho, G. Juzeliūnas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref] [PubMed]

2013 (5)

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

J. Wu, Y. Liu, D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
[Crossref]

N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88, 013823 (2013).
[Crossref]

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow Band Source of Transform-Limited Photon Pairs via Four-Wave Mixing in a Cold Atomic Ensemble,” Phys. Rev. Lett 111, 123602 (2013).
[Crossref] [PubMed]

2012 (5)

G. Romanov, T. Horrom, E. E. Mikhailov, and I. Novikova, “Slow and stored light with atom-based squeezed light,” Proc. SPIE 8273, 827307 (2012).
[Crossref]

D. Viscor, V. Ahufinger, J. Mompart, A. Zavatta, G. C. La Rocca, and M. Artoni, “Two-color quantum memory in double-Λ media,” Phys. Rev. A 86, 053827 (2012).
[Crossref]

M. G. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Phys. Today 65(11), 32–37 (2012).
[Crossref]

Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, and W. Zhang, “Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor,” Opt. Lett. 37, 3141–3143 (2012).
[Crossref] [PubMed]

M. J. Lee, Y. H. Chen, I. C. Wang, and I. A. Yu, “EIT-based all-optical switching and cross-phase modulation under the influence of four-wave mixing,” Opt. Express 20, 11057–11063 (2012).
[Crossref] [PubMed]

2011 (6)

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature 478, 360–363 (2011).
[Crossref] [PubMed]

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Quantum correlations by four-wave mixing in an atomic vapor in a nonamplifying regime: Quantum beam splitter for photons,” Phys. Rev. A 84, 053826 (2011).
[Crossref]

M. Jasperse, L. D. Turner, and R. E. Scholten, “Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic,” Opt. Express 19, 3765–3774 (2011).
[Crossref] [PubMed]

N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four-wave mixing,” Phys. Rev. A 83, 063823 (2011).
[Crossref]

G. Wang, L. Cen, Y. Qu, Y. Xue, J. H. We, and J. Y. Gao, “Intensity-dependent effects on four-wave mixing based on electromagnetically induced transparency,” Opt. Express 19, 21614–21619 (2011).
[Crossref] [PubMed]

X. Yang, J. Sheng, U. Khadka, and M. Xiao, “Simultaneous control of two four-wave-mixing fields via atomic spin coherence,” Phys. Rev. A 83, 063812 (2011).
[Crossref]

2010 (3)

G. Wang, Y. Xue, J. H. Wu, Z. H. Kang, Y. Jiang, S. S. Liu, and J. Y Gao, “Efficient frequency conversion induced by quantum constructive interference,” Opt. Lett. 35, 3778–3780 (2010).
[Crossref] [PubMed]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum Frequency Translation of Single-Photon States in a Photonic Crystal Fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref] [PubMed]

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[Crossref]

2009 (2)

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photon. 3, 103–106 (2009).
[Crossref]

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859–862 (2009).
[Crossref] [PubMed]

2008 (3)

Y. W. Lin, H. C. Chou, P. P. Dwivedi, Y. C. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
[Crossref] [PubMed]

S. W. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural Linewidth Biphotons with Controllable Temporal Length,” Phys. Rev. Lett. 100, 183603 (2008).
[Crossref] [PubMed]

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

2007 (1)

A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic pulses in a double Λ system driven by two pumps with and without carrier beams,” Opt. Commun. 277, 186–195 (2007).
[Crossref]

2005 (3)

Z. Li, L. Xu, and K. Wang, “The dark-state polaritons of a double-Λ atomic ensemble,” Phys. Lett. A 346, 269–274 (2005).
[Crossref]

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of Paired Photons with Controllable Waveforms,” Phys. Rev. Lett. 94, 183601 (2005).
[Crossref]

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77633–673 (2005).
[Crossref]

2004 (5)

H. Kang, G. Hernandez, and Y. F. Zhu, “Slow-Light Six-Wave Mixing at Low Light Intensities,” Phys. Rev. Lett. 93, 073601 (2004).
[Crossref] [PubMed]

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms,” Phys. Rev. Lett. 93, 183601 (2004).
[Crossref] [PubMed]

Y. Wu and X. X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[Crossref]

H. Kang, G. Hernandez, and Y. F. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70, 061804(R) (2004).
[Crossref]

H. Shpaisman, A. D. Wilson-Gordon, and H. Friedmann, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 063814 (2004).
[Crossref]

2003 (1)

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[Crossref]

2002 (1)

M. G. Payne and L. Deng, “Consequences of induced transparency in a double-Λ scheme: Destructive interference in four-wave mixing,” Phys. Rev. A 65, 063806 (2002).
[Crossref]

2000 (1)

A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient Nonlinear Frequency Conversion in an All-Resonant Double-Λ System,” Phys. Rev. Lett. 84, 5308–5311 (2000).
[Crossref] [PubMed]

1999 (2)

1998 (2)

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant Enhancement of Parametric Processes via Radiative Interference and Induced Coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[Crossref]

B. Lü, W. H. Burkett, and M. Xiao, “Nondegenerate four-wave mixing in a double-Λ system under the influence of coherent population trapping,” Opt. Lett. 23, 804–806 (1998).
[Crossref]

1997 (2)

1996 (1)

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[Crossref] [PubMed]

1988 (1)

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463–468 (1988).
[Crossref]

Ahufinger, V.

