Abstract

We introduce broadband waveguide absorbers with near unity absorption. More specifically, we propose a compact non-parity-time-symmetric perfect absorber unit cell, consisting of two metal-dielectric-metal (MDM) stub resonators with unbalanced gain and loss side-coupled to a MDM waveguide, based on unidirectional reflectionlessness at exceptional points. With proper design, light can transport through the perfect absorber unit cell with reflection close to zero in a broad wavelength range. By cascading multiple unit cell structures, the overall absorption spectra are essentially the superposition of the absorption spectra of the individual perfect absorber unit cells, and absorption of ~ 100% is supported in a wide range of frequencies.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points

Yin Huang, Georgios Veronis, and Changjun Min
Opt. Express 23(23) 29882-29895 (2015)

Switching of the direction of reflectionless light propagation at exceptional points in non-PT-symmetric structures using phase-change materials

Yin Huang, Yuecheng Shen, Changjun Min, and Georgios Veronis
Opt. Express 25(22) 27283-27297 (2017)

Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling

Cong Zhang, Ruiping Bai, Xintong Gu, Xing Ri Jin, Ying Qiao Zhang, and YoungPak Lee
Opt. Express 25(20) 24281-24289 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref] [PubMed]
  2. S. Longhi, “PT -symmetric laser absorber,” Phys. Rev. A 82, 031801 (2010).
    [Crossref]
  3. J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photon. 1, 347–353 (2014).
    [Crossref]
  4. R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22, A335–A343 (2014).
    [Crossref] [PubMed]
  5. Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
    [Crossref] [PubMed]
  6. S. Yu, X. Piao, J. Hong, and N. Park, “Progress toward high-Q perfect absorption: a Fano antilaser,” Phys. Rev. A 92, 011802 (2015).
    [Crossref]
  7. L. Huang and H. Chen, “A brief review on terahertz metamaterial perfect absorbers,” Terahertz Sci. Technol. 6, 26–39 (2013).
  8. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  9. J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19, 21155–21162 (2011).
    [Crossref] [PubMed]
  10. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. Luo, A. J. Taylor, and H. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154–156 (2012).
    [Crossref] [PubMed]
  11. C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photon. 3, 590–596 (2016).
    [Crossref]
  12. D. Gagnon, S. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1473–1478 (2008).
    [Crossref]
  13. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009).
    [Crossref] [PubMed]
  14. Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19, 18393–18398 (2011).
    [Crossref] [PubMed]
  15. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT -symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
    [Crossref]
  16. A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).
    [Crossref] [PubMed]
  17. L. Ge, Y. D. Chong, and A. D. Stone, “Conservation relations and anisotropic transmission resonances in one-dimensional PT -symmetric photonic heterostructures,” Phys. Rev. A 85, 023802 (2012).
    [Crossref]
  18. L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
    [Crossref]
  19. A. Mostafazadeh, “Invisibility and PT symmetry,” Phys. Rev. A 87, 012103 (2013).
    [Crossref]
  20. C. Hahn, S. Song, C. Oh, and P. Berini, “Single-mode lasers and parity-time symmetry broken gratings based on active dielectric-loaded long-range surface plasmon polariton waveguides,” Opt. Express 23, 19922–19931 (2015).
    [Crossref] [PubMed]
  21. Y. Fu, Y. Xu, and H. Chen, “Zero index metamaterials with PT symmetry in a waveguide system,” Opt. Express 24, 1648–1657 (2016).
    [Crossref] [PubMed]
  22. A. Manjavacas, “Anisotropic optical response of nanostructures with balanced gain and loss,” ACS Photon. 3, 1301–1307 (2016).
    [Crossref]
  23. X. Yin and X. Zhang, “Unidirectional light propagation at exceptional points,” Nat. Mater. 12, 175–177 (2013).
    [Crossref] [PubMed]
  24. L. Feng, X. Zhu, S. Yang, H. Zhu, P. Zhang, X. Yin, Y. Wang, and X. Zhang, “Demonstration of a large-scale optical exceptional point structure,” Opt. Express 22, 1760–1767 (2014).
    [Crossref] [PubMed]
  25. Y. Shen, X. H. Deng, and L. Chen, “Unidirectional invisibility in a two-layer non-PT -symmetric slab,” Opt. Express 22, 19440–19447 (2014).
    [Crossref] [PubMed]
  26. M. Kang, H. Cui, T. Li, J. Chen, W. Zhu, and M. Premaratne, “Unidirectional phase singularity in ultrathin metamaterials at exceptional points,” Phys. Rev. A 89, 065801 (2014).
    [Crossref]
  27. Y. Huang, G. Veronis, and C. Min, “Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points,” Opt. Express 23, 29882–29895 (2015).
    [Crossref] [PubMed]
  28. E. Yang, Y. Lu, Y. Wang, Y. Dai, and P. Wang, “Unidirectional reflectionless phenomenon in periodic ternary layered material,” Opt. Express 24, 14311–14321 (2016).
    [Crossref] [PubMed]
  29. S. A. R. Horsley, M. Artoni, and G. C. La Rocca, “Spatial Kramer-Kronig relations and the reflection of waves,” Nat. Photonics 9, 436–439 (2015).
    [Crossref]
  30. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
    [Crossref]
  31. F. Nazari, N. Bender, H. Ramezani, M. K. Moravvej-Farshi, D. N. Christodoulides, and T. Kottos, “Optical isolation via PT -symmetric nonlinear Fano resonances,” Opt. Express 22, 9574–9584 (2014).
    [Crossref] [PubMed]
  32. L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
    [Crossref]
  33. K. Wang, Z. Yu, S. Sandhu, and S. Fan, “Fundamental bounds on decay rates in asymmetric single-mode optical resonators,” Opt. Lett. 38, 100–102 (2013).
    [Crossref] [PubMed]
  34. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Sel. Top. Quantum Electron. 35, 1322–1331 (1999).
    [Crossref]
  35. Z. Yu, G. Veronis, and S. Fan, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
    [Crossref]
  36. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
    [Crossref]
  37. L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35, 4184–4186 (2010).
    [Crossref] [PubMed]
  38. Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99, 143117 (2011).
    [Crossref]
  39. G. Cao, H. Li, Y. Deng, S. Zhan, Z. He, and B. Li, “Plasmon-induced transparency in a single multimode stub resonator,” Opt. Express 22, 25215–25223 (2014).
    [Crossref] [PubMed]
  40. Y. Huang, C. Min, P. Dastmalchi, and G. Veronis, “Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors,” Opt. Express 23, 14922–14936 (2015).
    [Crossref] [PubMed]
  41. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
    [Crossref]
  42. Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
    [Crossref] [PubMed]
  43. G. Veronis, R. W. Dutton, and S. Fan, “Method for sensitivity analysis of photonic crystal devices,” Opt. Lett. 29, 2288–2290 (2004).
    [Crossref] [PubMed]
  44. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  45. J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).
  46. D. Pacifici, H. J. Lezec, L. A. Sweatlock, C. D. Ruiter, V. Ferry, and H. A. Atwater, “All-optical plasmonic modulators and interconnects,” in Plasmonic nanoguides and circuits, S. I. Bozhevolnyi, ed. (World Scientific, 2009).
  47. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004).
    [Crossref] [PubMed]
  48. H. Ramezani, H. Li, Y. Wang, and X. Zhang, “Unidirectional spectral singularities,” Phys. Rev. Lett. 113, 263905 (2014).
    [Crossref]
  49. Q. Gan, Z. Fu, Y. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 112, 256803 (2008).
    [Crossref]
  50. T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 52, 4972 (2014).
    [Crossref]
  51. V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide,” Photon. Nanostructures 10, 389–399 (2012).
    [Crossref]
  52. H. Carrere, V. G. Truong, X. Marie, R. Brenot, G. De Valicourt, F. Lelarge, and T. Amand, “Large optical bandwidth and polarization insensitive semiconductor optical amplifiers using strained InGaAsP quantum wells,” Appl. Phys. Lett. 97, 121101 (2010).
    [Crossref]
  53. X. Zhang, Y. Li, T. Li, S. Lee, C. Feng, L. Wang, and T. Meis, “Gain-assisted propagation of surface plasmon polaritons via electrically pumped quantum wells,” Opt. Lett. 35, 3075–3077 (2010).
    [Crossref] [PubMed]
  54. N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kopev, and Zh. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69, 1226 (1996).
    [Crossref]
  55. A. Mahigir, P. Dastmalchi, W. Shin, S. Fan, and G. Veronis, “Plasmonic coaxial waveguide-cavity devices,” Opt. Express 23, 20549–20562 (2015).
    [Crossref] [PubMed]
  56. F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
    [Crossref]
  57. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
    [Crossref]

