Abstract

We propose a mechanism to actively tune optical bistable behavior with the external magnetic field in nonlinear coated nanospheres with a magneto-optical (MO) shell and nonlinear metallic core. We show that such nanostructures can exhibit typical bistable phenomena near surface plasmon resonant wavelengths, which can be modified through the external magnetic fields B. We demonstrate numerically that the optical bistability exists only when the volume fraction η of the metallic core is larger than a critical one ηc. Moreover, the bistable behavior is found to be dependent on the incident polarization state as well as the external magnetic field. The application of an external magnetic field does not only increase (or decrease) the upper/lower threshold fields but also changes the critical volume fractions. Such nanostructures with magneto-controllable optical bistability may be designed for us as nonlinear optical nanodevices, such as optical nanoswitches, nanosensors and so on.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Strong circular dichroism of core-shell magnetoplasmonic nanoparticles

Paris Varytis, Nikolaos Stefanou, Aristi Christofi, and Nikolaos Papanikolaou
J. Opt. Soc. Am. B 32(6) 1063-1069 (2015)

Enhanced nonlinear optical response of core–shell graphene-wrapped spherical nanoparticles

Tayebeh Naseri and Mohsen Balaei
J. Opt. Soc. Am. B 35(9) 2278-2285 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shen, “Recent advances in optical bistability,” Nature 299(5886), 779–780 (1982).
    [Crossref]
  2. K. M. Leung, “Optical bistability in the scattering and absorption of light from nonlinear microparticles,” Phys. Rev. A Gen. Phys. 33(4), 2461–2464 (1986).
    [Crossref] [PubMed]
  3. R. Neuendorf, M. Quinten, and U. Kreibig, “Optical bistability of small heterogeneous clusters,” J. Chem. Phys. 104(16), 6348–6354 (1996).
    [Crossref]
  4. D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
    [Crossref] [PubMed]
  5. C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
    [Crossref] [PubMed]
  6. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
    [Crossref] [PubMed]
  7. Y. Huang, A. E. Miroshnichenko, and L. Gao, “Low-threshold optical bistability of graphene-wrapped dielectric composite,” Sci. Rep. 6, 23354 (2016).
    [Crossref] [PubMed]
  8. D. J. Bergman, O. Levy, and D. Stroud, “Theory of optical bistability in a weakly nonlinear composite medium,” Phys. Rev. B Condens. Matter 49(1), 129–134 (1994).
    [Crossref] [PubMed]
  9. L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6 Pt 2), 066601 (2003).
    [Crossref] [PubMed]
  10. L. Gao, “Optical bistability in composite media with nonlinear coated inclusions,” Phys. Lett. A 318(1–2), 119–125 (2003).
    [Crossref]
  11. R. E. Noskov, P. A. Belov, and Y. S. Kivshar, “Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays,” Phys. Rev. Lett. 108(9), 093901 (2012).
    [Crossref] [PubMed]
  12. Y. Huang and L. Gao, “Tunable Fano resonances and enhanced optical bistability in composites of coated cylinders due to nonlocality,” Phys. Rev. B 93(23), 235439 (2016).
    [Crossref]
  13. A. R. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111(25), 257401 (2013).
    [Crossref] [PubMed]
  14. G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magneto-plasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
    [Crossref]
  15. W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Phys. Rev. Lett. 111(21), 215504 (2013).
    [Crossref] [PubMed]
  16. W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering,” J. Opt. Soc. Am. A 31(9), 1969–1976 (2014).
    [Crossref] [PubMed]
  17. D. G. Baranov, A. P. Vinogradov, A. A. Lisyansky, Y. M. Strelniker, and D. J. Bergman, “Magneto-optical spaser,” Opt. Lett. 38(12), 2002–2004 (2013).
    [Crossref] [PubMed]
  18. P. Varytis, N. Stefanou, A. Christofi, and N. Papanikolaou, “Strong circular dichroism of core-shell magnetoplasmonic nanoparticles,” J. Opt. Soc. Am. B 32(6), 1063–1069 (2015).
    [Crossref]
  19. P. Varytis and N. Stefanou, “Plasmon-driven large Hall photon currents in light scattering by a core–shell magnetoplasmonic nanosphere,” J. Opt. Soc. Am. B 33(6), 1286–1290 (2016).
    [Crossref]
  20. P. Varytis, P. A. Pantazopoulos, and N. Stefanou, “Enhanced Faraday rotation by crystals of core-shell magnetoplasmonic nanoparticles,” Phys. Rev. B 93(21), 214423 (2016).
    [Crossref]
  21. M. Abe and T. Suwa, “Surface plasmon resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles,” Phys. Rev. B 70(23), 235103 (2004).
    [Crossref]
  22. H. Uchida, Y. Masuda, R. Fujikawa, A. V. Baryshev, and M. Inoue, “Large enhancement of Faraday rotation by localized surface plasmon resonance in Au nanoparticles embedded in Bi:YIG film,” J. Magn. Magn. Mater. 321(7), 843–845 (2009).
    [Crossref]
  23. L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
    [Crossref] [PubMed]
  24. L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, in Electrodynamics of Continuous Media, Course of Theoretical Physics Vol. 8 (Butterworth-Heinemann, 1984), 2nd ed.
  25. D. G. Baranov, A. P. Vinogradov, and A. A. Lisyansky, “Magneto-optics enhancement with gain-assisted plasmonic subdifraction chains,” J. Opt. Soc. Am. B 32(2), 281–289 (2015).
    [Crossref]
  26. H. L. Chen, D. L. Gao, and L. Gao, “Effective nonlinear optical properties and optical bistability in composite media containing spherical particles with different sizes,” Opt. Express 24(5), 5334–5345 (2016).
    [Crossref]
  27. H. Chen, Y. Zhang, B. Zhang, and L. Gao, “Optical bistability in a nonlinear-shell-coated metallic nanoparticle,” Sci. Rep. 6, 21741 (2016).
    [Crossref] [PubMed]
  28. N. Lapshina, R. Noskov, and Y. Kivshar, “Nanoradar based on nonlinear dimer nanoantenna,” Opt. Lett. 37(18), 3921–3923 (2012).
    [Crossref] [PubMed]
  29. V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98(7), 077401 (2007).
    [Crossref] [PubMed]