D. Viscor, V. Ahufinger, J. Mompart, A. Zavatta, G. C. La Rocca, and M. Artoni, “Two-color quantum memory in double-Λ media,” Phys. Rev. A 86, 053827 (2012).
[Crossref]

Artoni, M.

D. Viscor, V. Ahufinger, J. Mompart, A. Zavatta, G. C. La Rocca, and M. Artoni, “Two-color quantum memory in double-Λ media,” Phys. Rev. A 86, 053827 (2012).
[Crossref]

Assad, S. M.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

Balic, V.

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of Paired Photons with Controllable Waveforms,” Phys. Rev. Lett. 94, 183601 (2005).
[Crossref]

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms,” Phys. Rev. Lett. 93, 183601 (2004).
[Crossref] [PubMed]

Becker, M.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463–468 (1988).
[Crossref]

Belthangady, C.

S. W. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural Linewidth Biphotons with Controllable Temporal Length,” Phys. Rev. Lett. 100, 183603 (2008).
[Crossref] [PubMed]

Bergmann, K.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463–468 (1988).
[Crossref]

Bernu, J.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

Boyer, V.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859–862 (2009).
[Crossref] [PubMed]

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

Braje, D. A.

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of Paired Photons with Controllable Waveforms,” Phys. Rev. Lett. 94, 183601 (2005).
[Crossref]

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms,” Phys. Rev. Lett. 93, 183601 (2004).
[Crossref] [PubMed]

Buchler, B. C.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

Burkett, W. H.

Camacho, R. M.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photon. 3, 103–106 (2009).
[Crossref]

Campbell, G. T.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

Cen, L.

Chang, K. F.

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriašov, K. F. Chang, H. W. Cho, G. Juzeliūnas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref] [PubMed]

Chen, Y. C.

Y. F. Hsiao, P. J. Tsai, C. C. Lin, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Coherence properties of amplified slow light by four-wave mixing,” Opt. Lett. 39, 3394–3397 (2014).
[Crossref] [PubMed]

C. K. Chiu, Y. H. Chen, Y. C. Chen, I. A. Yu, Y. C. Chen, and Y. F. Chen, “Low-light-level four-wave mixing by quantum interference,” Phys. Rev. A 89, 023839 (2014).
[Crossref]

C. K. Chiu, Y. H. Chen, Y. C. Chen, I. A. Yu, Y. C. Chen, and Y. F. Chen, “Low-light-level four-wave mixing by quantum interference,” Phys. Rev. A 89, 023839 (2014).
[Crossref]

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

Y. W. Lin, H. C. Chou, P. P. Dwivedi, Y. C. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
[Crossref] [PubMed]

Chen, Y. F.

Y. F. Hsiao, P. J. Tsai, C. C. Lin, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Coherence properties of amplified slow light by four-wave mixing,” Opt. Lett. 39, 3394–3397 (2014).
[Crossref] [PubMed]

C. K. Chiu, Y. H. Chen, Y. C. Chen, I. A. Yu, Y. C. Chen, and Y. F. Chen, “Low-light-level four-wave mixing by quantum interference,” Phys. Rev. A 89, 023839 (2014).
[Crossref]

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

Chen, Y. H.

C. K. Chiu, Y. H. Chen, Y. C. Chen, I. A. Yu, Y. C. Chen, and Y. F. Chen, “Low-light-level four-wave mixing by quantum interference,” Phys. Rev. A 89, 023839 (2014).
[Crossref]

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

M. J. Lee, Y. H. Chen, I. C. Wang, and I. A. Yu, “EIT-based all-optical switching and cross-phase modulation under the influence of four-wave mixing,” Opt. Express 20, 11057–11063 (2012).
[Crossref] [PubMed]

Chiu, C. K.

C. K. Chiu, Y. H. Chen, Y. C. Chen, I. A. Yu, Y. C. Chen, and Y. F. Chen, “Low-light-level four-wave mixing by quantum interference,” Phys. Rev. A 89, 023839 (2014).
[Crossref]

Chng, B.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow Band Source of Transform-Limited Photon Pairs via Four-Wave Mixing in a Cold Atomic Ensemble,” Phys. Rev. Lett 111, 123602 (2013).
[Crossref] [PubMed]

Cho, H. W.

