Abstract

We introduce a broadly tunable robust source for fingerprint (170 – 1620 cm−1) Raman spectroscopy. A cw thulium-doped fiber laser seeds an optical parametric amplifier, which is pumped by a 7-W, 450-fs Yb:KGW bulk mode-locked oscillator with 41 MHz repetition rate. The output radiation is frequency doubled in a MgO:PPLN crystal and generates 0.7 – 1.3-ps-long narrowband pump pulses that are tunable between 885 and 1015 nm with >80 mW average power. The Stokes beam is delivered by a part of the oscillator output, which is sent through an etalon to create pulses with 1.7 ps duration. We demonstrate a stimulated Raman gain measurement of toluene in the fingerprint spectral range. The cw seeding intrinsically ensures low spectral drift.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy

Mario Chemnitz, Martin Baumgartl, Tobias Meyer, Cesar Jauregui, Benjamin Dietzek, Jürgen Popp, Jens Limpert, and Andreas Tünnermann
Opt. Express 20(24) 26583-26595 (2012)

Coherent anti-Stokes Raman scattering microscopy using a single-pass picosecond supercontinuum-seeded optical parametric amplifier

Chao-Yu Chung, Yen-Yin Lin, Kuo-Yu Wu, Wan-Yu Tai, Shi-Wei Chu, Yao-Chang Lee, Yeukuang Hwu, and Yin-Yu Lee
Opt. Express 18(6) 6116-6122 (2010)

High-energy, near- and mid-IR picosecond pulses generated by a fiber-MOPA-pumped optical parametric generator and amplifier

Lin Xu, Ho-Yin Chan, Shaif-ul Alam, David J. Richardson, and David P. Shepherd
Opt. Express 23(10) 12613-12618 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. J. Tipping, M. Lee, A. Serrels, V. G. Brunton, and A. N. Hulme, “Stimulated Raman scattering microscopy: an emerging tool for drug discovery,” Chem. Soc. Rev. 45(8), 2075–2089 (2016).
    [Crossref] [PubMed]
  2. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
    [Crossref]
  3. Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
    [Crossref]
  4. C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
    [Crossref]
  5. J. Réhault, F. Crisafi, V. Kumar, G. Ciardi, M. Marangoni, G. Cerullo, and D. Polli, “Broadband stimulated Raman scattering with Fourier-transform detection,” Opt. Express 23(19), 25235–25246 (2015).
    [Crossref] [PubMed]
  6. C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
    [Crossref] [PubMed]
  7. I. Pope, W. Langbein, P. Watson, and P. Borri, “Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti:Sa laser,” Opt. Express 21(6), 7096–7106 (2013).
    [Crossref] [PubMed]
  8. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
    [Crossref] [PubMed]
  9. J. Mansfield, J. Moger, E. Green, C. Moger, and C. P. Winlove, “Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering,” J. Biophotonics 6(10), 803–814 (2013).
    [PubMed]
  10. B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009).
    [Crossref] [PubMed]
  11. D. Zhang, M. N. Slipchenko, D. E. Leaird, A. M. Weiner, and J.-X. Cheng, “Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper,” Opt. Express 21(11), 13864–13874 (2013).
    [Crossref] [PubMed]
  12. A. Fast, J. P. Kenison, C. D. Syme, and E. O. Potma, “Surface-enhanced coherent anti-Stokes Raman imaging of lipids,” Appl. Opt. 55(22), 5994–6000 (2016).
    [Crossref] [PubMed]
  13. C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
    [Crossref] [PubMed]
  14. C. Riek, C. Kocher, P. Zirak, C. Kölbl, P. Fimpel, A. Leitenstorfer, A. Zumbusch, and D. Brida, “Stimulated Raman scattering microscopy by Nyquist modulation of a two-branch ultrafast fiber source,” Opt. Lett. 41(16), 3731–3734 (2016).
    [Crossref] [PubMed]
  15. R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett. 35(19), 3282–3284 (2010).
    [Crossref] [PubMed]
  16. T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-free all-solid-state laser system for stimulated Raman scattering microscopy,” Light Sci. Appl. 5, e16149 (2016).
  17. T. Steinle, V. Kumar, A. Steinmann, M. Marangoni, G. Cerullo, and H. Giessen, “Compact, low-noise, all-solid-state laser system for stimulated Raman scattering microscopy,” Opt. Lett. 40(4), 593–596 (2015).
    [Crossref] [PubMed]
  18. F. Mörz, T. Steinle, A. Steinmann, and H. Giessen, “Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz,” Opt. Express 23(18), 23960–23967 (2015).
    [Crossref] [PubMed]
  19. H. Linnenbank and S. Linden, “High repetition rate femtosecond double pass optical parametric generator with more than 2 W tunable output in the NIR,” Opt. Express 22(15), 18072–18077 (2014).
    [Crossref] [PubMed]
  20. B. Köhler, U. Bäder, A. Nebel, J.-P. Meyn, and R. Wallenstein, “A 9.5-W 82-MHz-repetition-rate picosecond optical parametric generator with cw diode laser injection seeding,” Appl. Phys. B 75(1), 31–34 (2002).
    [Crossref]
  21. H. Linnenbank, T. Steinle, and H. Giessen, “Narrowband cw injection seeded high power femtosecond double-pass optical parametric generator at 43 MHz: Gain and noise dynamics,” Opt. Express 24(17), 19558–19566 (2016).
    [Crossref] [PubMed]
  22. J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band,” Opt. Express 23(14), 18269–18276 (2015).
    [Crossref] [PubMed]
  23. A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, “Compact 7.4 W femtosecond oscillator for white-light generation and nonlinear microscopy,” in Proceedings of CLEO 2011 (Optical Society of America, 2011), paper CThAA5.
    [Crossref]
  24. M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band,” Opt. Express 22(17), 20014–20019 (2014).
    [Crossref] [PubMed]
  25. J. Konradi, A. K. Singh, and A. Materny, “Mode-focusing in molecules by feedback-controlled shaping of femtosecond laser pulses,” Phys. Chem. Chem. Phys. 7(20), 3574–3579 (2005).
    [Crossref] [PubMed]
  26. M. A. Marangoni, D. Brida, M. Quintavalle, G. Cirmi, F. M. Pigozzo, C. Manzoni, F. Baronio, A. D. Capobianco, and G. Cerullo, “Narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in second-order nonlinear crystals,” Opt. Express 15(14), 8884–8891 (2007).
    [Crossref] [PubMed]

