Abstract

A dual-wavelength self-mode-locked monolithic Nd:YAG laser at 1061 and 1064 nm is realized at cryogenic temperatures. At an incident pump power of 5.5 W, the total output power can reach 2.5 W and the mode-locked pulse width is 29 ps at a pulse repetition rate of 7.75 GHz. The synchronization of the dual-wavelength emissions leads to a beat frequency of 670 GHz in the individual mode-locked pulse. It is further discovered that the laser output consists of two orthogonally polarized components with a central frequency difference of 127 MHz. The central frequency difference between two orthogonal polarizations mainly arises from the external mechanical stress introduced by the copper holder for the laser crystal.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monolithic dual-polarization self-mode-locked Nd:YAG 946-nm lasers: controlling beat frequency and observation of temporal chaos

H. P. Cheng, T. L. Huang, C. Y. Lee, C. L. Sung, C. Y. Cho, and Y. F. Chen
Opt. Express 24(21) 23829-23837 (2016)

Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen
Opt. Lett. 41(8) 1781-1784 (2016)

Orthogonally polarized single-longitudinal-mode operation in a dual-wavelength monolithic Nd:YAG laser at 1319  nm and 1338  nm

Hao Ping Cheng, Yu Cheng Liu, Tzu Lin Huang, Hsing Chih Liang, and Yung Fu Chen
Photon. Res. 6(8) 815-820 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
    [Crossref] [PubMed]
  2. A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1), 135–140 (2010).
    [Crossref]
  3. Z. Cong, D. Tang, W. De Tan, J. Zhang, C. Xu, D. Luo, X. Xu, D. Li, J. Xu, X. Zhang, and Q. Wang, “Dual-wavelength passively mode-locked Nd:LuYSiO5 laser with SESAM,” Opt. Express 19(5), 3984–3989 (2011).
    [Crossref] [PubMed]
  4. Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Nd:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
    [Crossref]
  5. Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen, “Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media,” Opt. Lett. 39(6), 1477–1480 (2014).
    [Crossref] [PubMed]
  6. Y. J. Huang, H. H. Cho, Y. S. Tzeng, H. C. Liang, K. W. Su, and Y. F. Chen, “Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal,” Opt. Mater. Express 5(10), 2136–2141 (2015).
    [Crossref]
  7. M. Koch, “Terahertz technology: A land to be discovered,” Opt. Photonics News 18(3), 20–25 (2007).
    [Crossref]
  8. H. Zhong, A. Redo-Sanchez, and X. C. Zhang, “Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system,” Opt. Express 14(20), 9130–9141 (2006).
    [Crossref] [PubMed]
  9. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
    [Crossref]
  10. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
    [Crossref]
  11. G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
    [Crossref] [PubMed]
  12. H. C. Liang, R. C. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express 16(25), 21149–21154 (2008).
    [Crossref] [PubMed]
  13. H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B 97(2), 451–455 (2009).
    [Crossref]
  14. M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
    [Crossref] [PubMed]
  15. C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
    [Crossref] [PubMed]
  16. F. Krausz, T. Brabec, and C. Spielmann, “Self-starting passive mode locking,” Opt. Lett. 16(4), 235–237 (1991).
    [Crossref] [PubMed]
  17. C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
    [Crossref]
  18. W. Koechner and D. K. Rice, “Effect of birefringence on the performance of the linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
    [Crossref]
  19. A. Owyoung and P. Esherick, “Stress-induced tuning of a diode-laser-excited monolithic Nd:YAG laser,” Opt. Lett. 12(12), 999–1001 (1987).
    [Crossref] [PubMed]
  20. W. Holzapfel and W. Settgast, “Force to frequency conversion by intracavity photoelastic modulation,” Appl. Opt. 28(21), 4585–4594 (1989).
    [Crossref] [PubMed]
  21. S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
    [Crossref]
  22. J. Javaloyes, J. Mulet, and S. Balle, “Passive mode locking of lasers by crossed-polarization gain modulation,” Phys. Rev. Lett. 97(16), 163902 (2006).
    [Crossref] [PubMed]
  23. S. V. Sergeyev, C. Mou, A. Rozhin, and S. K. Turitsyn, “Vector solitons with locked and precessing states of polarization,” Opt. Express 20(24), 27434–27440 (2012).
    [Crossref] [PubMed]
  24. J. Thévenin, M. Vallet, and M. Brunel, “Dual-polarization mode-locked Nd:YAG laser,” Opt. Lett. 37(14), 2859–2861 (2012).
    [Crossref] [PubMed]
  25. M. Spanner, K. M. Davitt, and M. Y. Ivanov, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys. 115(18), 8403–8410 (2001).
    [Crossref]
  26. L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
    [Crossref] [PubMed]
  27. G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
    [Crossref] [PubMed]
  28. N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
    [Crossref] [PubMed]
  29. S. Sergey, C. Mou, E. Turitsyna, A. Rozhin, S. Turitsyn, and K. Blow, “Spiral attractor created by vector solitons,” Light Sci. Appl. 3(1), e131 (2014).
    [Crossref]
  30. Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
    [Crossref]
  31. C. L. Wang and C. L. Pan, “Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20(11), 1292–1294 (1995).
    [Crossref] [PubMed]
  32. G. K. White, “Thermal expansion of reference materials: copper, silica and silicon,” J. Phys. D Appl. Phys. 6(17), 2070–2078 (1973).
    [Crossref]
  33. R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38(15), 3282–3284 (1999).
    [Crossref] [PubMed]