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriašov, K. F. Chang, H. W. Cho, G. Juzeliūnas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref] [PubMed]

Chou, H. C.

Coudreau, T.

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Quantum correlations by four-wave mixing in an atomic vapor in a nonamplifying regime: Quantum beam splitter for photons,” Phys. Rev. A 84, 053826 (2011).
[Crossref]

Deng, L.

M. G. Payne and L. Deng, “Consequences of induced transparency in a double-Λ scheme: Destructive interference in four-wave mixing,” Phys. Rev. A 65, 063806 (2002).
[Crossref]

Ding, D. S.

J. Wu, Y. Liu, D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
[Crossref]

Du, S.

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

Du, S. W.

S. W. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural Linewidth Biphotons with Controllable Temporal Length,” Phys. Rev. Lett. 100, 183603 (2008).
[Crossref] [PubMed]

Dudin, Y. O.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[Crossref]

Dwivedi, P. P.

Eilam, A.

A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic pulses in a double Λ system driven by two pumps with and without carrier beams,” Opt. Commun. 277, 186–195 (2007).
[Crossref]

Embrey, C. S.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

Fleischhauer, M.

N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88, 013823 (2013).
[Crossref]

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77633–673 (2005).
[Crossref]

Friedmann, H.

A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic pulses in a double Λ system driven by two pumps with and without carrier beams,” Opt. Commun. 277, 186–195 (2007).
[Crossref]

H. Shpaisman, A. D. Wilson-Gordon, and H. Friedmann, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 063814 (2004).
[Crossref]

Gao, J. Y

Gao, J. Y.

Gaubatz, U.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463–468 (1988).
[Crossref]

Geng, J.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

Glorieux, Q.

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Quantum correlations by four-wave mixing in an atomic vapor in a nonamplifying regime: Quantum beam splitter for photons,” Phys. Rev. A 84, 053826 (2011).
[Crossref]

Goda, S.

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms,” Phys. Rev. Lett. 93, 183601 (2004).
[Crossref] [PubMed]

Gorshkov, A. V.

N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four-wave mixing,” Phys. Rev. A 83, 063823 (2011).
[Crossref]

Guibal, S.

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Quantum correlations by four-wave mixing in an atomic vapor in a nonamplifying regime: Quantum beam splitter for photons,” Phys. Rev. A 84, 053826 (2011).
[Crossref]

Guidoni, L.

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Quantum correlations by four-wave mixing in an atomic vapor in a nonamplifying regime: Quantum beam splitter for photons,” Phys. Rev. A 84, 053826 (2011).
[Crossref]

Gulati, G. K.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow Band Source of Transform-Limited Photon Pairs via Four-Wave Mixing in a Cold Atomic Ensemble,” Phys. Rev. Lett 111, 123602 (2013).
[Crossref] [PubMed]

Guo, G. C.

J. Wu, Y. Liu, D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
[Crossref]

Ham, B. S.

Harris, S. E.

S. W. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural Linewidth Biphotons with Controllable Temporal Length,” Phys. Rev. Lett. 100, 183603 (2008).
[Crossref] [PubMed]

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of Paired Photons with Controllable Waveforms,” Phys. Rev. Lett. 94, 183601 (2005).
[Crossref]

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms,” Phys. Rev. Lett. 93, 183601 (2004).
[Crossref] [PubMed]

A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient Nonlinear Frequency Conversion in an All-Resonant Double-Λ System,” Phys. Rev. Lett. 84, 5308–5311 (2000).
[Crossref] [PubMed]

S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[Crossref]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[Crossref] [PubMed]

Hau, L. V.

S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[Crossref]

Hemmer, P. R.

Hernandez, G.

H. Kang, G. Hernandez, and Y. F. Zhu, “Slow-Light Six-Wave Mixing at Low Light Intensities,” Phys. Rev. Lett. 93, 073601 (2004).
[Crossref] [PubMed]

H. Kang, G. Hernandez, and Y. F. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70, 061804(R) (2004).
[Crossref]

Higginbottom, D. B.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

Horrom, T.

G. Romanov, T. Horrom, E. E. Mikhailov, and I. Novikova, “Slow and stored light with atom-based squeezed light,” Proc. SPIE 8273, 827307 (2012).
[Crossref]

Howell, J. C.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photon. 3, 103–106 (2009).
[Crossref]

Hsiao, Y. F.

Imamoglu, A.

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77633–673 (2005).
[Crossref]

Jain, M.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[Crossref] [PubMed]

Jasperse, M.

Jen, H. H.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[Crossref]

Jenkins, S. D.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[Crossref]

Jiang, Y.

Jing, J.

Juzeliunas, G.

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriašov, K. F. Chang, H. W. Cho, G. Juzeliūnas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref] [PubMed]

Kang, H.