2016 (6)

Y. Huang, A. E. Miroshnichenko, and L. Gao, “Low-threshold optical bistability of graphene-wrapped dielectric composite,” Sci. Rep. 6, 23354 (2016).
[Crossref] [PubMed]

Y. Huang and L. Gao, “Tunable Fano resonances and enhanced optical bistability in composites of coated cylinders due to nonlocality,” Phys. Rev. B 93(23), 235439 (2016).
[Crossref]

P. Varytis and N. Stefanou, “Plasmon-driven large Hall photon currents in light scattering by a core–shell magnetoplasmonic nanosphere,” J. Opt. Soc. Am. B 33(6), 1286–1290 (2016).
[Crossref]

P. Varytis, P. A. Pantazopoulos, and N. Stefanou, “Enhanced Faraday rotation by crystals of core-shell magnetoplasmonic nanoparticles,” Phys. Rev. B 93(21), 214423 (2016).
[Crossref]

H. L. Chen, D. L. Gao, and L. Gao, “Effective nonlinear optical properties and optical bistability in composite media containing spherical particles with different sizes,” Opt. Express 24(5), 5334–5345 (2016).
[Crossref]

H. Chen, Y. Zhang, B. Zhang, and L. Gao, “Optical bistability in a nonlinear-shell-coated metallic nanoparticle,” Sci. Rep. 6, 21741 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (1)

2013 (4)

D. G. Baranov, A. P. Vinogradov, A. A. Lisyansky, Y. M. Strelniker, and D. J. Bergman, “Magneto-optical spaser,” Opt. Lett. 38(12), 2002–2004 (2013).
[Crossref] [PubMed]

A. R. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111(25), 257401 (2013).
[Crossref] [PubMed]

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magneto-plasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Phys. Rev. Lett. 111(21), 215504 (2013).
[Crossref] [PubMed]

2012 (3)

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref] [PubMed]

R. E. Noskov, P. A. Belov, and Y. S. Kivshar, “Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays,” Phys. Rev. Lett. 108(9), 093901 (2012).
[Crossref] [PubMed]