2016 (4)

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photon. 3, 590–596 (2016).
[Crossref]

A. Manjavacas, “Anisotropic optical response of nanostructures with balanced gain and loss,” ACS Photon. 3, 1301–1307 (2016).
[Crossref]

Y. Fu, Y. Xu, and H. Chen, “Zero index metamaterials with PT symmetry in a waveguide system,” Opt. Express 24, 1648–1657 (2016).
[Crossref] [PubMed]

E. Yang, Y. Lu, Y. Wang, Y. Dai, and P. Wang, “Unidirectional reflectionless phenomenon in periodic ternary layered material,” Opt. Express 24, 14311–14321 (2016).
[Crossref] [PubMed]

2015 (7)

Y. Huang, C. Min, P. Dastmalchi, and G. Veronis, “Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors,” Opt. Express 23, 14922–14936 (2015).
[Crossref] [PubMed]

C. Hahn, S. Song, C. Oh, and P. Berini, “Single-mode lasers and parity-time symmetry broken gratings based on active dielectric-loaded long-range surface plasmon polariton waveguides,” Opt. Express 23, 19922–19931 (2015).
[Crossref] [PubMed]

A. Mahigir, P. Dastmalchi, W. Shin, S. Fan, and G. Veronis, “Plasmonic coaxial waveguide-cavity devices,” Opt. Express 23, 20549–20562 (2015).
[Crossref] [PubMed]

Y. Huang, G. Veronis, and C. Min, “Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points,” Opt. Express 23, 29882–29895 (2015).
[Crossref] [PubMed]

S. Yu, X. Piao, J. Hong, and N. Park, “Progress toward high-Q perfect absorption: a Fano antilaser,” Phys. Rev. A 92, 011802 (2015).
[Crossref]

S. A. R. Horsley, M. Artoni, and G. C. La Rocca, “Spatial Kramer-Kronig relations and the reflection of waves,” Nat. Photonics 9, 436–439 (2015).
[Crossref]

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref] [PubMed]

2014 (10)

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 52, 4972 (2014).
[Crossref]

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

H. Ramezani, H. Li, Y. Wang, and X. Zhang, “Unidirectional spectral singularities,” Phys. Rev. Lett. 113, 263905 (2014).
[Crossref]

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photon. 1, 347–353 (2014).
[Crossref]

M. Kang, H. Cui, T. Li, J. Chen, W. Zhu, and M. Premaratne, “Unidirectional phase singularity in ultrathin metamaterials at exceptional points,” Phys. Rev. A 89, 065801 (2014).
[Crossref]

L. Feng, X. Zhu, S. Yang, H. Zhu, P. Zhang, X. Yin, Y. Wang, and X. Zhang, “Demonstration of a large-scale optical exceptional point structure,” Opt. Express 22, 1760–1767 (2014).
[Crossref] [PubMed]

R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22, A335–A343 (2014).
[Crossref] [PubMed]