2016 (1)

2015 (2)

2014 (2)

2013 (1)

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

2012 (3)

2011 (3)

Z. Cong, D. Tang, W. De Tan, J. Zhang, C. Xu, D. Luo, X. Xu, D. Li, J. Xu, X. Zhang, and Q. Wang, “Dual-wavelength passively mode-locked Nd:LuYSiO5 laser with SESAM,” Opt. Express 19(5), 3984–3989 (2011).
[Crossref] [PubMed]

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

2010 (2)

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1), 135–140 (2010).
[Crossref]

2009 (1)

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B 97(2), 451–455 (2009).
[Crossref]

2008 (2)

2007 (2)

2006 (3)

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[Crossref]

H. Zhong, A. Redo-Sanchez, and X. C. Zhang, “Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system,” Opt. Express 14(20), 9130–9141 (2006).
[Crossref] [PubMed]

J. Javaloyes, J. Mulet, and S. Balle, “Passive mode locking of lasers by crossed-polarization gain modulation,” Phys. Rev. Lett. 97(16), 163902 (2006).
[Crossref] [PubMed]

2005 (1)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

2002 (1)

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

2001 (1)

M. Spanner, K. M. Davitt, and M. Y. Ivanov, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys. 115(18), 8403–8410 (2001).
[Crossref]

1999 (2)

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38(15), 3282–3284 (1999).
[Crossref] [PubMed]

1995 (1)

1991 (1)

1989 (1)

1987 (1)

1973 (1)

G. K. White, “Thermal expansion of reference materials: copper, silica and silicon,” J. Phys. D Appl. Phys. 6(17), 2070–2078 (1973).
[Crossref]

1970 (1)

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of the linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[Crossref]

Agnesi, A.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1), 135–140 (2010).
[Crossref]

Akhmediev, N. N.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

Arcangeli, A.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1), 135–140 (2010).
[Crossref]

Balle, S.

J. Javaloyes, J. Mulet, and S. Balle, “Passive mode locking of lasers by crossed-polarization gain modulation,” Phys. Rev. Lett. 97(16), 163902 (2006).
[Crossref] [PubMed]

Bergman, K.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

Blow, K.

S. Sergey, C. Mou, E. Turitsyna, A. Rozhin, S. Turitsyn, and K. Blow, “Spiral attractor created by vector solitons,” Light Sci. Appl. 3(1), e131 (2014).
[Crossref]

Brabec, T.

Brunel, M.

Chang, H. L.

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B 97(2), 451–455 (2009).
[Crossref]

Chang, M. T.

Chen, R. C. C.

Chen, Y. F.

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[Crossref] [PubMed]

Y. J. Huang, H. H. Cho, Y. S. Tzeng, H. C. Liang, K. W. Su, and Y. F. Chen, “Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal,” Opt. Mater. Express 5(10), 2136–2141 (2015).
[Crossref]

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen, “Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media,” Opt. Lett. 39(6), 1477–1480 (2014).
[Crossref] [PubMed]

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B 97(2), 451–455 (2009).
[Crossref]

H. C. Liang, R. C. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express 16(25), 21149–21154 (2008).
[Crossref] [PubMed]

Chen, Y. T.

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B 97(2), 451–455 (2009).
[Crossref]

Cheng, H. P.

Chiang, P. Y.