N. Lapshina, R. Noskov, and Y. Kivshar, “Nanoradar based on nonlinear dimer nanoantenna,” Opt. Lett. 37(18), 3921–3923 (2012).
[Crossref] [PubMed]

2011 (1)

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[Crossref] [PubMed]

2009 (1)

H. Uchida, Y. Masuda, R. Fujikawa, A. V. Baryshev, and M. Inoue, “Large enhancement of Faraday rotation by localized surface plasmon resonance in Au nanoparticles embedded in Bi:YIG film,” J. Magn. Magn. Mater. 321(7), 843–845 (2009).
[Crossref]

2007 (1)

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98(7), 077401 (2007).
[Crossref] [PubMed]

2004 (2)

M. Abe and T. Suwa, “Surface plasmon resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles,” Phys. Rev. B 70(23), 235103 (2004).
[Crossref]

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
[Crossref] [PubMed]

2003 (3)

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6 Pt 2), 066601 (2003).
[Crossref] [PubMed]

L. Gao, “Optical bistability in composite media with nonlinear coated inclusions,” Phys. Lett. A 318(1–2), 119–125 (2003).
[Crossref]

1996 (1)

R. Neuendorf, M. Quinten, and U. Kreibig, “Optical bistability of small heterogeneous clusters,” J. Chem. Phys. 104(16), 6348–6354 (1996).
[Crossref]

1994 (1)

D. J. Bergman, O. Levy, and D. Stroud, “Theory of optical bistability in a weakly nonlinear composite medium,” Phys. Rev. B Condens. Matter 49(1), 129–134 (1994).
[Crossref] [PubMed]

1986 (1)

K. M. Leung, “Optical bistability in the scattering and absorption of light from nonlinear microparticles,” Phys. Rev. A Gen. Phys. 33(4), 2461–2464 (1986).
[Crossref] [PubMed]

1982 (1)

Y. R. Shen, “Recent advances in optical bistability,” Nature 299(5886), 779–780 (1982).
[Crossref]

Abe, M.

M. Abe and T. Suwa, “Surface plasmon resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles,” Phys. Rev. B 70(23), 235103 (2004).
[Crossref]

Akimov, A. V.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Almeida, V. R.

Alù, A.

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref] [PubMed]

Argyropoulos, C.

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref] [PubMed]

Armelles, G.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magneto-plasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

Baranov, D. G.

Baryshev, A. V.

H. Uchida, Y. Masuda, R. Fujikawa, A. V. Baryshev, and M. Inoue, “Large enhancement of Faraday rotation by localized surface plasmon resonance in Au nanoparticles embedded in Bi:YIG film,” J. Magn. Magn. Mater. 321(7), 843–845 (2009).
[Crossref]

Belotelov, V. I.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98(7), 077401 (2007).
[Crossref] [PubMed]

Belov, P. A.

R. E. Noskov, P. A. Belov, and Y. S. Kivshar, “Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays,” Phys. Rev. Lett. 108(9), 093901 (2012).
[Crossref] [PubMed]

Bergman, D. J.

D. G. Baranov, A. P. Vinogradov, A. A. Lisyansky, Y. M. Strelniker, and D. J. Bergman, “Magneto-optical spaser,” Opt. Lett. 38(12), 2002–2004 (2013).
[Crossref] [PubMed]

D. J. Bergman, O. Levy, and D. Stroud, “Theory of optical bistability in a weakly nonlinear composite medium,” Phys. Rev. B Condens. Matter 49(1), 129–134 (1994).
[Crossref] [PubMed]

Carpenter, E. E.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[Crossref] [PubMed]

Carroll, K. J.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[Crossref] [PubMed]

Cebollada, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magneto-plasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

Chen, H.

H. Chen, Y. Zhang, B. Zhang, and L. Gao, “Optical bistability in a nonlinear-shell-coated metallic nanoparticle,” Sci. Rep. 6, 21741 (2016).
[Crossref] [PubMed]

Chen, H. L.

Chen, P. Y.

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref] [PubMed]

Christofi, A.

Clavero, C.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[Crossref] [PubMed]

D’Aguanno, G.