F. Nazari, N. Bender, H. Ramezani, M. K. Moravvej-Farshi, D. N. Christodoulides, and T. Kottos, “Optical isolation via PT -symmetric nonlinear Fano resonances,” Opt. Express 22, 9574–9584 (2014).
[Crossref] [PubMed]

Y. Shen, X. H. Deng, and L. Chen, “Unidirectional invisibility in a two-layer non-PT -symmetric slab,” Opt. Express 22, 19440–19447 (2014).
[Crossref] [PubMed]

G. Cao, H. Li, Y. Deng, S. Zhan, Z. He, and B. Li, “Plasmon-induced transparency in a single multimode stub resonator,” Opt. Express 22, 25215–25223 (2014).
[Crossref] [PubMed]

2013 (5)

K. Wang, Z. Yu, S. Sandhu, and S. Fan, “Fundamental bounds on decay rates in asymmetric single-mode optical resonators,” Opt. Lett. 38, 100–102 (2013).
[Crossref] [PubMed]

X. Yin and X. Zhang, “Unidirectional light propagation at exceptional points,” Nat. Mater. 12, 175–177 (2013).
[Crossref] [PubMed]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

A. Mostafazadeh, “Invisibility and PT symmetry,” Phys. Rev. A 87, 012103 (2013).
[Crossref]

L. Huang and H. Chen, “A brief review on terahertz metamaterial perfect absorbers,” Terahertz Sci. Technol. 6, 26–39 (2013).

2012 (5)

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref] [PubMed]

L. Ge, Y. D. Chong, and A. D. Stone, “Conservation relations and anisotropic transmission resonances in one-dimensional PT -symmetric photonic heterostructures,” Phys. Rev. A 85, 023802 (2012).
[Crossref]

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide,” Photon. Nanostructures 10, 389–399 (2012).
[Crossref]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. Luo, A. J. Taylor, and H. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154–156 (2012).
[Crossref] [PubMed]

2011 (5)

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19, 18393–18398 (2011).
[Crossref] [PubMed]

J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19, 21155–21162 (2011).
[Crossref] [PubMed]

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99, 143117 (2011).
[Crossref]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT -symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

2010 (4)

S. Longhi, “PT -symmetric laser absorber,” Phys. Rev. A 82, 031801 (2010).
[Crossref]

H. Carrere, V. G. Truong, X. Marie, R. Brenot, G. De Valicourt, F. Lelarge, and T. Amand, “Large optical bandwidth and polarization insensitive semiconductor optical amplifiers using strained InGaAsP quantum wells,” Appl. Phys. Lett. 97, 121101 (2010).
[Crossref]

X. Zhang, Y. Li, T. Li, S. Lee, C. Feng, L. Wang, and T. Meis, “Gain-assisted propagation of surface plasmon polaritons via electrically pumped quantum wells,” Opt. Lett. 35, 3075–3077 (2010).
[Crossref] [PubMed]

L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35, 4184–4186 (2010).
[Crossref] [PubMed]

2009 (2)

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009).
[Crossref] [PubMed]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

2008 (5)

Z. Yu, G. Veronis, and S. Fan, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
[Crossref]

Q. Gan, Z. Fu, Y. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 112, 256803 (2008).
[Crossref]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

D. Gagnon, S. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1473–1478 (2008).
[Crossref]

2007 (1)

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

2004 (2)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Sel. Top. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

1996 (1)

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kopev, and Zh. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69, 1226 (1996).
[Crossref]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[Crossref]

Alferov, Zh. I.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kopev, and Zh. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69, 1226 (1996).
[Crossref]

Almeida, V. R.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Amand, T.

H. Carrere, V. G. Truong, X. Marie, R. Brenot, G. De Valicourt, F. Lelarge, and T. Amand, “Large optical bandwidth and polarization insensitive semiconductor optical amplifiers using strained InGaAsP quantum wells,” Appl. Phys. Lett. 97, 121101 (2010).
[Crossref]

Artoni, M.

S. A. R. Horsley, M. Artoni, and G. C. La Rocca, “Spatial Kramer-Kronig relations and the reflection of waves,” Nat. Photonics 9, 436–439 (2015).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

D. Pacifici, H. J. Lezec, L. A. Sweatlock, C. D. Ruiter, V. Ferry, and H. A. Atwater, “All-optical plasmonic modulators and interconnects,” in Plasmonic nanoguides and circuits, S. I. Bozhevolnyi, ed. (World Scientific, 2009).

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Babicheva, V. E.

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide,” Photon. Nanostructures 10, 389–399 (2012).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]

Bartoli, F. J.

Q. Gan, Z. Fu, Y. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 112, 256803 (2008).
[Crossref]

Bender, N.

Berini, P.

Bersch, C.

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref] [PubMed]

Bimberg, D.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kopev, and Zh. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69, 1226 (1996).
[Crossref]

Bonjour, R.

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref] [PubMed]

Borghs, G.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

Brenot, R.

H. Carrere, V. G. Truong, X. Marie, R. Brenot, G. De Valicourt, F. Lelarge, and T. Amand, “Large optical bandwidth and polarization insensitive semiconductor optical amplifiers using strained InGaAsP quantum wells,” Appl. Phys. Lett. 97, 121101 (2010).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Cao, G.

Cao, H.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT -symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref]

Carrere, H.

H. Carrere, V. G. Truong, X. Marie, R. Brenot, G. De Valicourt, F. Lelarge, and T. Amand, “Large optical bandwidth and polarization insensitive semiconductor optical amplifiers using strained InGaAsP quantum wells,” Appl. Phys. Lett. 97, 121101 (2010).
[Crossref]

Chang, L.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Chen, G.

Chen, H.

Chen, J.

M. Kang, H. Cui, T. Li, J. Chen, W. Zhu, and M. Premaratne, “Unidirectional phase singularity in ultrathin metamaterials at exceptional points,” Phys. Rev. A 89, 065801 (2014).
[Crossref]

Chen, L.

Chen, Y. F.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Chong, Y. D.