2016 (5)

2015 (5)

2014 (4)

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

H. Linnenbank and S. Linden, “High repetition rate femtosecond double pass optical parametric generator with more than 2 W tunable output in the NIR,” Opt. Express 22(15), 18072–18077 (2014).
[Crossref] [PubMed]

M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band,” Opt. Express 22(17), 20014–20019 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (1)

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

2010 (2)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett. 35(19), 3282–3284 (2010).
[Crossref] [PubMed]

2009 (2)

2007 (1)

2005 (1)

J. Konradi, A. K. Singh, and A. Materny, “Mode-focusing in molecules by feedback-controlled shaping of femtosecond laser pulses,” Phys. Chem. Chem. Phys. 7(20), 3574–3579 (2005).
[Crossref] [PubMed]

2002 (1)

B. Köhler, U. Bäder, A. Nebel, J.-P. Meyn, and R. Wallenstein, “A 9.5-W 82-MHz-repetition-rate picosecond optical parametric generator with cw diode laser injection seeding,” Appl. Phys. B 75(1), 31–34 (2002).
[Crossref]

Ackermann, C.

Bäder, U.

B. Köhler, U. Bäder, A. Nebel, J.-P. Meyn, and R. Wallenstein, “A 9.5-W 82-MHz-repetition-rate picosecond optical parametric generator with cw diode laser injection seeding,” Appl. Phys. B 75(1), 31–34 (2002).
[Crossref]

Baronio, F.

Borri, P.

Brida, D.

Brunton, V. G.

W. J. Tipping, M. Lee, A. Serrels, V. G. Brunton, and A. N. Hulme, “Stimulated Raman scattering microscopy: an emerging tool for drug discovery,” Chem. Soc. Rev. 45(8), 2075–2089 (2016).
[Crossref] [PubMed]

Camp, C. H.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Capobianco, A. D.