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref] [PubMed]

Davoyan, A. R.

A. R. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111(25), 257401 (2013).
[Crossref] [PubMed]

Dijkhuis, J. I.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Doskolovich, L. L.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98(7), 077401 (2007).
[Crossref] [PubMed]

Engheta, N.

A. R. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111(25), 257401 (2013).
[Crossref] [PubMed]

Farina, C.

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering,” J. Opt. Soc. Am. A 31(9), 1969–1976 (2014).
[Crossref] [PubMed]

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Phys. Rev. Lett. 111(21), 215504 (2013).
[Crossref] [PubMed]

Fujikawa, R.

H. Uchida, Y. Masuda, R. Fujikawa, A. V. Baryshev, and M. Inoue, “Large enhancement of Faraday rotation by localized surface plasmon resonance in Au nanoparticles embedded in Bi:YIG film,” J. Magn. Magn. Mater. 321(7), 843–845 (2009).
[Crossref]

Gao, D. L.

Gao, L.

Y. Huang and L. Gao, “Tunable Fano resonances and enhanced optical bistability in composites of coated cylinders due to nonlocality,” Phys. Rev. B 93(23), 235439 (2016).
[Crossref]

H. L. Chen, D. L. Gao, and L. Gao, “Effective nonlinear optical properties and optical bistability in composite media containing spherical particles with different sizes,” Opt. Express 24(5), 5334–5345 (2016).
[Crossref]

Y. Huang, A. E. Miroshnichenko, and L. Gao, “Low-threshold optical bistability of graphene-wrapped dielectric composite,” Sci. Rep. 6, 23354 (2016).
[Crossref] [PubMed]

H. Chen, Y. Zhang, B. Zhang, and L. Gao, “Optical bistability in a nonlinear-shell-coated metallic nanoparticle,” Sci. Rep. 6, 21741 (2016).
[Crossref] [PubMed]

L. Gao, “Optical bistability in composite media with nonlinear coated inclusions,” Phys. Lett. A 318(1–2), 119–125 (2003).
[Crossref]

L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6 Pt 2), 066601 (2003).
[Crossref] [PubMed]

García-Martín, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magneto-plasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

Golubev, V. G.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

González, M. U.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magneto-plasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

Gu, D.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[Crossref] [PubMed]

Gu, L.

L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6 Pt 2), 066601 (2003).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, A. E. Miroshnichenko, and L. Gao, “Low-threshold optical bistability of graphene-wrapped dielectric composite,” Sci. Rep. 6, 23354 (2016).
[Crossref] [PubMed]

Y. Huang and L. Gao, “Tunable Fano resonances and enhanced optical bistability in composites of coated cylinders due to nonlocality,” Phys. Rev. B 93(23), 235439 (2016).
[Crossref]

Huba, Z.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[Crossref] [PubMed]

Inoue, M.

H. Uchida, Y. Masuda, R. Fujikawa, A. V. Baryshev, and M. Inoue, “Large enhancement of Faraday rotation by localized surface plasmon resonance in Au nanoparticles embedded in Bi:YIG film,” J. Magn. Magn. Mater. 321(7), 843–845 (2009).
[Crossref]

Kerst, R.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Kivshar, Y.

Kivshar, Y. S.

R. E. Noskov, P. A. Belov, and Y. S. Kivshar, “Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays,” Phys. Rev. Lett. 108(9), 093901 (2012).
[Crossref] [PubMed]

Kort-Kamp, W. J. M.

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering,” J. Opt. Soc. Am. A 31(9), 1969–1976 (2014).
[Crossref] [PubMed]

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Phys. Rev. Lett. 111(21), 215504 (2013).
[Crossref] [PubMed]

Kreibig, U.

R. Neuendorf, M. Quinten, and U. Kreibig, “Optical bistability of small heterogeneous clusters,” J. Chem. Phys. 104(16), 6348–6354 (1996).
[Crossref]

Kurdyukov, D. A.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Lapshina, N.

Leung, K. M.

K. M. Leung, “Optical bistability in the scattering and absorption of light from nonlinear microparticles,” Phys. Rev. A Gen. Phys. 33(4), 2461–2464 (1986).
[Crossref] [PubMed]

Levy, O.