L. Ge, Y. D. Chong, and A. D. Stone, “Conservation relations and anisotropic transmission resonances in one-dimensional PT -symmetric photonic heterostructures,” Phys. Rev. A 85, 023802 (2012).
[Crossref]

Chowdhury, D. R.

Christodoulides, D. N.

F. Nazari, N. Bender, H. Ramezani, M. K. Moravvej-Farshi, D. N. Christodoulides, and T. Kottos, “Optical isolation via PT -symmetric nonlinear Fano resonances,” Opt. Express 22, 9574–9584 (2014).
[Crossref] [PubMed]

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref] [PubMed]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT -symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref]

Cui, H.

M. Kang, H. Cui, T. Li, J. Chen, W. Zhu, and M. Premaratne, “Unidirectional phase singularity in ultrathin metamaterials at exceptional points,” Phys. Rev. A 89, 065801 (2014).
[Crossref]

Cui, Y.

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Dai, Y.

Dalton, L. R.

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref] [PubMed]

Dastmalchi, P.

De Valicourt, G.

H. Carrere, V. G. Truong, X. Marie, R. Brenot, G. De Valicourt, F. Lelarge, and T. Amand, “Large optical bandwidth and polarization insensitive semiconductor optical amplifiers using strained InGaAsP quantum wells,” Appl. Phys. Lett. 97, 121101 (2010).
[Crossref]

De Vlaminck, I.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

Deng, X. H.

Deng, Y.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]

Ding, W.

Ding, Y.

Q. Gan, Z. Fu, Y. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 112, 256803 (2008).
[Crossref]

Dong, G.

Dutton, R. W.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[Crossref]

Egorov, A. Yu.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kopev, and Zh. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69, 1226 (1996).
[Crossref]

Eichelkraut, T.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT -symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref]

Elder, D. L.

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref] [PubMed]

Fainman, Y.

Fan, S.

A. Mahigir, P. Dastmalchi, W. Shin, S. Fan, and G. Veronis, “Plasmonic coaxial waveguide-cavity devices,” Opt. Express 23, 20549–20562 (2015).
[Crossref] [PubMed]

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photon. 1, 347–353 (2014).
[Crossref]

K. Wang, Z. Yu, S. Sandhu, and S. Fan, “Fundamental bounds on decay rates in asymmetric single-mode optical resonators,” Opt. Lett. 38, 100–102 (2013).
[Crossref] [PubMed]

Z. Yu, G. Veronis, and S. Fan, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
[Crossref]

G. Veronis, R. W. Dutton, and S. Fan, “Method for sensitivity analysis of photonic crystal devices,” Opt. Lett. 29, 2288–2290 (2004).
[Crossref] [PubMed]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Sel. Top. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Fang, N. X.

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Fedoryshyn, Y.

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref] [PubMed]

Fegadolli, W. S.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Feng, C.

Feng, L.

L. Feng, X. Zhu, S. Yang, H. Zhu, P. Zhang, X. Yin, Y. Wang, and X. Zhang, “Demonstration of a large-scale optical exceptional point structure,” Opt. Express 22, 1760–1767 (2014).
[Crossref] [PubMed]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Feng, R.

Ferry, V.

D. Pacifici, H. J. Lezec, L. A. Sweatlock, C. D. Ruiter, V. Ferry, and H. A. Atwater, “All-optical plasmonic modulators and interconnects,” in Plasmonic nanoguides and circuits, S. I. Bozhevolnyi, ed. (World Scientific, 2009).

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Fu, Y.

Fu, Z.

Q. Gan, Z. Fu, Y. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 112, 256803 (2008).
[Crossref]

Fung, K.

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Gagnon, D.

D. Gagnon, S. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1473–1478 (2008).
[Crossref]

Gan, Q.

Q. Gan, Z. Fu, Y. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 112, 256803 (2008).
[Crossref]

Ge, L.

L. Ge, Y. D. Chong, and A. D. Stone, “Conservation relations and anisotropic transmission resonances in one-dimensional PT -symmetric photonic heterostructures,” Phys. Rev. A 85, 023802 (2012).
[Crossref]

Gong, Y.

Guo, L. J.

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photon. 3, 590–596 (2016).
[Crossref]

Haffner, C.

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref] [PubMed]

Hafner, C.

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref] [PubMed]

Hahn, C.

Hamm, J. M.

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 52, 4972 (2014).
[Crossref]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Sel. Top. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

He, S.

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

He, Z.

Heni, W.

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref] [PubMed]

Hess, O.

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 52, 4972 (2014).
[Crossref]

Hillerkuss, D.

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref] [PubMed]

Hoessbacher, C.

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref] [PubMed]

Hong, J.

S. Yu, X. Piao, J. Hong, and N. Park, “Progress toward high-Q perfect absorption: a Fano antilaser,” Phys. Rev. A 92, 011802 (2015).
[Crossref]

Horsley, S. A. R.

S. A. R. Horsley, M. Artoni, and G. C. La Rocca, “Spatial Kramer-Kronig relations and the reflection of waves,” Nat. Photonics 9, 436–439 (2015).
[Crossref]

Hua, S.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Huang, L.

Huang, Y.

Ji, C.

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photon. 3, 590–596 (2016).
[Crossref]

Jiang, L.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Jiang, X.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Jin, J.

J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).

Jin, Y.

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Sel. Top. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Kang, M.

M. Kang, H. Cui, T. Li, J. Chen, W. Zhu, and M. Premaratne, “Unidirectional phase singularity in ultrathin metamaterials at exceptional points,” Phys. Rev. A 89, 065801 (2014).
[Crossref]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Sel. Top. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Kirstaedter, N.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kopev, and Zh. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69, 1226 (1996).
[Crossref]

Kocabas, S.

D. Gagnon, S. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1473–1478 (2008).
[Crossref]

Kopev, P. S.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kopev, and Zh. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69, 1226 (1996).
[Crossref]

Kottos, T.