Cerullo, G.

Cheng, J.-X.

Chenug, C. S.

Ciardi, G.

Cicerone, M. T.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Cirmi, G.

Clarkson, W. A.

Crisafi, F.

Daniel, J. M. O.

Fast, A.

Fimpel, P.

Floess, M.

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-free all-solid-state laser system for stimulated Raman scattering microscopy,” Light Sci. Appl. 5, e16149 (2016).

Freudiger, C. W.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009).
[Crossref] [PubMed]

Fukui, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Giessen, H.

Green, E.

J. Mansfield, J. Moger, E. Green, C. Moger, and C. P. Winlove, “Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering,” J. Biophotonics 6(10), 803–814 (2013).
[PubMed]

Hanke, T.

Hartshorn, C. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Hashimoto, H.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Heddleston, J. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Hight Walker, A. R.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Hill, W.

Holtom, G. R.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009).
[Crossref] [PubMed]

Hulme, A. N.

W. J. Tipping, M. Lee, A. Serrels, V. G. Brunton, and A. N. Hulme, “Stimulated Raman scattering microscopy: an emerging tool for drug discovery,” Chem. Soc. Rev. 45(8), 2075–2089 (2016).
[Crossref] [PubMed]

Ibsen, M.

Itoh, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Kenison, J. P.

Kieu, K. Q.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Koch, C.

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-free all-solid-state laser system for stimulated Raman scattering microscopy,” Light Sci. Appl. 5, e16149 (2016).

Kocher, C.

Köhler, B.

B. Köhler, U. Bäder, A. Nebel, J.-P. Meyn, and R. Wallenstein, “A 9.5-W 82-MHz-repetition-rate picosecond optical parametric generator with cw diode laser injection seeding,” Appl. Phys. B 75(1), 31–34 (2002).
[Crossref]

Kölbl, C.

Konradi, J.

J. Konradi, A. K. Singh, and A. Materny, “Mode-focusing in molecules by feedback-controlled shaping of femtosecond laser pulses,” Phys. Chem. Chem. Phys. 7(20), 3574–3579 (2005).
[Crossref] [PubMed]

Kovalev, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Krauss, G.

Kumar, V.

Langbein, W.

Lathia, J. D.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Leaird, D. E.

Lee, M.

W. J. Tipping, M. Lee, A. Serrels, V. G. Brunton, and A. N. Hulme, “Stimulated Raman scattering microscopy: an emerging tool for drug discovery,” Chem. Soc. Rev. 45(8), 2075–2089 (2016).
[Crossref] [PubMed]

Lee, Y. J.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Leitenstorfer, A.

Liang, H.

Linden, S.

Linnenbank, H.

Mansfield, J.

J. Mansfield, J. Moger, E. Green, C. Moger, and C. P. Winlove, “Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering,” J. Biophotonics 6(10), 803–814 (2013).
[PubMed]

Manzoni, C.

Marangoni, M.

Marangoni, M. A.

Materny, A.

J. Konradi, A. K. Singh, and A. Materny, “Mode-focusing in molecules by feedback-controlled shaping of femtosecond laser pulses,” Phys. Chem. Chem. Phys. 7(20), 3574–3579 (2005).
[Crossref] [PubMed]

Meyn, J.-P.

B. Köhler, U. Bäder, A. Nebel, J.-P. Meyn, and R. Wallenstein, “A 9.5-W 82-MHz-repetition-rate picosecond optical parametric generator with cw diode laser injection seeding,” Appl. Phys. B 75(1), 31–34 (2002).
[Crossref]

Moger, C.

J. Mansfield, J. Moger, E. Green, C. Moger, and C. P. Winlove, “Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering,” J. Biophotonics 6(10), 803–814 (2013).
[PubMed]

Moger, J.

J. Mansfield, J. Moger, E. Green, C. Moger, and C. P. Winlove, “Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering,” J. Biophotonics 6(10), 803–814 (2013).
[PubMed]

Mörz, F.