D. J. Bergman, O. Levy, and D. Stroud, “Theory of optical bistability in a weakly nonlinear composite medium,” Phys. Rev. B Condens. Matter 49(1), 129–134 (1994).
[Crossref] [PubMed]

Li, Z.

L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6 Pt 2), 066601 (2003).
[Crossref] [PubMed]

Lipson, M.

Lisyansky, A. A.

Lukaszew, R. A.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[Crossref] [PubMed]

Masuda, Y.

H. Uchida, Y. Masuda, R. Fujikawa, A. V. Baryshev, and M. Inoue, “Large enhancement of Faraday rotation by localized surface plasmon resonance in Au nanoparticles embedded in Bi:YIG film,” J. Magn. Magn. Mater. 321(7), 843–845 (2009).
[Crossref]

Mazurenko, D. A.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Miroshnichenko, A. E.

Y. Huang, A. E. Miroshnichenko, and L. Gao, “Low-threshold optical bistability of graphene-wrapped dielectric composite,” Sci. Rep. 6, 23354 (2016).
[Crossref] [PubMed]

Monticone, F.

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref] [PubMed]

Neuendorf, R.

R. Neuendorf, M. Quinten, and U. Kreibig, “Optical bistability of small heterogeneous clusters,” J. Chem. Phys. 104(16), 6348–6354 (1996).
[Crossref]

Noskov, R.

Noskov, R. E.

R. E. Noskov, P. A. Belov, and Y. S. Kivshar, “Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays,” Phys. Rev. Lett. 108(9), 093901 (2012).
[Crossref] [PubMed]

Pantazopoulos, P. A.

P. Varytis, P. A. Pantazopoulos, and N. Stefanou, “Enhanced Faraday rotation by crystals of core-shell magnetoplasmonic nanoparticles,” Phys. Rev. B 93(21), 214423 (2016).
[Crossref]

Papanikolaou, N.

Pevtsov, A. B.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Pinheiro, F. A.

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering,” J. Opt. Soc. Am. A 31(9), 1969–1976 (2014).
[Crossref] [PubMed]

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Phys. Rev. Lett. 111(21), 215504 (2013).
[Crossref] [PubMed]

Quinten, M.

R. Neuendorf, M. Quinten, and U. Kreibig, “Optical bistability of small heterogeneous clusters,” J. Chem. Phys. 104(16), 6348–6354 (1996).
[Crossref]

Rosa, F. S. S.

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering,” J. Opt. Soc. Am. A 31(9), 1969–1976 (2014).
[Crossref] [PubMed]

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Phys. Rev. Lett. 111(21), 215504 (2013).
[Crossref] [PubMed]

Sel’kin, A. V.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Shen, Y. R.

Y. R. Shen, “Recent advances in optical bistability,” Nature 299(5886), 779–780 (1982).
[Crossref]

Stefanou, N.

Strelniker, Y. M.

Stroud, D.

D. J. Bergman, O. Levy, and D. Stroud, “Theory of optical bistability in a weakly nonlinear composite medium,” Phys. Rev. B Condens. Matter 49(1), 129–134 (1994).
[Crossref] [PubMed]

Suwa, T.

M. Abe and T. Suwa, “Surface plasmon resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles,” Phys. Rev. B 70(23), 235103 (2004).
[Crossref]

Uchida, H.

H. Uchida, Y. Masuda, R. Fujikawa, A. V. Baryshev, and M. Inoue, “Large enhancement of Faraday rotation by localized surface plasmon resonance in Au nanoparticles embedded in Bi:YIG film,” J. Magn. Magn. Mater. 321(7), 843–845 (2009).
[Crossref]

Varytis, P.

Vinogradov, A. P.

Wang, L.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[Crossref] [PubMed]

Zhang, B.

H. Chen, Y. Zhang, B. Zhang, and L. Gao, “Optical bistability in a nonlinear-shell-coated metallic nanoparticle,” Sci. Rep. 6, 21741 (2016).
[Crossref] [PubMed]

Zhang, Y.

