Abstract

A major cause of faults in optical communication links is related to unintentional third party intrusions (normally related to civil/agricultural works) causing fiber breaks or cable damage. These intrusions could be anticipated and avoided by monitoring the dynamic strain recorded along the cable. In this work, a novel technique is proposed to implement real-time distributed strain sensing in parallel with an operating optical communication channel. The technique relies on monitoring the Rayleigh backscattered light from optical communication data transmitted using standard modulation formats. The system is treated as a phase-sensitive OTDR (ΦOTDR) using random and non-periodical non-return-to-zero (NRZ) phase-shift keying (PSK) pulse coding. An I/Q detection unit allows for a full (amplitude, phase and polarization) characterization of the backscattered optical signal, thus achieving a fully linear system in terms of ΦOTDR trace coding/decoding. The technique can be used with different modulation formats, and operation using 4 Gbaud single-polarization dual PSK and 4 Gbaud dual-polarization quadrature PSK is demonstrated. As a proof of concept, distributed sensing of dynamic strain with a sampling of 125 kHz and a spatial resolution of 2.5 cm (set by the bit size) over 500 m is demonstrated for applied sinusoidal strain signals of 500 Hz. The limitations and possibilities for improvement of the technique are also discussed.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez
Opt. Express 24(12) 13121-13133 (2016)

Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry

Xin Lu, Marcelo A. Soto, and Luc Thévenaz
Opt. Express 25(14) 16059-16071 (2017)

High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses

Jingdong Zhang, Tao Zhu, Huan Zhou, Shihong Huang, Min Liu, and Wei Huang
Opt. Express 24(24) 27482-27493 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
    [Crossref] [PubMed]
  2. G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
    [Crossref]
  3. M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
    [Crossref] [PubMed]
  4. S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE 8421, 84211J (2012).
    [Crossref]
  5. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).
    [Crossref] [PubMed]
  6. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
    [Crossref] [PubMed]
  7. X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. Diego Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Raman-assisted brillouin distributed temperature sensor over 100 km Featuring 2 m resolution and 1.2 °C uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
    [Crossref]
  8. M. D. Jones, “Using Simplex codes to improve OTDR Sensitivity,” IEEE Photonics Technol. Lett. 15(7), 822–824 (1993).
    [Crossref]
  9. D. Lee, H. Yoon, P. Kim, J. Park, and N. Park, “Optimization of SNR improvement in the noncoherent OTDR based on simplex codes,” J. Lightwave Technol. 24(1), 322–328 (2006).
    [Crossref]
  10. J. Pastor Graells, H. F. Martins, S. Martin-Lopez, and M. Gonzalez Herraez, “Distributed measurement of vibrations in a ramified fiber structure using phase sensitive optical time domain reflectometry and wavelength routing concepts,” in Advanced Photonics (2014), paper SeW1C.5.
  11. H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. González-Herráez, “Coherent Noise Reduction in High Visibility Phase-Sensitive Optical Time Domain Reflectometer for Distributed Sensing of Ultrasonic Waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
    [Crossref]
  12. Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
    [Crossref]
  13. L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions,” J. Lightwave Technol. 33(17), 3660–3671 (2015).
    [Crossref]
  14. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
    [Crossref]
  15. M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express 23(19), 24923–24936 (2015).
    [Crossref] [PubMed]
  16. H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herraez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
    [Crossref]
  17. H. F. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castanon, O. Frazao, and M. Gonzalez-Herraez, “Distributed Vibration Sensing Over 125 km With Enhanced SNR Using Phi-OTDR Over a URFL Cavity,” J. Lightwave Technol. 33(12), 2628–2632 (2015).
    [Crossref]
  18. Z. N. Wang, J. Li, M. Q. Fan, L. Zhang, F. Peng, H. Wu, J. J. Zeng, Y. Zhou, and Y. J. Rao, “Phase-sensitive optical time-domain reflectometry with Brillouin amplification,” Opt. Lett. 39(15), 4313–4316 (2014).
    [Crossref] [PubMed]
  19. Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39(20), 5866–5869 (2014).
    [Crossref] [PubMed]
  20. F. Peng, H. Wu, X. H. Jia, Y. J. Rao, Z. N. Wang, and Z. P. Peng, “Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines,” Opt. Express 22(11), 13804–13810 (2014).
    [Crossref] [PubMed]
  21. A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
    [Crossref]
  22. Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, and Y. Rao, “Coherent Φ-OTDR based on I/Q demodulation and homodyne detection,” Opt. Express 24(2), 853–858 (2016).
    [Crossref] [PubMed]
  23. G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Phi-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
    [Crossref]
  24. Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A Cost-Effective Distributed Acoustic Sensor Using a Commercial Off-the-Shelf DFB Laser and Direct Detection Phase-OTDR,” IEEE Photonics J. 8(1), 1–10 (2016).
    [Crossref]
  25. Y. Takushima and Y. C. Chung, “Optical reflectometry based on correlation detection and its application to the in-service monitoring of WDM passive optical network,” Opt. Express 15(9), 5318–5326 (2007).
    [Crossref] [PubMed]
  26. K. Shi and B. C. Thomsen, “Sparse Adaptive Frequency Domain Equalizers for Mode-Group Division Multiplexing,” J. Lightwave Technol. 33(2), 311–317 (2015).
    [Crossref]