Nandakumar, P.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Nebel, A.

B. Köhler, U. Bäder, A. Nebel, J.-P. Meyn, and R. Wallenstein, “A 9.5-W 82-MHz-repetition-rate picosecond optical parametric generator with cw diode laser injection seeding,” Appl. Phys. B 75(1), 31–34 (2002).
[Crossref]

Nishizawa, N.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Otsuka, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Ozeki, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Peyghambarian, N.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Pigozzo, F. M.

Polli, D.

Pope, I.

Potma, E. O.

Quintavalle, M.

Réhault, J.

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Rich, J. N.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Riek, C.

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009).
[Crossref] [PubMed]

Satoh, S.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Sell, A.

Selm, R.

Serrels, A.

W. J. Tipping, M. Lee, A. Serrels, V. G. Brunton, and A. N. Hulme, “Stimulated Raman scattering microscopy: an emerging tool for drug discovery,” Chem. Soc. Rev. 45(8), 2075–2089 (2016).
[Crossref] [PubMed]

Simakov, N.

Singh, A. K.

J. Konradi, A. K. Singh, and A. Materny, “Mode-focusing in molecules by feedback-controlled shaping of femtosecond laser pulses,” Phys. Chem. Chem. Phys. 7(20), 3574–3579 (2005).
[Crossref] [PubMed]

Slipchenko, M. N.

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Steinle, T.

Steinmann, A.

Sumimura, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Syme, C. D.

Tipping, W. J.

W. J. Tipping, M. Lee, A. Serrels, V. G. Brunton, and A. N. Hulme, “Stimulated Raman scattering microscopy: an emerging tool for drug discovery,” Chem. Soc. Rev. 45(8), 2075–2089 (2016).
[Crossref] [PubMed]

Tokurakawa, M.

Umemura, W.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Volkmer, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Wallenstein, R.

B. Köhler, U. Bäder, A. Nebel, J.-P. Meyn, and R. Wallenstein, “A 9.5-W 82-MHz-repetition-rate picosecond optical parametric generator with cw diode laser injection seeding,” Appl. Phys. B 75(1), 31–34 (2002).
[Crossref]

Watson, P.

Wege, C.

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-free all-solid-state laser system for stimulated Raman scattering microscopy,” Light Sci. Appl. 5, e16149 (2016).

Weiner, A. M.

Winlove, C. P.

J. Mansfield, J. Moger, E. Green, C. Moger, and C. P. Winlove, “Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering,” J. Biophotonics 6(10), 803–814 (2013).
[PubMed]

Winterhalder, M.

Xie, X. S.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009).
[Crossref] [PubMed]

Yang, W.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Zhang, D.

Zirak, P.

Zumbusch, A.

Appl. Opt. (1)

Appl. Phys. B (1)

B. Köhler, U. Bäder, A. Nebel, J.-P. Meyn, and R. Wallenstein, “A 9.5-W 82-MHz-repetition-rate picosecond optical parametric generator with cw diode laser injection seeding,” Appl. Phys. B 75(1), 31–34 (2002).
[Crossref]

Chem. Soc. Rev. (1)

W. J. Tipping, M. Lee, A. Serrels, V. G. Brunton, and A. N. Hulme, “Stimulated Raman scattering microscopy: an emerging tool for drug discovery,” Chem. Soc. Rev. 45(8), 2075–2089 (2016).
[Crossref] [PubMed]

J. Biophotonics (1)

J. Mansfield, J. Moger, E. Green, C. Moger, and C. P. Winlove, “Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering,” J. Biophotonics 6(10), 803–814 (2013).
[PubMed]

Light Sci. Appl. (1)

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-free all-solid-state laser system for stimulated Raman scattering microscopy,” Light Sci. Appl. 5, e16149 (2016).