H. Chen, Y. Zhang, B. Zhang, and L. Gao, “Optical bistability in a nonlinear-shell-coated metallic nanoparticle,” Sci. Rep. 6, 21741 (2016).
[Crossref] [PubMed]

Zvezdin, A. K.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98(7), 077401 (2007).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magneto-plasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

J. Chem. Phys. (1)

R. Neuendorf, M. Quinten, and U. Kreibig, “Optical bistability of small heterogeneous clusters,” J. Chem. Phys. 104(16), 6348–6354 (1996).
[Crossref]

J. Magn. Magn. Mater. (1)

H. Uchida, Y. Masuda, R. Fujikawa, A. V. Baryshev, and M. Inoue, “Large enhancement of Faraday rotation by localized surface plasmon resonance in Au nanoparticles embedded in Bi:YIG film,” J. Magn. Magn. Mater. 321(7), 843–845 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

Nano Lett. (1)

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11(3), 1237–1240 (2011).
[Crossref] [PubMed]

Nature (1)

Y. R. Shen, “Recent advances in optical bistability,” Nature 299(5886), 779–780 (1982).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Lett. A (1)

L. Gao, “Optical bistability in composite media with nonlinear coated inclusions,” Phys. Lett. A 318(1–2), 119–125 (2003).
[Crossref]

Phys. Rev. A Gen. Phys. (1)

K. M. Leung, “Optical bistability in the scattering and absorption of light from nonlinear microparticles,” Phys. Rev. A Gen. Phys. 33(4), 2461–2464 (1986).
[Crossref] [PubMed]

Phys. Rev. B (3)

Y. Huang and L. Gao, “Tunable Fano resonances and enhanced optical bistability in composites of coated cylinders due to nonlocality,” Phys. Rev. B 93(23), 235439 (2016).
[Crossref]

P. Varytis, P. A. Pantazopoulos, and N. Stefanou, “Enhanced Faraday rotation by crystals of core-shell magnetoplasmonic nanoparticles,” Phys. Rev. B 93(21), 214423 (2016).
[Crossref]

M. Abe and T. Suwa, “Surface plasmon resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles,” Phys. Rev. B 70(23), 235103 (2004).
[Crossref]

Phys. Rev. B Condens. Matter (1)

D. J. Bergman, O. Levy, and D. Stroud, “Theory of optical bistability in a weakly nonlinear composite medium,” Phys. Rev. B Condens. Matter 49(1), 129–134 (1994).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6 Pt 2), 066601 (2003).
[Crossref] [PubMed]

Phys. Rev. Lett. (6)

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref] [PubMed]

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Phys. Rev. Lett. 111(21), 215504 (2013).
[Crossref] [PubMed]

A. R. Davoyan and N. Engheta, “Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity,” Phys. Rev. Lett. 111(25), 257401 (2013).
[Crossref] [PubMed]

R. E. Noskov, P. A. Belov, and Y. S. Kivshar, “Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays,” Phys. Rev. Lett. 108(9), 093901 (2012).
[Crossref] [PubMed]

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98(7), 077401 (2007).
[Crossref] [PubMed]

Sci. Rep. (2)

H. Chen, Y. Zhang, B. Zhang, and L. Gao, “Optical bistability in a nonlinear-shell-coated metallic nanoparticle,” Sci. Rep. 6, 21741 (2016).
[Crossref] [PubMed]

Y. Huang, A. E. Miroshnichenko, and L. Gao, “Low-threshold optical bistability of graphene-wrapped dielectric composite,” Sci. Rep. 6, 23354 (2016).
[Crossref] [PubMed]

Other (1)