F. Nazari, N. Bender, H. Ramezani, M. K. Moravvej-Farshi, D. N. Christodoulides, and T. Kottos, “Optical isolation via PT -symmetric nonlinear Fano resonances,” Opt. Express 22, 9574–9584 (2014).
[Crossref] [PubMed]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT -symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref]

Kulkova, I. V.

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide,” Photon. Nanostructures 10, 389–399 (2012).
[Crossref]

Kuramochi, E.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
[Crossref]

La Rocca, G. C.

S. A. R. Horsley, M. Artoni, and G. C. La Rocca, “Spatial Kramer-Kronig relations and the reflection of waves,” Nat. Photonics 9, 436–439 (2015).
[Crossref]

Lagae, L.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Lavrinenko, A. V.

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide,” Photon. Nanostructures 10, 389–399 (2012).
[Crossref]

Ledentsov, N. N.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kopev, and Zh. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69, 1226 (1996).
[Crossref]

Lee, K.

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photon. 3, 590–596 (2016).
[Crossref]

Lee, S.

Lelarge, F.

H. Carrere, V. G. Truong, X. Marie, R. Brenot, G. De Valicourt, F. Lelarge, and T. Amand, “Large optical bandwidth and polarization insensitive semiconductor optical amplifiers using strained InGaAsP quantum wells,” Appl. Phys. Lett. 97, 121101 (2010).
[Crossref]

Leuchtmann, P.

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref] [PubMed]

Leuthold, J.

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref] [PubMed]

Lezec, H. J.

D. Pacifici, H. J. Lezec, L. A. Sweatlock, C. D. Ruiter, V. Ferry, and H. A. Atwater, “All-optical plasmonic modulators and interconnects,” in Plasmonic nanoguides and circuits, S. I. Bozhevolnyi, ed. (World Scientific, 2009).

Li, B.

Li, G.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Li, H.

Li, T.

M. Kang, H. Cui, T. Li, J. Chen, W. Zhu, and M. Premaratne, “Unidirectional phase singularity in ultrathin metamaterials at exceptional points,” Phys. Rev. A 89, 065801 (2014).
[Crossref]

X. Zhang, Y. Li, T. Li, S. Lee, C. Feng, L. Wang, and T. Meis, “Gain-assisted propagation of surface plasmon polaritons via electrically pumped quantum wells,” Opt. Lett. 35, 3075–3077 (2010).
[Crossref] [PubMed]

Li, Y.

Lin, Z.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT -symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref]

Liu, L.

Liu, X.

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photon. 3, 590–596 (2016).
[Crossref]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19, 18393–18398 (2011).
[Crossref] [PubMed]

Longhi, S.

S. Longhi, “PT -symmetric laser absorber,” Phys. Rev. A 82, 031801 (2010).
[Crossref]

Lu, H.

Lu, M. H.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Lu, Y.

Luo, S.

Ma, H.

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Mahigir, A.

Malureanu, R.

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide,” Photon. Nanostructures 10, 389–399 (2012).
[Crossref]

Manjavacas, A.

A. Manjavacas, “Anisotropic optical response of nanostructures with balanced gain and loss,” ACS Photon. 3, 1301–1307 (2016).
[Crossref]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Sel. Top. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Marie, X.

H. Carrere, V. G. Truong, X. Marie, R. Brenot, G. De Valicourt, F. Lelarge, and T. Amand, “Large optical bandwidth and polarization insensitive semiconductor optical amplifiers using strained InGaAsP quantum wells,” Appl. Phys. Lett. 97, 121101 (2010).
[Crossref]

Maximov, M. V.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kopev, and Zh. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69, 1226 (1996).
[Crossref]

Meis, T.

Miller, D. A. B.

D. Gagnon, S. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1473–1478 (2008).
[Crossref]

Min, C.

Miri, M. A.

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Moravvej-Farshi, M. K.

Mostafazadeh, A.

A. Mostafazadeh, “Invisibility and PT symmetry,” Phys. Rev. A 87, 012103 (2013).
[Crossref]

Nazari, F.

Neutens, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

Nezhad, M. P.

Notomi, M.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
[Crossref]

Oh, C.

Oliveira, J. E. B.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Onishchukov, G.

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref] [PubMed]

Pacifici, D.

D. Pacifici, H. J. Lezec, L. A. Sweatlock, C. D. Ruiter, V. Ferry, and H. A. Atwater, “All-optical plasmonic modulators and interconnects,” in Plasmonic nanoguides and circuits, S. I. Bozhevolnyi, ed. (World Scientific, 2009).

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Page, A. F.

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 52, 4972 (2014).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Park, N.

S. Yu, X. Piao, J. Hong, and N. Park, “Progress toward high-Q perfect absorption: a Fano antilaser,” Phys. Rev. A 92, 011802 (2015).
[Crossref]

Peschel, U.

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref] [PubMed]

Piao, X.

S. Yu, X. Piao, J. Hong, and N. Park, “Progress toward high-Q perfect absorption: a Fano antilaser,” Phys. Rev. A 92, 011802 (2015).
[Crossref]

Pickering, T.

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 52, 4972 (2014).
[Crossref]

Piper, J. R.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photon. 1, 347–353 (2014).
[Crossref]

Premaratne, M.

M. Kang, H. Cui, T. Li, J. Chen, W. Zhu, and M. Premaratne, “Unidirectional phase singularity in ultrathin metamaterials at exceptional points,” Phys. Rev. A 89, 065801 (2014).
[Crossref]

Qiu, J.

Ramani, S.

Ramezani, H.

F. Nazari, N. Bender, H. Ramezani, M. K. Moravvej-Farshi, D. N. Christodoulides, and T. Kottos, “Optical isolation via PT -symmetric nonlinear Fano resonances,” Opt. Express 22, 9574–9584 (2014).
[Crossref] [PubMed]

H. Ramezani, H. Li, Y. Wang, and X. Zhang, “Unidirectional spectral singularities,” Phys. Rev. Lett. 113, 263905 (2014).
[Crossref]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT -symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref]

Regensburger, A.