2016 (2)

Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, and Y. Rao, “Coherent Φ-OTDR based on I/Q demodulation and homodyne detection,” Opt. Express 24(2), 853–858 (2016).
[Crossref] [PubMed]

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A Cost-Effective Distributed Acoustic Sensor Using a Commercial Off-the-Shelf DFB Laser and Direct Detection Phase-OTDR,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

2015 (5)

2014 (4)

2013 (2)

2012 (4)

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE 8421, 84211J (2012).
[Crossref]

X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. Diego Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Raman-assisted brillouin distributed temperature sensor over 100 km Featuring 2 m resolution and 1.2 °C uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
[Crossref]

2011 (1)

2010 (2)

2009 (1)

2007 (2)

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

Y. Takushima and Y. C. Chung, “Optical reflectometry based on correlation detection and its application to the in-service monitoring of WDM passive optical network,” Opt. Express 15(9), 5318–5326 (2007).
[Crossref] [PubMed]

2006 (1)

1993 (1)

M. D. Jones, “Using Simplex codes to improve OTDR Sensitivity,” IEEE Photonics Technol. Lett. 15(7), 822–824 (1993).
[Crossref]

Angulo-Vinuesa, X.

Ania-Castanon, J. D.

Bao, X.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

Baronti, F.

Belal, M.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Bisyarin, M. A.

Bolognini, G.

Chen, L.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

Chung, Y. C.

Corredera, P.

Di Pasquale, F.

Diego Ania-Castañon, J.

Fan, M.

Fan, M. Q.

Faralli, S.

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A Cost-Effective Distributed Acoustic Sensor Using a Commercial Off-the-Shelf DFB Laser and Direct Detection Phase-OTDR,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

Filograno, M. L.

Frazao, O.

Frazão, O.

Gonzalez-Herraez, M.

González-Herráez, M.

Hartog, A. H.

Hogari, K.

Imahama, M.

Jia, X. H.

Jones, M. D.

M. D. Jones, “Using Simplex codes to improve OTDR Sensitivity,” IEEE Photonics Technol. Lett. 15(7), 822–824 (1993).
[Crossref]

Kim, P.

Kotov, O. I.

Koyamada, Y.

Kubota, K.

Lazzeri, A.

Le Floch, S.

S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE 8421, 84211J (2012).
[Crossref]

Lee, D.

Li, J.

Liokumovich, L. B.

Lu, X.

Martin-Lopez, S.

Martins, H. F.

Masoudi, A.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Muanenda, Y.

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A Cost-Effective Distributed Acoustic Sensor Using a Commercial Off-the-Shelf DFB Laser and Direct Detection Phase-OTDR,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

Nakarmi, B.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Phi-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Nannipieri, T.

Newson, T. P.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Nuño, J.

Oton, C. J.

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A Cost-Effective Distributed Acoustic Sensor Using a Commercial Off-the-Shelf DFB Laser and Direct Detection Phase-OTDR,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

Park, J.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

D. Lee, H. Yoon, P. Kim, J. Park, and N. Park, “Optimization of SNR improvement in the noncoherent OTDR based on simplex codes,” J. Lightwave Technol. 24(1), 322–328 (2006).
[Crossref]

Park, N.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

D. Lee, H. Yoon, P. Kim, J. Park, and N. Park, “Optimization of SNR improvement in the noncoherent OTDR based on simplex codes,” J. Lightwave Technol. 24(1), 322–328 (2006).
[Crossref]

Peng, F.

Peng, Z. P.

Qian, X.

Qin, Z.

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

Rao, J.

Rao, Y.

Rao, Y. J.

Roncella, R.

Sauser, F.

S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE 8421, 84211J (2012).
[Crossref]

Shi, K.

Signorini, A.

Soto, M. A.

Sun, W.

Takushima, Y.

Thévenaz, L.

Thomsen, B. C.

Tu, G.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Phi-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Ushakov, N. A.

Wang, S.

Wang, Z.

Wang, Z. N.

Wu, H.

Xia, L.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Phi-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Xue, N.

Yoon, H.

Zeng, J. J.

Zhang, L.

Zhang, X.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Phi-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Zhang, Y.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Phi-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Zhou, Y.

