Abstract

Brillouin imaging of turbid biological tissues requires an effective rejection of the background noise due to elastic scattering of probe laser light. We have developed a narrowband spectral notch filter based on a pair of a free-space Fabry-Perot etalon and a mirror. The etalon filter in a 4-pass configuration is able to suppress elastically-scattered laser light with a high extinction ratio of > 40 dB and transmit inelastically-scattered light in a frequency shift range of 2–14 GHz with only 2 dB insertion loss. We also describe a simple etalon that enables us to use semiconductor diode laser sources for Brillouin microscopy by removing spontaneous emission noise. Using a clinically-viable Brillouin microscope employing these filters, we demonstrate the first Brillouin confocal imaging of the sclera and conjunctiva of the porcine eye.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy

Giuliano Scarcelli and Seok Hyun Yun
Opt. Express 19(11) 10913-10922 (2011)

Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging

Eitan Edrei, Malte C. Gather, and Giuliano Scarcelli
Opt. Express 25(6) 6895-6903 (2017)

Background clean-up in Brillouin microspectroscopy of scattering medium

Zhaokai Meng, Andrew J. Traverso, and Vladislav V. Yakovlev
Opt. Express 22(5) 5410-5415 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
    [Crossref] [PubMed]
  2. F. Bencivenga, A. Battistoni, D. Fioretto, A. Gessini, J. R. Sandercock, and C. Masciovecchio, “A high resolution ultraviolet Brillouin scattering set-up,” Rev. Sci. Instrum. 83(10), 103102 (2012).
    [Crossref] [PubMed]
  3. F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
    [Crossref] [PubMed]
  4. G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
    [Crossref] [PubMed]
  5. G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
    [Crossref] [PubMed]
  6. G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
    [Crossref] [PubMed]
  7. G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
    [Crossref]
  8. G. E. Devlin, “Absorption of unshifted scattered Light by a molecular I2 filter in Brillouin and Raman Scattering,” Appl. Phys. Lett. 19(138), 138–141 (1971).
  9. P. E. Schoen and D. A. Jackson, “The iodine filter in Raman and Brillouin spectroscopy,” J. Phys. Educ. 5(6), 519–521 (1972).
  10. Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
    [Crossref] [PubMed]
  11. A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
    [Crossref] [PubMed]
  12. A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
    [Crossref] [PubMed]
  13. K. Berghaus, J. Zhang, S. H. Yun, and G. Scarcelli, “High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion,” Opt. Lett. 40(19), 4436–4439 (2015).
    [Crossref] [PubMed]
  14. S. Besner, G. Scarcelli, R. Pineda, and S. H. Yun, “In vivo Brillouin analysis of the aging crystalline lens,” Invest. Ophthalmol. Vis. Sci. (to be published).
  15. G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
    [Crossref] [PubMed]
  16. G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
    [Crossref] [PubMed]
  17. B. Nemati, H. G. Rylander, and A. J. Welch, “Optical properties of conjunctiva, sclera, and the ciliary body and their consequences for transscleral cyclophotocoagulation,” Appl. Opt. 35(19), 3321–3327 (1996).
    [Crossref] [PubMed]
  18. Y. Zhang, Z. Li, L. Liu, X. Han, X. Zhao, and G. Mu, “Comparison of riboflavin/ultraviolet-A cross-linking in porcine, rabbit, and human sclera,” BioMed Res. Int. 2014, 194204 (2014).
    [Crossref] [PubMed]
  19. M. W. Ko, L. K. Leung, D. C. Lam, and C. K. Leung, “Characterization of corneal tangent modulus in vivo,” Acta Ophthalmol. 91(4), e263–e269 (2013).
    [Crossref] [PubMed]

2016 (2)

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

2015 (4)

K. Berghaus, J. Zhang, S. H. Yun, and G. Scarcelli, “High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion,” Opt. Lett. 40(19), 4436–4439 (2015).
[Crossref] [PubMed]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

2014 (3)

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

Y. Zhang, Z. Li, L. Liu, X. Han, X. Zhao, and G. Mu, “Comparison of riboflavin/ultraviolet-A cross-linking in porcine, rabbit, and human sclera,” BioMed Res. Int. 2014, 194204 (2014).
[Crossref] [PubMed]

2013 (1)

M. W. Ko, L. K. Leung, D. C. Lam, and C. K. Leung, “Characterization of corneal tangent modulus in vivo,” Acta Ophthalmol. 91(4), e263–e269 (2013).
[Crossref] [PubMed]

2012 (2)

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

F. Bencivenga, A. Battistoni, D. Fioretto, A. Gessini, J. R. Sandercock, and C. Masciovecchio, “A high resolution ultraviolet Brillouin scattering set-up,” Rev. Sci. Instrum. 83(10), 103102 (2012).
[Crossref] [PubMed]

2011 (3)

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[Crossref] [PubMed]

1996 (1)

1972 (1)

P. E. Schoen and D. A. Jackson, “The iodine filter in Raman and Brillouin spectroscopy,” J. Phys. Educ. 5(6), 519–521 (1972).