Nat. Photonics (4)

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

New J. Phys. (1)

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Opt. Express (10)

M. A. Marangoni, D. Brida, M. Quintavalle, G. Cirmi, F. M. Pigozzo, C. Manzoni, F. Baronio, A. D. Capobianco, and G. Cerullo, “Narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in second-order nonlinear crystals,” Opt. Express 15(14), 8884–8891 (2007).
[Crossref] [PubMed]

B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009).
[Crossref] [PubMed]

I. Pope, W. Langbein, P. Watson, and P. Borri, “Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti:Sa laser,” Opt. Express 21(6), 7096–7106 (2013).
[Crossref] [PubMed]

D. Zhang, M. N. Slipchenko, D. E. Leaird, A. M. Weiner, and J.-X. Cheng, “Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper,” Opt. Express 21(11), 13864–13874 (2013).
[Crossref] [PubMed]

H. Linnenbank and S. Linden, “High repetition rate femtosecond double pass optical parametric generator with more than 2 W tunable output in the NIR,” Opt. Express 22(15), 18072–18077 (2014).
[Crossref] [PubMed]

M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band,” Opt. Express 22(17), 20014–20019 (2014).
[Crossref] [PubMed]

J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band,” Opt. Express 23(14), 18269–18276 (2015).
[Crossref] [PubMed]

F. Mörz, T. Steinle, A. Steinmann, and H. Giessen, “Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz,” Opt. Express 23(18), 23960–23967 (2015).
[Crossref] [PubMed]

J. Réhault, F. Crisafi, V. Kumar, G. Ciardi, M. Marangoni, G. Cerullo, and D. Polli, “Broadband stimulated Raman scattering with Fourier-transform detection,” Opt. Express 23(19), 25235–25246 (2015).
[Crossref] [PubMed]

H. Linnenbank, T. Steinle, and H. Giessen, “Narrowband cw injection seeded high power femtosecond double-pass optical parametric generator at 43 MHz: Gain and noise dynamics,” Opt. Express 24(17), 19558–19566 (2016).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

J. Konradi, A. K. Singh, and A. Materny, “Mode-focusing in molecules by feedback-controlled shaping of femtosecond laser pulses,” Phys. Chem. Chem. Phys. 7(20), 3574–3579 (2005).
[Crossref] [PubMed]

Science (1)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Other (1)

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, “Compact 7.4 W femtosecond oscillator for white-light generation and nonlinear microscopy,” in Proceedings of CLEO 2011 (Optical Society of America, 2011), paper CThAA5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup of the TDFL seeded double-pass OPA and subsequent SHG. OC: output coupling mirror; BG: blazed grating; TC: triplet collimator; SMF: single mode fiber; PPLN: periodically-poled lithium niobate; PPsLT: periodically-poled stoichiometric lithium tantalate; DM: dichroic mirror; FI: Faraday isolator.

Fig. 2
Fig. 2

(a) Power and spectra of the TDFL seed (top) and double-pass OPA (bottom). The tuning range spans from 1770 – 2030 nm. Figure (b) depicts the long term average output power (top) and spectral (bottom) stability of the OPA taken at 1930 nm over a measurement time of 3 h. The OPA reaches 1.0% rms passive power stability in 3 h, as well as a standard deviation of the central wavelength of 0.33 nm, while the spectral bandwidth varies by 0.177 nm at a FWHM of 14.3 nm.

Fig. 3
Fig. 3

(a) Power and spectra of second harmonic and respective SRS wavenumber using the Yb:KGW oscillator at 1033 nm for the generation of the Stokes beam. The tuning range spans from 885 – 1015 nm. Figure (b) displays the SHG pulse duration and time-bandwidth-product (TBP) as a function of wavelength. The inset in (b) shows exemplarily the autocorrelation trace at a central SHG wavelength of 920 nm.

Fig. 4
Fig. 4

(a) Schematic diagram of the experimental SRS setup. The output of the TDFL seeded double-pass OPA is frequency-doubled and used as the pump beam, while the Yb:KGW oscillator delivers the Stokes beam. AOM: acousto-optic modulator; DM: dichroic mirror; LP: long-pass filter; Si-PD: amplified silicon photo diode. (b) Measured SRG spectrum of toluene with reference data in the fingerprint region (400 – 1550 cm−1). The inset in (b) shows the SRG signal stability measurement taken at the maximum SRG peak at 1003 cm−1 over 60 min.

Metrics