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref] [PubMed]

Reiten, M. T.

Ruiter, C. D.

D. Pacifici, H. J. Lezec, L. A. Sweatlock, C. D. Ruiter, V. Ferry, and H. A. Atwater, “All-optical plasmonic modulators and interconnects,” in Plasmonic nanoguides and circuits, S. I. Bozhevolnyi, ed. (World Scientific, 2009).

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Salamin, Y.

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref] [PubMed]

Sandhu, S.

Scherer, A.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Schmidt, O. G.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kopev, and Zh. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69, 1226 (1996).
[Crossref]

Sekaric, L.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Shen, W.

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photon. 3, 590–596 (2016).
[Crossref]

Shen, Y.

Shin, W.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Song, S.

Stone, A. D.

L. Ge, Y. D. Chong, and A. D. Stone, “Conservation relations and anisotropic transmission resonances in one-dimensional PT -symmetric photonic heterostructures,” Phys. Rev. A 85, 023802 (2012).
[Crossref]

Sun, J.

Sweatlock, L. A.

D. Pacifici, H. J. Lezec, L. A. Sweatlock, C. D. Ruiter, V. Ferry, and H. A. Atwater, “All-optical plasmonic modulators and interconnects,” in Plasmonic nanoguides and circuits, S. I. Bozhevolnyi, ed. (World Scientific, 2009).

Tanabe, T.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
[Crossref]

Taylor, A. J.

Tetz, K.

Truong, V. G.

H. Carrere, V. G. Truong, X. Marie, R. Brenot, G. De Valicourt, F. Lelarge, and T. Amand, “Large optical bandwidth and polarization insensitive semiconductor optical amplifiers using strained InGaAsP quantum wells,” Appl. Phys. Lett. 97, 121101 (2010).
[Crossref]

Ustinov, V. M.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kopev, and Zh. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69, 1226 (1996).
[Crossref]

Van Dorpe, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

Veronis, G.

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Sel. Top. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Vlasov, Y.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Wang, G.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19, 18393–18398 (2011).
[Crossref] [PubMed]

Wang, K.

Wang, L.

Wang, P.

Wang, Y.

Wen, J.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Wuestner, S.

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 52, 4972 (2014).
[Crossref]

Xia, F. N.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Xiao, M.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Xu, J.

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Xu, Y.

Xu, Y. L.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Yang, C.

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photon. 3, 590–596 (2016).
[Crossref]

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Yang, E.

Yang, L.

Yang, S.

Yin, X.

Yu, S.

S. Yu, X. Piao, J. Hong, and N. Park, “Progress toward high-Q perfect absorption: a Fano antilaser,” Phys. Rev. A 92, 011802 (2015).
[Crossref]

Yu, Z.

K. Wang, Z. Yu, S. Sandhu, and S. Fan, “Fundamental bounds on decay rates in asymmetric single-mode optical resonators,” Opt. Lett. 38, 100–102 (2013).
[Crossref] [PubMed]

Z. Yu, G. Veronis, and S. Fan, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
[Crossref]

Yvind, K.

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide,” Photon. Nanostructures 10, 389–399 (2012).
[Crossref]

Zahner, M.

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref] [PubMed]

Zhan, S.

Zhang, P.

Zhang, X.

Zhang, Y.

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photon. 3, 590–596 (2016).
[Crossref]

Zhou, J.

Zhu, H.

Zhu, W.

M. Kang, H. Cui, T. Li, J. Chen, W. Zhu, and M. Premaratne, “Unidirectional phase singularity in ultrathin metamaterials at exceptional points,” Phys. Rev. A 89, 065801 (2014).
[Crossref]

Zhu, X.

Zhukov, A. E.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kopev, and Zh. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69, 1226 (1996).
[Crossref]

ACS Photon. (3)

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photon. 1, 347–353 (2014).
[Crossref]

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photon. 3, 590–596 (2016).
[Crossref]

A. Manjavacas, “Anisotropic optical response of nanostructures with balanced gain and loss,” ACS Photon. 3, 1301–1307 (2016).
[Crossref]

Appl. Phys. Lett. (4)

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99, 143117 (2011).
[Crossref]

Z. Yu, G. Veronis, and S. Fan, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92, 041117 (2008).
[Crossref]

H. Carrere, V. G. Truong, X. Marie, R. Brenot, G. De Valicourt, F. Lelarge, and T. Amand, “Large optical bandwidth and polarization insensitive semiconductor optical amplifiers using strained InGaAsP quantum wells,” Appl. Phys. Lett. 97, 121101 (2010).
[Crossref]

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kopev, and Zh. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69, 1226 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Sel. Top. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

D. Gagnon, S. Kocabas, and D. A. B. Miller, “Characteristic impedance model for plasmonic metal slot waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1473–1478 (2008).
[Crossref]

Nano Lett. (2)

Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Y. Salamin, W. Heni, C. Haffner, Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett. 15, 8342–8346 (2015).
[Crossref] [PubMed]

Nat. Commun. (2)

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 52, 4972 (2014).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Nat. Mater. (2)

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

X. Yin and X. Zhang, “Unidirectional light propagation at exceptional points,” Nat. Mater. 12, 175–177 (2013).
[Crossref] [PubMed]

Nat. Photonics (5)

S. A. R. Horsley, M. Artoni, and G. C. La Rocca, “Spatial Kramer-Kronig relations and the reflection of waves,” Nat. Photonics 9, 436–439 (2015).
[Crossref]

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
[Crossref]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[Crossref]

Nature (1)

A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref] [PubMed]

Nature (London) (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[Crossref]

Opt. Express (15)