1971 (1)

G. E. Devlin, “Absorption of unshifted scattered Light by a molecular I2 filter in Brillouin and Raman Scattering,” Appl. Phys. Lett. 19(138), 138–141 (1971).

Antonacci, G.

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

Barr, H.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Battistoni, A.

F. Bencivenga, A. Battistoni, D. Fioretto, A. Gessini, J. R. Sandercock, and C. Masciovecchio, “A high resolution ultraviolet Brillouin scattering set-up,” Rev. Sci. Instrum. 83(10), 103102 (2012).
[Crossref] [PubMed]

Bencivenga, F.

F. Bencivenga, A. Battistoni, D. Fioretto, A. Gessini, J. R. Sandercock, and C. Masciovecchio, “A high resolution ultraviolet Brillouin scattering set-up,” Rev. Sci. Instrum. 83(10), 103102 (2012).
[Crossref] [PubMed]

Berghaus, K.

Besner, S.

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

S. Besner, G. Scarcelli, R. Pineda, and S. H. Yun, “In vivo Brillouin analysis of the aging crystalline lens,” Invest. Ophthalmol. Vis. Sci. (to be published).

David, A.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Devlin, G. E.

G. E. Devlin, “Absorption of unshifted scattered Light by a molecular I2 filter in Brillouin and Raman Scattering,” Appl. Phys. Lett. 19(138), 138–141 (1971).

Fiore, A.

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

Fioretto, D.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

F. Bencivenga, A. Battistoni, D. Fioretto, A. Gessini, J. R. Sandercock, and C. Masciovecchio, “A high resolution ultraviolet Brillouin scattering set-up,” Rev. Sci. Instrum. 83(10), 103102 (2012).
[Crossref] [PubMed]

Gessini, A.

F. Bencivenga, A. Battistoni, D. Fioretto, A. Gessini, J. R. Sandercock, and C. Masciovecchio, “A high resolution ultraviolet Brillouin scattering set-up,” Rev. Sci. Instrum. 83(10), 103102 (2012).
[Crossref] [PubMed]

Grodzinsky, A. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Han, X.

Y. Zhang, Z. Li, L. Liu, X. Han, X. Zhao, and G. Mu, “Comparison of riboflavin/ultraviolet-A cross-linking in porcine, rabbit, and human sclera,” BioMed Res. Int. 2014, 194204 (2014).
[Crossref] [PubMed]

Jackson, D. A.

P. E. Schoen and D. A. Jackson, “The iodine filter in Raman and Brillouin spectroscopy,” J. Phys. Educ. 5(6), 519–521 (1972).

Kamm, R. D.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Kim, P.

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

Ko, M. W.

M. W. Ko, L. K. Leung, D. C. Lam, and C. K. Leung, “Characterization of corneal tangent modulus in vivo,” Acta Ophthalmol. 91(4), e263–e269 (2013).
[Crossref] [PubMed]

Lam, D. C.

M. W. Ko, L. K. Leung, D. C. Lam, and C. K. Leung, “Characterization of corneal tangent modulus in vivo,” Acta Ophthalmol. 91(4), e263–e269 (2013).
[Crossref] [PubMed]

Lepert, G.

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

Leung, C. K.

M. W. Ko, L. K. Leung, D. C. Lam, and C. K. Leung, “Characterization of corneal tangent modulus in vivo,” Acta Ophthalmol. 91(4), e263–e269 (2013).
[Crossref] [PubMed]

Leung, L. K.

M. W. Ko, L. K. Leung, D. C. Lam, and C. K. Leung, “Characterization of corneal tangent modulus in vivo,” Acta Ophthalmol. 91(4), e263–e269 (2013).
[Crossref] [PubMed]

Li, Z.