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

Chiang, S. Y.

Cho, C. Y.

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[Crossref] [PubMed]

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Cho, H. H.

Cole, B. E.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Collings, B. C.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

Cong, Z.

Cundiff, S. T.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

Daneu, J. L.

Davitt, K. M.

M. Spanner, K. M. Davitt, and M. Y. Ivanov, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys. 115(18), 8403–8410 (2001).
[Crossref]

De Tan, W.

Esherick, P.

Fan, T. Y.

Higuchi, T.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Holzapfel, W.

Huang, K. F.

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Huang, W. C.

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B 97(2), 451–455 (2009).
[Crossref]

Huang, Y. J.

Ivanov, M. Y.

M. Spanner, K. M. Davitt, and M. Y. Ivanov, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys. 115(18), 8403–8410 (2001).
[Crossref]

Javaloyes, J.

J. Javaloyes, J. Mulet, and S. Balle, “Passive mode locking of lasers by crossed-polarization gain modulation,” Phys. Rev. Lett. 97(16), 163902 (2006).
[Crossref] [PubMed]

Jia, Z.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1), 135–140 (2010).
[Crossref]

Jiang, M. H.

Käll, M.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

Kanda, N.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Kemp, M. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Knox, W. H.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

Koch, M.

M. Koch, “Terahertz technology: A land to be discovered,” Opt. Photonics News 18(3), 20–25 (2007).
[Crossref]

Koechner, W.

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of the linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[Crossref]

Konishi, K.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Krausz, F.

Kuwata-Gonokami, M.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Lee, C. Y.

Li, D.

Liang, H. C.

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[Crossref] [PubMed]

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

Y. J. Huang, H. H. Cho, Y. S. Tzeng, H. C. Liang, K. W. Su, and Y. F. Chen, “Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal,” Opt. Mater. Express 5(10), 2136–2141 (2015).
[Crossref]

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen, “Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media,” Opt. Lett. 39(6), 1477–1480 (2014).
[Crossref] [PubMed]

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B 97(2), 451–455 (2009).
[Crossref]

H. C. Liang, R. C. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express 16(25), 21149–21154 (2008).
[Crossref] [PubMed]

Lin, Y. C.

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

Liu, D. H.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Nd:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Liu, J.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Nd:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Lo, T.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Luo, D.

Luo, H.

Miljkovic, V. D.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

Mou, C.

S. Sergey, C. Mou, E. Turitsyna, A. Rozhin, S. Turitsyn, and K. Blow, “Spiral attractor created by vector solitons,” Light Sci. Appl. 3(1), e131 (2014).
[Crossref]

S. V. Sergeyev, C. Mou, A. Rozhin, and S. K. Turitsyn, “Vector solitons with locked and precessing states of polarization,” Opt. Express 20(24), 27434–27440 (2012).
[Crossref] [PubMed]

Mulet, J.

J. Javaloyes, J. Mulet, and S. Balle, “Passive mode locking of lasers by crossed-polarization gain modulation,” Phys. Rev. Lett. 97(16), 163902 (2006).
[Crossref] [PubMed]

Owyoung, A.

Pan, C. L.

Pickwell, E.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[Crossref]

Pirzio, F.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1), 135–140 (2010).
[Crossref]

Qian, L. J.

Reali, G.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1), 135–140 (2010).
[Crossref]

Redo-Sanchez, A.

Rice, D. K.

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of the linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[Crossref]

Roy, R.

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

Rozhin, A.

S. Sergey, C. Mou, E. Turitsyna, A. Rozhin, S. Turitsyn, and K. Blow, “Spiral attractor created by vector solitons,” Light Sci. Appl. 3(1), e131 (2014).
[Crossref]

S. V. Sergeyev, C. Mou, A. Rozhin, and S. K. Turitsyn, “Vector solitons with locked and precessing states of polarization,” Opt. Express 20(24), 27434–27440 (2012).
[Crossref] [PubMed]

Sergey, S.

S. Sergey, C. Mou, E. Turitsyna, A. Rozhin, S. Turitsyn, and K. Blow, “Spiral attractor created by vector solitons,” Light Sci. Appl. 3(1), e131 (2014).
[Crossref]

Sergeyev, S. V.

Settgast, W.

Shen, Y. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Shimizu, H.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Soto-Crespo, J. M.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

Spanner, M.