F. Nazari, N. Bender, H. Ramezani, M. K. Moravvej-Farshi, D. N. Christodoulides, and T. Kottos, “Optical isolation via PT -symmetric nonlinear Fano resonances,” Opt. Express 22, 9574–9584 (2014).
[Crossref] [PubMed]

G. Cao, H. Li, Y. Deng, S. Zhan, Z. He, and B. Li, “Plasmon-induced transparency in a single multimode stub resonator,” Opt. Express 22, 25215–25223 (2014).
[Crossref] [PubMed]

Y. Huang, C. Min, P. Dastmalchi, and G. Veronis, “Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors,” Opt. Express 23, 14922–14936 (2015).
[Crossref] [PubMed]

L. Feng, X. Zhu, S. Yang, H. Zhu, P. Zhang, X. Yin, Y. Wang, and X. Zhang, “Demonstration of a large-scale optical exceptional point structure,” Opt. Express 22, 1760–1767 (2014).
[Crossref] [PubMed]

Y. Shen, X. H. Deng, and L. Chen, “Unidirectional invisibility in a two-layer non-PT -symmetric slab,” Opt. Express 22, 19440–19447 (2014).
[Crossref] [PubMed]

C. Hahn, S. Song, C. Oh, and P. Berini, “Single-mode lasers and parity-time symmetry broken gratings based on active dielectric-loaded long-range surface plasmon polariton waveguides,” Opt. Express 23, 19922–19931 (2015).
[Crossref] [PubMed]

Y. Fu, Y. Xu, and H. Chen, “Zero index metamaterials with PT symmetry in a waveguide system,” Opt. Express 24, 1648–1657 (2016).
[Crossref] [PubMed]

Y. Huang, G. Veronis, and C. Min, “Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points,” Opt. Express 23, 29882–29895 (2015).
[Crossref] [PubMed]

E. Yang, Y. Lu, Y. Wang, Y. Dai, and P. Wang, “Unidirectional reflectionless phenomenon in periodic ternary layered material,” Opt. Express 24, 14311–14321 (2016).
[Crossref] [PubMed]

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009).
[Crossref] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19, 18393–18398 (2011).
[Crossref] [PubMed]

J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19, 21155–21162 (2011).
[Crossref] [PubMed]

R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22, A335–A343 (2014).
[Crossref] [PubMed]

M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004).
[Crossref] [PubMed]

A. Mahigir, P. Dastmalchi, W. Shin, S. Fan, and G. Veronis, “Plasmonic coaxial waveguide-cavity devices,” Opt. Express 23, 20549–20562 (2015).
[Crossref] [PubMed]

Opt. Lett. (5)

Photon. Nanostructures (1)

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide,” Photon. Nanostructures 10, 389–399 (2012).
[Crossref]

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[Crossref]

Phys. Rev. A (5)

M. Kang, H. Cui, T. Li, J. Chen, W. Zhu, and M. Premaratne, “Unidirectional phase singularity in ultrathin metamaterials at exceptional points,” Phys. Rev. A 89, 065801 (2014).
[Crossref]

S. Yu, X. Piao, J. Hong, and N. Park, “Progress toward high-Q perfect absorption: a Fano antilaser,” Phys. Rev. A 92, 011802 (2015).
[Crossref]

S. Longhi, “PT -symmetric laser absorber,” Phys. Rev. A 82, 031801 (2010).
[Crossref]

L. Ge, Y. D. Chong, and A. D. Stone, “Conservation relations and anisotropic transmission resonances in one-dimensional PT -symmetric photonic heterostructures,” Phys. Rev. A 85, 023802 (2012).
[Crossref]

A. Mostafazadeh, “Invisibility and PT symmetry,” Phys. Rev. A 87, 012103 (2013).
[Crossref]

Phys. Rev. Lett. (4)

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT -symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

H. Ramezani, H. Li, Y. Wang, and X. Zhang, “Unidirectional spectral singularities,” Phys. Rev. Lett. 113, 263905 (2014).
[Crossref]

Q. Gan, Z. Fu, Y. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 112, 256803 (2008).
[Crossref]

Terahertz Sci. Technol. (1)

L. Huang and H. Chen, “A brief review on terahertz metamaterial perfect absorbers,” Terahertz Sci. Technol. 6, 26–39 (2013).

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).