Y. Zhang, Z. Li, L. Liu, X. Han, X. Zhao, and G. Mu, “Comparison of riboflavin/ultraviolet-A cross-linking in porcine, rabbit, and human sclera,” BioMed Res. Int. 2014, 194204 (2014).
[Crossref] [PubMed]

Liu, L.

Y. Zhang, Z. Li, L. Liu, X. Han, X. Zhao, and G. Mu, “Comparison of riboflavin/ultraviolet-A cross-linking in porcine, rabbit, and human sclera,” BioMed Res. Int. 2014, 194204 (2014).
[Crossref] [PubMed]

Madami, M.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Masciovecchio, C.

F. Bencivenga, A. Battistoni, D. Fioretto, A. Gessini, J. R. Sandercock, and C. Masciovecchio, “A high resolution ultraviolet Brillouin scattering set-up,” Rev. Sci. Instrum. 83(10), 103102 (2012).
[Crossref] [PubMed]

Meng, Z.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

Mu, G.

Y. Zhang, Z. Li, L. Liu, X. Han, X. Zhao, and G. Mu, “Comparison of riboflavin/ultraviolet-A cross-linking in porcine, rabbit, and human sclera,” BioMed Res. Int. 2014, 194204 (2014).
[Crossref] [PubMed]

Nallala, J.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Nemati, B.

Nia, H. T.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Palombo, F.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Patel, K.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Paterson, C.

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

Pineda, R.

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

S. Besner, G. Scarcelli, R. Pineda, and S. H. Yun, “In vivo Brillouin analysis of the aging crystalline lens,” Invest. Ophthalmol. Vis. Sci. (to be published).

Polacheck, W. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Rylander, H. G.

Sandercock, J. R.

F. Bencivenga, A. Battistoni, D. Fioretto, A. Gessini, J. R. Sandercock, and C. Masciovecchio, “A high resolution ultraviolet Brillouin scattering set-up,” Rev. Sci. Instrum. 83(10), 103102 (2012).
[Crossref] [PubMed]

Scarcelli, G.

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

K. Berghaus, J. Zhang, S. H. Yun, and G. Scarcelli, “High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion,” Opt. Lett. 40(19), 4436–4439 (2015).
[Crossref] [PubMed]

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

S. Besner, G. Scarcelli, R. Pineda, and S. H. Yun, “In vivo Brillouin analysis of the aging crystalline lens,” Invest. Ophthalmol. Vis. Sci. (to be published).

Schoen, P. E.

P. E. Schoen and D. A. Jackson, “The iodine filter in Raman and Brillouin spectroscopy,” J. Phys. Educ. 5(6), 519–521 (1972).

Scully, M. O.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Shao, P.

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

Steelman, Z. A.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Stone, N.

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

Thompson, J. V.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Török, P.

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

Traverso, A. J.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

Welch, A. J.

Yakovlev, V. V.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Z. Meng, A. J. Traverso, and V. V. Yakovlev, “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22(5), 5410–5415 (2014).
[Crossref] [PubMed]

Yun, S. H.

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

K. Berghaus, J. Zhang, S. H. Yun, and G. Scarcelli, “High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion,” Opt. Lett. 40(19), 4436–4439 (2015).
[Crossref] [PubMed]

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19(11), 10913–10922 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

S. Besner, G. Scarcelli, R. Pineda, and S. H. Yun, “In vivo Brillouin analysis of the aging crystalline lens,” Invest. Ophthalmol. Vis. Sci. (to be published).

Zhang, J.

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

K. Berghaus, J. Zhang, S. H. Yun, and G. Scarcelli, “High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion,” Opt. Lett. 40(19), 4436–4439 (2015).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, Z. Li, L. Liu, X. Han, X. Zhao, and G. Mu, “Comparison of riboflavin/ultraviolet-A cross-linking in porcine, rabbit, and human sclera,” BioMed Res. Int. 2014, 194204 (2014).
[Crossref] [PubMed]

Zhao, X.

Y. Zhang, Z. Li, L. Liu, X. Han, X. Zhao, and G. Mu, “Comparison of riboflavin/ultraviolet-A cross-linking in porcine, rabbit, and human sclera,” BioMed Res. Int. 2014, 194204 (2014).
[Crossref] [PubMed]

Acta Ophthalmol. (1)

M. W. Ko, L. K. Leung, D. C. Lam, and C. K. Leung, “Characterization of corneal tangent modulus in vivo,” Acta Ophthalmol. 91(4), e263–e269 (2013).
[Crossref] [PubMed]

Anal. Chem. (1)

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref] [PubMed]

G. Antonacci, G. Lepert, C. Paterson, and P. Török, “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107(6), 061102 (2015).
[Crossref]

G. E. Devlin, “Absorption of unshifted scattered Light by a molecular I2 filter in Brillouin and Raman Scattering,” Appl. Phys. Lett. 19(138), 138–141 (1971).