H. Kang, G. Hernandez, and Y. F. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70, 061804(R) (2004).
[Crossref]

H. Kang, G. Hernandez, and Y. F. Zhu, “Slow-Light Six-Wave Mixing at Low Light Intensities,” Phys. Rev. Lett. 93, 073601 (2004).
[Crossref] [PubMed]

Kang, Z. H.

Kennedy, T. A. B.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[Crossref]

Khadka, U.

X. Yang, J. Sheng, U. Khadka, and M. Xiao, “Simultaneous control of two four-wave-mixing fields via atomic spin coherence,” Phys. Rev. A 83, 063812 (2011).
[Crossref]

Kolchin, P.

S. W. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural Linewidth Biphotons with Controllable Temporal Length,” Phys. Rev. Lett. 100, 183603 (2008).
[Crossref] [PubMed]

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of Paired Photons with Controllable Waveforms,” Phys. Rev. Lett. 94, 183601 (2005).
[Crossref]

Kudriašov, V.

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriašov, K. F. Chang, H. W. Cho, G. Juzeliūnas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref] [PubMed]

Külz, M.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463–468 (1988).
[Crossref]

Kurtsiefer, C.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow Band Source of Transform-Limited Photon Pairs via Four-Wave Mixing in a Cold Atomic Ensemble,” Phys. Rev. Lett 111, 123602 (2013).
[Crossref] [PubMed]

Kuzmich, A.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[Crossref]

La Rocca, G. C.

D. Viscor, V. Ahufinger, J. Mompart, A. Zavatta, G. C. La Rocca, and M. Artoni, “Two-color quantum memory in double-Λ media,” Phys. Rev. A 86, 053827 (2012).
[Crossref]

Lam, P. K.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

Langford, N. K.

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature 478, 360–363 (2011).
[Crossref] [PubMed]

Lauk, N.

N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88, 013823 (2013).
[Crossref]

Lee, C. Y.

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriašov, K. F. Chang, H. W. Cho, G. Juzeliūnas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref] [PubMed]

Lee, M. J.

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriašov, K. F. Chang, H. W. Cho, G. Juzeliūnas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref] [PubMed]

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

M. J. Lee, Y. H. Chen, I. C. Wang, and I. A. Yu, “EIT-based all-optical switching and cross-phase modulation under the influence of four-wave mixing,” Opt. Express 20, 11057–11063 (2012).
[Crossref] [PubMed]

Lett, P. D.

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859–862 (2009).
[Crossref] [PubMed]

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

Li, Z.

Z. Li, L. Xu, and K. Wang, “The dark-state polaritons of a double-Λ atomic ensemble,” Phys. Lett. A 346, 269–274 (2005).
[Crossref]

Likforman, J.-P.

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Quantum correlations by four-wave mixing in an atomic vapor in a nonamplifying regime: Quantum beam splitter for photons,” Phys. Rev. A 84, 053826 (2011).
[Crossref]

Lin, C. C.

Lin, Y. W.

Liu, C.

Liu, S. S.

Liu, Y.

J. Wu, Y. Liu, D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
[Crossref]

Löffler, M.

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant Enhancement of Parametric Processes via Radiative Interference and Induced Coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[Crossref]

Lü, B.

Lukin, M. D.

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[Crossref]

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant Enhancement of Parametric Processes via Radiative Interference and Induced Coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[Crossref]

Manuszak, D.

A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient Nonlinear Frequency Conversion in an All-Resonant Double-Λ System,” Phys. Rev. Lett. 84, 5308–5311 (2000).
[Crossref] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77633–673 (2005).
[Crossref]

Marino, A. M.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859–862 (2009).
[Crossref] [PubMed]

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

Maslennikov, G.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow Band Source of Transform-Limited Photon Pairs via Four-Wave Mixing in a Cold Atomic Ensemble,” Phys. Rev. Lett 111, 123602 (2013).
[Crossref] [PubMed]

Matsukevich, D.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow Band Source of Transform-Limited Photon Pairs via Four-Wave Mixing in a Cold Atomic Ensemble,” Phys. Rev. Lett 111, 123602 (2013).
[Crossref] [PubMed]

McCormick, C. F.

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

McGuinness, H. J.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum Frequency Translation of Single-Photon States in a Photonic Crystal Fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref] [PubMed]

McKinstrie, C. J.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum Frequency Translation of Single-Photon States in a Photonic Crystal Fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref] [PubMed]

Merriam, A. J.

A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient Nonlinear Frequency Conversion in an All-Resonant Double-Λ System,” Phys. Rev. Lett. 84, 5308–5311 (2000).
[Crossref] [PubMed]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[Crossref] [PubMed]

Mikhailov, E. E.