D. Pacifici, H. J. Lezec, L. A. Sweatlock, C. D. Ruiter, V. Ferry, and H. A. Atwater, “All-optical plasmonic modulators and interconnects,” in Plasmonic nanoguides and circuits, S. I. Bozhevolnyi, ed. (World Scientific, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of a waveguide side coupled to two resonators. Both resonators have a symmetry plane perpendicular to the waveguide. S 1 + and S 2 + are the amplitudes of the incoming waves to resonator A from the forward and backward directions, respectively; S 1 and S 2 are the amplitudes of the outgoing waves from resonator A. S 3 +, S 4 + and S 3 , S 4 are similarly defined for resonator B.
Fig. 2
Fig. 2 (a) Schematic of a perfect absorber unit cell consisting of a MDM plasmonic waveguide side coupled to two MDM stub resonators. (b) Reflection and transmission spectra for the structure of Fig. 2(a) calculated for light incident from both the forward and backward directions using FDFD (solid lines) and CMT (circles). Results are shown for w = 50 nm, w1 = 10 nm, w2 = 25 nm, h1 = 67.5 nm, and h2 = 53 nm. The left and right stubs are filled with silicon dioxide doped with CdSe quantum dots (ϵA =4.0804 − j0.6) and InGaAsP (ϵB =11.38 + j0.41), respectively. Also shown are the absorption spectra in the forward direction calculated using FDFD (green solid line). (c) and (d) Magnetic field amplitude profiles for the structure of Fig. 2(a) at f = 193.4 THz (λ0 =1.55μm), when the fundamental TM mode of the MDM waveguide is incident from the left and right, respectively. All parameters are as in Fig. 2(b). (e) and (f) Magnetic field amplitude in the middle of the MDM waveguide, normalized with respect to the field amplitude of the incident fundamental TM waveguide mode in the middle of the waveguide, when the mode is incident from the left and right, respectively. The two vertical dashed lines indicate the left boundary of the left stub, and the right boundary of the right stub. All parameters are as in Fig. 2(b).
Fig. 3
Fig. 3 Phase spectra of the reflection coefficients in the forward (rf, black) and backward (rb, red) directions for the structure of Fig. 2(a). All parameters are as in Fig. 2(b). (b) Contrast ratio spectra for the structure of Fig. 2(a). All parameters are as in Fig. 2(b).
Fig. 4
Fig. 4 (a) (a) Reflection spectra in the forward direction (Rf) as a function of the life time τ01 for the structure of Fig. 2(a). All other parameters are as in Fig. 2(b). (b) Reflection spectra in the forward direction (Rf) as a function of the distance L for the structure of Fig. 2(a). All other parameters are as in Fig. 2(b). (c) Absorption spectra in the forward direction as a function of the life time τ01 for the structure of Fig. 2(a). All other parameters are as in Fig. 2(b). (d) Absorption spectra in the forward direction as a function of the distance L for the structure of Fig. 2(a). All other parameters are as in Fig. 2(b).
Fig. 5
Fig. 5 (a) Absorption spectra for structures with different number of perfect absorber unit cells calculated using FDFD. Results are shown for w = 50 nm, and distance between two adjacent unit cells of 150 nm. For the structure with four different unit cells, the parameters for each cell [Fig. 2(a)] are w1 = 12.5, 12.5, 10, 10 nm, w2 = 30, 30, 25, 25 nm, h1 = 85, 80, 67.5, 62.5 nm, h2 = 65, 60, 57.5, 47.5 nm, L = 320, 300, 285, 267.5 nm, ϵA = 4.0804 − j0.78, 4.0804 −j0.76, 4.0804 −j0.6, 4.0804 −j0.58, and ϵB = 11.38 + j0 4, 11.38 + j0.38, 11.38 + j0.41, 11.38 + j0.42. Also shown are the absorption spectra for a four-unit cell system where the same material properties are used in all unit cells (ϵA = 4.0804 − j0.68, ϵB = 11.38 + j0.4) (shown with blue circles), which are obtained by averaging the properties (ϵA and ϵB) of the four unit cells used before. (b) Magnetic field distributions at four different frequencies of 173.4, 184.4, 193.4, and 206.4 THz, when the waveguide mode is incident from the left. All other parameters are as in Fig. 5(a).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

d a d t = ( j ω 01 1 τ 01 1 τ 1 ) a + κ 1 S + 1 + κ 2 S + 2 ,
d b d t = ( j ω 02 1 τ 02 1 τ 2 ) b + κ 3 S + 3 + κ 4 S + 4 ,
S 1 S + 2 κ 2 a , S 2 S + 1 κ 1 a ,
S 3 S + 4 κ 4 b , S 4 S + 3 κ 3 b ,
R f = | r f 2 | = | 2 τ 1 τ 2 + ( j Δ ω 2 + 1 τ c 2 ) e 2 γ L τ 1 + ( j Δ ω 1 + 1 τ c 1 ) 1 τ 2 1 τ 1 τ 2 + ( j Δ ω 1 + 1 τ c 1 ) ( j Δ ω 2 + 1 τ c 2 ) e 2 γ L | 2 ,
R b = | r b 2 | = | 2 τ 1 τ 2 + ( j Δ ω 1 + 1 τ c 1 ) e 2 γ L τ 2 + ( j Δ ω 2 + 1 τ c 2 ) 1 τ 1 1 τ 1 τ 2 + ( j Δ ω 1 + 1 τ c 1 ) ( j Δ ω 2 + 1 τ c 2 ) e 2 γ L | 2 ,
T = | t 2 | = | ( j Δ ω 1 + 1 τ 01 ) ( j Δ ω 2 + 1 τ 02 ) 1 τ 1 τ 2 + ( j Δ ω 1 + 1 τ c 1 ) ( j Δ ω 2 + 1 τ c 2 ) e 2 γ L | 2 ,
ω = ω 0 , 1 τ 01 = 0 or 1 τ 02 = 0 .
( 1 τ 02 + 1 τ ) e 2 γ ( ω 0 ) L + ( 1 τ 01 1 τ ) = 0 .
cos [ 2 β ( ω 0 ) L ] = 1 , 1 τ 01 = 2 τ , 1 τ 02 = 0 .
cos [ 2 β ( ω 0 ) L ] = 1 , 1 τ 01 = e 2 α L + 1 τ , 1 τ 02 = 0 .
{ 1 τ 1 τ 2 + 1 τ 01 τ 2 ( ω ω 02 ) sin ( 2 β L ) τ 1 e 2 α L + cos ( 2 β L ) τ 1 ( 1 τ 02 + 1 τ 2 ) e 2 α L = 0 , [ cos ( 2 β L ) τ 1 e 2 α L + 1 τ 2 ] ω ω 01 τ 2 ω 02 cos ( 2 β L ) τ 1 e 2 α L + sin ( 2 β L ) τ 1 ( 1 τ 02 + 1 τ 2 ) e 2 α L = 0 .
sin ( 2 β L ) = 0 , and cos ( 2 β L ) τ 1 e 2 α L + 1 τ 2 = 0 .
e 2 α L τ 1 = 1 τ 2 .
ω 02 τ 1 e 2 α L = ω 01 τ 2 , and 1 τ 2 τ 01 1 τ 1 τ 2 ( e e 2 α L + 1 ) e 2 α L τ 1 τ 02 = 0 .
1 τ 2 = 1 τ 1 = 1 τ , ω 01 = ω 02 , and 1 τ 01 = 1 τ ( e 2 α L + 1 ) + 1 τ 02 .

Metrics