BioMed Res. Int. (1)

Y. Zhang, Z. Li, L. Liu, X. Han, X. Zhao, and G. Mu, “Comparison of riboflavin/ultraviolet-A cross-linking in porcine, rabbit, and human sclera,” BioMed Res. Int. 2014, 194204 (2014).
[Crossref] [PubMed]

Biophys. J. (2)

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

G. Scarcelli, S. Besner, R. Pineda, and S. H. Yun, “Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy,” Invest. Ophthalmol. Vis. Sci. 55(7), 4490–4495 (2014).
[Crossref] [PubMed]

J. Biophotonics (1)

F. Palombo, M. Madami, D. Fioretto, J. Nallala, H. Barr, A. David, and N. Stone, “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophotonics 9(7), 694–700 (2016).
[Crossref] [PubMed]

J. Phys. Educ. (1)

P. E. Schoen and D. A. Jackson, “The iodine filter in Raman and Brillouin spectroscopy,” J. Phys. Educ. 5(6), 519–521 (1972).

Nat. Methods (1)

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

F. Bencivenga, A. Battistoni, D. Fioretto, A. Gessini, J. R. Sandercock, and C. Masciovecchio, “A high resolution ultraviolet Brillouin scattering set-up,” Rev. Sci. Instrum. 83(10), 103102 (2012).
[Crossref] [PubMed]

Other (1)

S. Besner, G. Scarcelli, R. Pineda, and S. H. Yun, “In vivo Brillouin analysis of the aging crystalline lens,” Invest. Ophthalmol. Vis. Sci. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the Brillouin microscope setup. ISO: optical isolator; WP: half-wavelength wave plate; PMF: polarization maintaining fiber; PD: photodetector; SMF: single mode fiber; PBS: 50/50 polarization beamsplitter; CCD: charge-coupled device camera, and PC: personal computer; FR: Faraday Rotator. (b) Illustration of a transmission band of the cleanup etalon. The laser output frequency, ν0, is tuned and locked to the center frequency of the passband. (c) A schematic of the notch filter made with an etalon paired with a mirror for multiple, frequency-selective reflections by the etalon. (d) Illustration of the transmission spectrum of the notch filter. The signal ranges for frequency-shifted Brillouin light are marked with gray.

Fig. 2
Fig. 2

The spectral extinction (left axis) and throughput (right axis) efficiencies measured as a function of the number of reflection passes in the notch filter.

Fig. 3
Fig. 3

The spectra of the laser output recorded in a 2-stage VIPA spectrometer without (blue circles) and with (orange circles) a 4-pass etalon notch filter with a FSR of 16 GHz. The extinction at the locations (0 and 16 GHz) corresponding to the laser frequency is improved by 40 dB by the filter. The noise floor at –65 dB is due to the spontaneous emission light in the laser output, which is invariant by the narrowband filter rejecting the laser line.

Fig. 4
Fig. 4

Brillouin measurements of lipid emulsion solutions. (a) The magnitude of signal and r.m.s. fluctuation of the background noise. (b) A representative spectral curve obtained with Intralipid 10%. The data were averaged over 5 spectrographs acquired with an integration time of 1 s each.

Fig. 5
Fig. 5

Representative EMCCD readings for scatterd light from the porcine conjunctiva, obtained without, (a), and with, (b), the notch filter. The background noise in (a) is greatly reduced in (b) where the Stokes and anti-Stokes Brillouin peaks (arrows) are clearly seen.

Fig. 6
Fig. 6

Brillouin imaging of scattering tissues. (a) Porcine eye ball sample. The scanned areas (i-iii) are marked. (b) 2D Brillouin frequency shift maps of the (i) cornea, (ii) conjunctiva and (iii) sclera from the eyeball sample. The red dots indicate individual locations, each of which a Brillouin axial profile was acquired and depth-averaged mean frequency shift was computed.

Fig. 7
Fig. 7

Brillouin frequency-shift values of three representative tissue types in the porcine eye (as indicated in Fig. 6), measured at a laser wavelength of 780 nm.

Metrics