G. Romanov, T. Horrom, E. E. Mikhailov, and I. Novikova, “Slow and stored light with atom-based squeezed light,” Proc. SPIE 8273, 827307 (2012).
[Crossref]

Milburn, G. J.

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature 478, 360–363 (2011).
[Crossref] [PubMed]

Mompart, J.

D. Viscor, V. Ahufinger, J. Mompart, A. Zavatta, G. C. La Rocca, and M. Artoni, “Two-color quantum memory in double-Λ media,” Phys. Rev. A 86, 053827 (2012).
[Crossref]

Munro, W. J.

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature 478, 360–363 (2011).
[Crossref] [PubMed]

Novikova, I.

G. Romanov, T. Horrom, E. E. Mikhailov, and I. Novikova, “Slow and stored light with atom-based squeezed light,” Proc. SPIE 8273, 827307 (2012).
[Crossref]

N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four-wave mixing,” Phys. Rev. A 83, 063823 (2011).
[Crossref]

O’Brien, C.

N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88, 013823 (2013).
[Crossref]

Payne, M. G.

M. G. Payne and L. Deng, “Consequences of induced transparency in a double-Λ scheme: Destructive interference in four-wave mixing,” Phys. Rev. A 65, 063806 (2002).
[Crossref]

Petrov, P. G.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

Phillips, N. B.

N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four-wave mixing,” Phys. Rev. A 83, 063823 (2011).
[Crossref]

Pooser, R. C.

Prevedel, R.

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature 478, 360–363 (2011).
[Crossref] [PubMed]

Qin, Z.

Qu, Y.

Radic, S.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum Frequency Translation of Single-Photon States in a Photonic Crystal Fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref] [PubMed]

Radnaev, A. G.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[Crossref]

Ramelow, S.

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature 478, 360–363 (2011).
[Crossref] [PubMed]

Raymer, M. G.

M. G. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Phys. Today 65(11), 32–37 (2012).
[Crossref]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum Frequency Translation of Single-Photon States in a Photonic Crystal Fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref] [PubMed]

Robins, N. P.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

Romanov, G.

G. Romanov, T. Horrom, E. E. Mikhailov, and I. Novikova, “Slow and stored light with atom-based squeezed light,” Proc. SPIE 8273, 827307 (2012).
[Crossref]

Rudecki, P.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463–468 (1988).
[Crossref]

Ruseckas, J.

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriašov, K. F. Chang, H. W. Cho, G. Juzeliūnas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref] [PubMed]

Schiemann, S.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463–468 (1988).
[Crossref]

Scholten, R. E.

Scully, M. O.

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant Enhancement of Parametric Processes via Radiative Interference and Induced Coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[Crossref]

Shahriar, M. S.

Sharpe, S. J.

A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient Nonlinear Frequency Conversion in an All-Resonant Double-Λ System,” Phys. Rev. Lett. 84, 5308–5311 (2000).
[Crossref] [PubMed]

Sheng, J.

X. Yang, J. Sheng, U. Khadka, and M. Xiao, “Simultaneous control of two four-wave-mixing fields via atomic spin coherence,” Phys. Rev. A 83, 063812 (2011).
[Crossref]

Shi, B. S.

J. Wu, Y. Liu, D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
[Crossref]

Shpaisman, H.

H. Shpaisman, A. D. Wilson-Gordon, and H. Friedmann, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 063814 (2004).
[Crossref]

Shverdin, M.

A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient Nonlinear Frequency Conversion in an All-Resonant Double-Λ System,” Phys. Rev. Lett. 84, 5308–5311 (2000).
[Crossref] [PubMed]

Sparkes, B. M.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

Srinivasan, K.

M. G. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Phys. Today 65(11), 32–37 (2012).
[Crossref]

Srivathsan, B.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow Band Source of Transform-Limited Photon Pairs via Four-Wave Mixing in a Cold Atomic Ensemble,” Phys. Rev. Lett 111, 123602 (2013).
[Crossref] [PubMed]

Tsai, P. J.

Turnbull, M. T.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

Turner, L. D.

Viscor, D.

D. Viscor, V. Ahufinger, J. Mompart, A. Zavatta, G. C. La Rocca, and M. Artoni, “Two-color quantum memory in double-Λ media,” Phys. Rev. A 86, 053827 (2012).
[Crossref]

Vudyasetu, P. K.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photon. 3, 103–106 (2009).
[Crossref]

Wang, G.

Wang, I. C.

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

M. J. Lee, Y. H. Chen, I. C. Wang, and I. A. Yu, “EIT-based all-optical switching and cross-phase modulation under the influence of four-wave mixing,” Opt. Express 20, 11057–11063 (2012).
[Crossref] [PubMed]

Wang, K.

Z. Li, L. Xu, and K. Wang, “The dark-state polaritons of a double-Λ atomic ensemble,” Phys. Lett. A 346, 269–274 (2005).
[Crossref]

We, J. H.