Zhu, F.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Phi-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

IEEE Photonics J. (1)

Y. Muanenda, C. J. Oton, S. Faralli, and F. Di Pasquale, “A Cost-Effective Distributed Acoustic Sensor Using a Commercial Off-the-Shelf DFB Laser and Direct Detection Phase-OTDR,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Phi-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

M. D. Jones, “Using Simplex codes to improve OTDR Sensitivity,” IEEE Photonics Technol. Lett. 15(7), 822–824 (1993).
[Crossref]

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

J. Lightwave Technol. (8)

L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions,” J. Lightwave Technol. 33(17), 3660–3671 (2015).
[Crossref]

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
[Crossref]

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herraez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
[Crossref]

H. F. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castanon, O. Frazao, and M. Gonzalez-Herraez, “Distributed Vibration Sensing Over 125 km With Enhanced SNR Using Phi-OTDR Over a URFL Cavity,” J. Lightwave Technol. 33(12), 2628–2632 (2015).
[Crossref]

D. Lee, H. Yoon, P. Kim, J. Park, and N. Park, “Optimization of SNR improvement in the noncoherent OTDR based on simplex codes,” J. Lightwave Technol. 24(1), 322–328 (2006).
[Crossref]

X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. Diego Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Raman-assisted brillouin distributed temperature sensor over 100 km Featuring 2 m resolution and 1.2 °C uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
[Crossref]

K. Shi and B. C. Thomsen, “Sparse Adaptive Frequency Domain Equalizers for Mode-Group Division Multiplexing,” J. Lightwave Technol. 33(2), 311–317 (2015).
[Crossref]

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. González-Herráez, “Coherent Noise Reduction in High Visibility Phase-Sensitive Optical Time Domain Reflectometer for Distributed Sensing of Ultrasonic Waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
[Crossref]

Meas. Sci. Technol. (2)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Proc. SPIE (1)

S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE 8421, 84211J (2012).
[Crossref]

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Other (1)

J. Pastor Graells, H. F. Martins, S. Martin-Lopez, and M. Gonzalez Herraez, “Distributed measurement of vibrations in a ramified fiber structure using phase sensitive optical time domain reflectometry and wavelength routing concepts,” in Advanced Photonics (2014), paper SeW1C.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup: Acronyms are explained in the text.
Fig. 2
Fig. 2 Optical Power of ΦOTDR decoded signal along the fiber launching single polarization BPSK data. (a) Signal detected on the x polarization. (b) Signal detected on the y polarization. (c)Zoom of superposition of x and y polarization signals (d)Sum of x and y polarization signals.
Fig. 3
Fig. 3 Phase variation recovered around the location of the PZT, comparing two fiber measurements where the PZT was strained and unstrained.
Fig. 4
Fig. 4 (a) Phase variation of the ΦOTDR signal along the fiber when strain is applied in three fiber sections 1,2,3 of length 2.5cm/5cm/2.5cm by a translation stage. (b) Correspondent calculated strain variation along the fiber.
Fig. 5
Fig. 5 Phase variation of the ΦOTDR signal when a 500 Hz strain variation is applied to the fiber sections 1,2,3. (a) Phase variation of different points over time (b) 3D representation of the phase variation along the fiber over time.
Fig. 6
Fig. 6 Optical Power of the ΦOTDR decoded signal along the fiber launching dual polarization QPSK data. Figures show the impulse response of the fiber when data is sent on the x polarization and detected on the (a) x polarization (b) y polarization; data is sent on the y polarization and detected on the (c) x polarization (d) y polarization.
Fig. 7
Fig. 7 Phase variation of the ΦOTDR signal over time for different fiber points when a 500 Hz strain variation is applied to the fiber sections 1,2,3, using the same settings as Fig. 5(a), but using a dual polarization QPSK data format.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

t = 2 n g z c
E ( t ) = m = 1 M E m ( t ) = P 0 e i ω t m = 1 M r m e i ϕ m
E ( t n ) = A 0 e i ϕ 0 r ( t n ) ; n= [ 0,N ]
E ( t n ) = ( A 0 e i ϕ 0 ) r ( t n ) + ( A 1 e i ϕ 1 ) r ( t n + 1 ) ; n= [ 0,N ]
( E ( t 0 ) ... E ( t N ) ) = ( A 0 e i ϕ 0 A 1 e i ϕ 1 ... A N e i ϕ N A 1 e i ϕ 1 A 0 e i ϕ 0 ... ... ... ... ... A 1 e i ϕ 1 A N e i ϕ N ... A 1 e i ϕ 1 A 0 e i ϕ 0 ) ( r ( t 0 ) ... r ( t N ) ) E ( t ) = ( P r ) ( t )
r ( t ) = iFFT( FFT [ E ( t ) ] FFT [ P ( t ) ] )
G = N + 1 2 N 21 dB
ε ( z ) = λ Δ ϕ ( z ) n ( 2 Δ z ) 2 π
Δ ϕ = 2 π 2 L Δ n λ 2 π 2 L ( 10 5 Δ T ) λ

Metrics