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, in Electrodynamics of Continuous Media, Course of Theoretical Physics Vol. 8 (Butterworth-Heinemann, 1984), 2nd ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Geometry of the scattering system: an isotropic sphere with permittivity ε c and radius r coated by a MO shell with permittivity tensor ε s and outer radius R>r under an external static magnetic field B. The incident plane wave propagating in vacuum with its electric field in the x-y plane impinges on the system parallel to the z-axis.
Fig. 2
Fig. 2 The scattering efficiency versus λ for LCP when (a) R is fixed at 10nm and (b) η is fixed at 0.4.
Fig. 3
Fig. 3 Distribution of the local fields for (a) λ = 430 n m , (b) λ = 400 n m and (c) λ = 450 n m . The relevant parameters are R = 10 n m and η = 0.4 .
Fig. 4
Fig. 4 (a) The local field in nonlinear core E c as a function of the incident field E 0 for various volume fraction η . The incident wavelength λ = 430 n m . (b) the upper and lower threshold fields as a function of η .
Fig. 5
Fig. 5 (a) The field in nonlinear core E c as a function of the incident field E 0 for various g for both LCP and RCP incidence. (b) the thresholds fields E 0 u p p e r and E 0 l o w e r as a function of g . (c) the distribution of the local electric fields in the corresponding linear system for LCP incidence. The other parameters are: λ = 430 n m , R = 10 n m and η = 0.5 .
Fig. 6
Fig. 6 (a) The upper and lower threshold fields as a function of η for various g . (b) The critical fractional volume η c as a function of g when λ = 430 n m and R = 10 n m .

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ε s = ( ε i g 0 i g ε 0 0 0 ε ) ,
E c o r e = A ^ E i ,
E s h e l l = B ^ E i C ^ E i ρ 3 + 3 ( C ^ E i n ) n ρ 3 ,
E o u t = D ^ E i ρ 3 + 3 ( D ^ E i n ) n ρ 3 + E i ,
D c o r e n | r = D s h e l l n | r , E c o r e × n | r = E s h e l l × n | r D s h e l l n | R = D o u t n | R , E s h e l l × n | R = E o u t × n | R
ε c A ^ = ε ( B ^ + 2 C ^ r 3 ) + G ^ ( B ^ C ^ r 3 ) ε ( B ^ + 2 C ^ R 3 ) + G ^ ( B ^ C ^ R 3 ) = 2 D ^ R 3 + I ^ A ^ = B ^ C ^ r 3 B ^ C ^ R 3 = D ^ R 3 + I ^
A ^ = ( a 11 i a 12 0 i a 12 a 11 0 0 0 a 33 ) ,
a 11 = 9 R 3 ε [ g 2 ( r 3 R 3 ) 2 r 3 ( ε 1 ) ( ε ε c ) + R 3 ( ε + 2 ) ( 2 ε + ε c ) ] P + P ,
a 12 = 9 g R 3 ε ( r 3 R 3 ) ( ε + ε c 2 ) P + P ,
a 33 = 9 R 3 ε 2 r 3 ( ε 1 ) ( ε ε c ) + R 3 ( ε + 2 ) ( 2 ε + ε c ) ,
P ± = g 2 ( r 3 R 3 ) 2 r 3 ( ε 1 ) ( ε ε c ) ± g ( r 3 R 3 ) ( ε + ε c 2 ) + R 3 ( ε + 2 ) ( 2 ε + ε c )
D ^ = ( d 11 d 12 0 d 12 d 11 0 0 0 d 33 ) ,
α ± = d 11 ± i d 12 = R 3 [ g 2 ( r 3 R 3 ) r 3 ( 2 ε + 1 ) ( ε ε c ) ± g ( r 3 R 3 ) ( ε + ε c + 1 ) + R 3 ( ε 1 ) ( 2 ε + ε c ) ] P ±
E c o r e = ( a 11 i a 12 0 i a 12 a 11 0 0 0 a 33 ) ( E i x E i y 0 ) = ( a 11 E i x + i a 12 E i y i a 12 E i x + a 11 E i y 0 )
| E c | 2 = E c o r e E c o r e * = ( | a 11 | 2 + | a 12 | 2 ) | E i | 2 + ( a 11 a 12 * + a 12 a 11 * ) ( E i x E i y * E i y E i x * )
| E c | 2 = 2 E 0 2 [ | a 11 | 2 + | a 12 | 2 ( a 11 a 12 * + a 12 a 11 * ) ]
| E c , n o n | 2 = 2 E 0 2 { | a 11 ( ε ˜ c ) | 2 + | a 12 ( ε ˜ c ) | 2 [ a 11 ( ε ˜ c ) a 12 ( ε ˜ c ) * + a 12 ( ε ˜ c ) a 11 ( ε ˜ c ) * ] }

Metrics