Wilson-Gordon, A. D.

A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic pulses in a double Λ system driven by two pumps with and without carrier beams,” Opt. Commun. 277, 186–195 (2007).
[Crossref]

H. Shpaisman, A. D. Wilson-Gordon, and H. Friedmann, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 063814 (2004).
[Crossref]

Wu, J.

J. Wu, Y. Liu, D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
[Crossref]

Wu, J. H.

Wu, Y.

Y. Wu and X. X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[Crossref]

Xia, H.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[Crossref] [PubMed]

Xiao, M.

X. Yang, J. Sheng, U. Khadka, and M. Xiao, “Simultaneous control of two four-wave-mixing fields via atomic spin coherence,” Phys. Rev. A 83, 063812 (2011).
[Crossref]

B. Lü, W. H. Burkett, and M. Xiao, “Nondegenerate four-wave mixing in a double-Λ system under the influence of coherent population trapping,” Opt. Lett. 23, 804–806 (1998).
[Crossref]

Xu, L.

Z. Li, L. Xu, and K. Wang, “The dark-state polaritons of a double-Λ atomic ensemble,” Phys. Lett. A 346, 269–274 (2005).
[Crossref]

Xue, Y.

Yang, X.

X. Yang, J. Sheng, U. Khadka, and M. Xiao, “Simultaneous control of two four-wave-mixing fields via atomic spin coherence,” Phys. Rev. A 83, 063812 (2011).
[Crossref]

Yang, X. X.

Y. Wu and X. X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[Crossref]

Yin, G. Y.

S. W. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural Linewidth Biphotons with Controllable Temporal Length,” Phys. Rev. Lett. 100, 183603 (2008).
[Crossref] [PubMed]

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of Paired Photons with Controllable Waveforms,” Phys. Rev. Lett. 94, 183601 (2005).
[Crossref]

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms,” Phys. Rev. Lett. 93, 183601 (2004).
[Crossref] [PubMed]

A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient Nonlinear Frequency Conversion in an All-Resonant Double-Λ System,” Phys. Rev. Lett. 84, 5308–5311 (2000).
[Crossref] [PubMed]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[Crossref] [PubMed]

Yu, I. A.

C. K. Chiu, Y. H. Chen, Y. C. Chen, I. A. Yu, Y. C. Chen, and Y. F. Chen, “Low-light-level four-wave mixing by quantum interference,” Phys. Rev. A 89, 023839 (2014).
[Crossref]

Y. F. Hsiao, P. J. Tsai, C. C. Lin, Y. F. Chen, I. A. Yu, and Y. C. Chen, “Coherence properties of amplified slow light by four-wave mixing,” Opt. Lett. 39, 3394–3397 (2014).
[Crossref] [PubMed]

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriašov, K. F. Chang, H. W. Cho, G. Juzeliūnas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref] [PubMed]

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

M. J. Lee, Y. H. Chen, I. C. Wang, and I. A. Yu, “EIT-based all-optical switching and cross-phase modulation under the influence of four-wave mixing,” Opt. Express 20, 11057–11063 (2012).
[Crossref] [PubMed]

Y. W. Lin, H. C. Chou, P. P. Dwivedi, Y. C. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
[Crossref] [PubMed]

Zavatta, A.

D. Viscor, V. Ahufinger, J. Mompart, A. Zavatta, G. C. La Rocca, and M. Artoni, “Two-color quantum memory in double-Λ media,” Phys. Rev. A 86, 053827 (2012).
[Crossref]

Zeilinger, A.

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature 478, 360–363 (2011).
[Crossref] [PubMed]

Zhang, W.

Zhang, W. P.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

Zhao, R.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[Crossref]

Zhou, J.

Zhou, Z.

Zhou, Z. Y.

J. Wu, Y. Liu, D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
[Crossref]

Zhu, Y. F.

H. Kang, G. Hernandez, and Y. F. Zhu, “Slow-Light Six-Wave Mixing at Low Light Intensities,” Phys. Rev. Lett. 93, 073601 (2004).
[Crossref] [PubMed]

H. Kang, G. Hernandez, and Y. F. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70, 061804(R) (2004).
[Crossref]

Chem. Phys. Lett. (1)

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463–468 (1988).
[Crossref]

Nat. Commun. (1)

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriašov, K. F. Chang, H. W. Cho, G. Juzeliūnas, and I. A. Yu, “Experimental demonstration of spinor slow light,” Nat. Commun. 5, 5542 (2014).
[Crossref] [PubMed]

Nat. Phys. (1)

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[Crossref]

Nature (2)

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457, 859–862 (2009).
[Crossref] [PubMed]

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature 478, 360–363 (2011).
[Crossref] [PubMed]

Nature Photon. (1)

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photon. 3, 103–106 (2009).
[Crossref]

New J. Phys. (1)

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

Opt. Commun. (1)

A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, “Enhanced frequency conversion of nonadiabatic pulses in a double Λ system driven by two pumps with and without carrier beams,” Opt. Commun. 277, 186–195 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Phys. Lett. A (1)

Z. Li, L. Xu, and K. Wang, “The dark-state polaritons of a double-Λ atomic ensemble,” Phys. Lett. A 346, 269–274 (2005).
[Crossref]

Phys. Rev. A (13)

Y. Wu and X. X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[Crossref]

H. Kang, G. Hernandez, and Y. F. Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70, 061804(R) (2004).
[Crossref]

H. Shpaisman, A. D. Wilson-Gordon, and H. Friedmann, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 063814 (2004).
[Crossref]

X. Yang, J. Sheng, U. Khadka, and M. Xiao, “Simultaneous control of two four-wave-mixing fields via atomic spin coherence,” Phys. Rev. A 83, 063812 (2011).
[Crossref]

C. K. Chiu, Y. H. Chen, Y. C. Chen, I. A. Yu, Y. C. Chen, and Y. F. Chen, “Low-light-level four-wave mixing by quantum interference,” Phys. Rev. A 89, 023839 (2014).
[Crossref]

M. G. Payne and L. Deng, “Consequences of induced transparency in a double-Λ scheme: Destructive interference in four-wave mixing,” Phys. Rev. A 65, 063806 (2002).
[Crossref]

D. Viscor, V. Ahufinger, J. Mompart, A. Zavatta, G. C. La Rocca, and M. Artoni, “Two-color quantum memory in double-Λ media,” Phys. Rev. A 86, 053827 (2012).
[Crossref]

J. Wu, Y. Liu, D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
[Crossref]

N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88, 013823 (2013).
[Crossref]

N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four-wave mixing,” Phys. Rev. A 83, 063823 (2011).
[Crossref]

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78, 043816 (2008).
[Crossref]

Q. Glorieux, L. Guidoni, S. Guibal, J.-P. Likforman, and T. Coudreau, “Quantum correlations by four-wave mixing in an atomic vapor in a nonamplifying regime: Quantum beam splitter for photons,” Phys. Rev. A 84, 053826 (2011).
[Crossref]

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88, 033845 (2013).
[Crossref]

Phys. Rev. Lett (1)

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow Band Source of Transform-Limited Photon Pairs via Four-Wave Mixing in a Cold Atomic Ensemble,” Phys. Rev. Lett 111, 123602 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (10)

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of Paired Photons with Controllable Waveforms,” Phys. Rev. Lett. 94, 183601 (2005).
[Crossref]

S. W. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural Linewidth Biphotons with Controllable Temporal Length,” Phys. Rev. Lett. 100, 183603 (2008).
[Crossref] [PubMed]

H. Kang, G. Hernandez, and Y. F. Zhu, “Slow-Light Six-Wave Mixing at Low Light Intensities,” Phys. Rev. Lett. 93, 073601 (2004).
[Crossref] [PubMed]

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms,” Phys. Rev. Lett. 93, 183601 (2004).
[Crossref] [PubMed]

A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient Nonlinear Frequency Conversion in an All-Resonant Double-Λ System,” Phys. Rev. Lett. 84, 5308–5311 (2000).
[Crossref] [PubMed]

S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[Crossref]

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant Enhancement of Parametric Processes via Radiative Interference and Induced Coherence,” Phys. Rev. Lett. 81, 2675–2678 (1998).
[Crossref]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum Frequency Translation of Single-Photon States in a Photonic Crystal Fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref] [PubMed]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[Crossref] [PubMed]

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, “Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref] [PubMed]

Phys. Today (2)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

M. G. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Phys. Today 65(11), 32–37 (2012).
[Crossref]

Proc. SPIE (1)

G. Romanov, T. Horrom, E. E. Mikhailov, and I. Novikova, “Slow and stored light with atom-based squeezed light,” Proc. SPIE 8273, 827307 (2012).
[Crossref]

Rev. Mod. Phys. (2)

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[Crossref]

M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77633–673 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Transition scheme of the EIT-based FWM. The probe field Ωp1 and the control field Ωc1 form one Λ configuration; the signal field Ωp2 and the control field Ωc2 form another.
Fig. 2
Fig. 2 Outcomes of the FWM processes as the probe pulse being the only input. Black, blue and red circles are the experimental data of the input and output probe pulses and the output signal pulse, respectively. The input probe is scaled down by a factor of 0.1. Blue and red dashed lines are the experimental data of the two control fields Ωc1 and Ωc2. The data in (a) and (b) were taken synchronously, and so were those in (c) and (d). Solid lines are the predictions. In the theoretical calculation, OD = 47, Ωc1 = 0.35Γ [its initial value being 0.48 in (c)], Ωc2 = 0.35Γ, and γ = 3×10−4Γ. We determined these parameters with the slow-light data of the single-Λ EIT system [47].
Fig. 3
Fig. 3 A transition scheme equivalent to the resonant double-Λ scheme shown in Fig. 1. ΩpT and ΩpD are the superpositions of Ωp1 and Ωp2 given by Eq. (6); |T〉 and |D〉 are those of |3〉 and |4〉 given by Eq. (7). While Ωc1 and Ωc2 are the Rabi frequencies of the + two control fields shown in Fig. 1, Ωc,tot here is equal to | Ω c 1 | 2 + | Ω c 2 | 2.
Fig. 4
Fig. 4 (a) Powers of the transparency mode |ΩpT |2 (magenta), dissipation mode |ΩpD|2 (green), probe field |Ωp1|2 (blue) and signal field |Ωp2|2 (red) as functions of the position z inside the medium at OD = 100. Values of power are normalized to the input power. (b) Power transmissions of |Ωp1|2 and |Ωp2|2 as functions of OD. In (a) and (b), the Rabi frequencies of the two control fields vary like Ωc cos[πz/(2L)] and Ωc sin[πz/(2L)] and γ = 0, where the magnitude of Ωc does not affect the calculation results. With a non-negligible decoherence rate (e.g. γ = 0.001Γ), the power transmission of the signal field decreases merely by about 1% (OD = 50) or 2% (OD = 100) at Ωc = 3Γ.
Fig. 5
Fig. 5 (a) Diagram of the new FWM scheme with the spatially-varied control fields given by Ωc exp(−z2/w2) and Ωc exp[− (zL)2/w2]. (b) and (c) are the transmissions of the probe (blue) and signal (red) fields as functions of OD. In the calculation, the two control fields in (a) are used and γ = 0. Magnitude of Ωc does not affect the calculation results in the continuous-wave case. Solid, dashed and dotted lines represent w/L = 0.47, 0.66 and 0.91. In the pulse case, as w/L = 0.66 the probe-to-signal conversion efficiency decreases merely by about 1% (OD = 50) or 2% (OD = 100) at Ωc = 2.4Γ and the e−2 half width of the input Gaussian pulse being 30Γ−1.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

t ρ 21 = i 2 ( ρ 31 Ω c 1 * + ρ 41 Ω c 2 * ) γ ρ 21 ,
t ρ 31 = i 2 ρ 21 Ω c 1 + i 2 Ω p 1 1 2 Γ ρ 31 ,
t ρ 41 = i 2 ρ 21 Ω c 2 + i 2 Ω p 2 1 2 Γ ρ 41 ,
( 1 c t + z ) Ω p 1 = i α 2 L Γ ρ 31 ,
( 1 c t + z ) Ω p 2 = i α 2 L Γ ρ 41 ,
[ Ω pT Ω pD ] = 1 Ω c , tot [ Ω c 1 * Ω c 2 * Ω c 2 * Ω c 1 ] [ Ω p 1 Ω p 2 ] ,
| T = Ω c 1 * Ω c , tot | 3 + Ω c 2 * Ω c , tot | 4 , | D = Ω c 2 Ω c , tot | 3 + Ω c 1 Ω c , tot | 4 .
Ω c 1 = Ω c cos ( β z ) , Ω c 2 = Ω c sin ( β z ) ,
z Ω pT β Ω pD = 0 ,
z Ω pD + β Ω pT = η Ω pD .
| Ω pD ( z ) | 2 = β 2 κ 2 [ sinh ( κ z ) ] 2 e η z ,
| Ω pT ( z ) | 2 = [ cosh ( κ z ) + η 2 κ sinh ( κ z ) ] 2 e η z ,
| Ω pD ( z ) | 2 β 2 η 2 ( 1 e η z ) 2 .
| Ω p 2 ( L ) | 2 = | Ω pT ( L ) | 2 1 π 2 α .
Ω c 1 ( z ) = Ω c exp ( z 2 / w 2 ) , Ω c 2 ( z ) = Ω c exp [ ( z L 2 ) / w 2 ] .
[ ρ T ρ D ] = 1 Ω c , tot [ Ω c 1 * Ω c 2 * Ω c 2 Ω c 1 ] [ ρ 31 ρ 41 ] ,
t ρ 21 = i 2 Ω c , tot ρ T γ ρ 21 ,
( t + 1 2 Γ ) ρ T = i 1 2 Ω c , tot ρ 21 + i 2 Ω pT ,
( 1 c t + z ) Ω pT = i η Γ ρ T ,
( t + 1 2 Γ ) ρ D = i 2 Ω pD ,
( 1 c t + z ) Ω pD = i η Γ ρ D ,

Metrics