M. Spanner, K. M. Davitt, and M. Y. Ivanov, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys. 115(18), 8403–8410 (2001).
[Crossref]

Spielmann, C.

Su, K. W.

Su, L. B.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Nd:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Sung, C. L.

Taday, P. F.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Tang, C. Y.

Tang, D.

Tang, D. Y.

Tao, X.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1), 135–140 (2010).
[Crossref]

Tao, X. T.

Thévenin, J.

Tonelli, M.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1), 135–140 (2010).
[Crossref]

Tong, L.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

Tribe, W. R.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Tuan, P. H.

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Turitsyn, S.

S. Sergey, C. Mou, E. Turitsyna, A. Rozhin, S. Turitsyn, and K. Blow, “Spiral attractor created by vector solitons,” Light Sci. Appl. 3(1), e131 (2014).
[Crossref]

Turitsyn, S. K.

Turitsyna, E.

S. Sergey, C. Mou, E. Turitsyna, A. Rozhin, S. Turitsyn, and K. Blow, “Spiral attractor created by vector solitons,” Light Sci. Appl. 3(1), e131 (2014).
[Crossref]

Tzeng, Y. S.

Ueda, K.

Vallet, M.

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

Wallace, V. P.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[Crossref]

Wang, C. L.

Wang, J. Y.

Wang, Q.

Wang, Y. G.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Nd:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

White, G. K.

G. K. White, “Thermal expansion of reference materials: copper, silica and silicon,” J. Phys. D Appl. Phys. 6(17), 2070–2078 (1973).
[Crossref]

Wynne, R.

Xie, G. Q.

Xu, C.

Xu, J.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Nd:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Z. Cong, D. Tang, W. De Tan, J. Zhang, C. Xu, D. Luo, X. Xu, D. Li, J. Xu, X. Zhang, and Q. Wang, “Dual-wavelength passively mode-locked Nd:LuYSiO5 laser with SESAM,” Opt. Express 19(5), 3984–3989 (2011).
[Crossref] [PubMed]

Xu, X.

Yang, Q.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Nd:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Yoshioka, K.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Yu, H. H.

Yu, Y. T.

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Zhang, H. J.

Zhang, J.

Zhang, X.

Zhang, X. C.

Zhao, L. M.

Zheng, L. H.

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Nd:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Zhong, H.

Appl. Opt. (2)

Appl. Phys. B (3)

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B 103(4), 841–846 (2011).
[Crossref]

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1), 135–140 (2010).
[Crossref]

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B 97(2), 451–455 (2009).
[Crossref]

Appl. Phys. Lett. (1)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of the linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[Crossref]

J. Chem. Phys. (1)

M. Spanner, K. M. Davitt, and M. Y. Ivanov, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys. 115(18), 8403–8410 (2001).
[Crossref]

J. Phys. D Appl. Phys. (2)

G. K. White, “Thermal expansion of reference materials: copper, silica and silicon,” J. Phys. D Appl. Phys. 6(17), 2070–2078 (1973).
[Crossref]

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[Crossref]

Laser Phys. Lett. (2)

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Q. Yang, Y. G. Wang, D. H. Liu, J. Liu, L. H. Zheng, L. B. Su, and J. Xu, “Dual-wavelength mode-locked Nd:LuYSiO5 laser with a double-walled carbon nanotube saturable absorber,” Laser Phys. Lett. 9(2), 135–140 (2012).
[Crossref]

Light Sci. Appl. (1)

S. Sergey, C. Mou, E. Turitsyna, A. Rozhin, S. Turitsyn, and K. Blow, “Spiral attractor created by vector solitons,” Light Sci. Appl. 3(1), e131 (2014).
[Crossref]

Nano Lett. (1)

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (8)

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[Crossref] [PubMed]

F. Krausz, T. Brabec, and C. Spielmann, “Self-starting passive mode locking,” Opt. Lett. 16(4), 235–237 (1991).
[Crossref] [PubMed]

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
[Crossref] [PubMed]

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[Crossref] [PubMed]

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen, “Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media,” Opt. Lett. 39(6), 1477–1480 (2014).
[Crossref] [PubMed]

J. Thévenin, M. Vallet, and M. Brunel, “Dual-polarization mode-locked Nd:YAG laser,” Opt. Lett. 37(14), 2859–2861 (2012).
[Crossref] [PubMed]

A. Owyoung and P. Esherick, “Stress-induced tuning of a diode-laser-excited monolithic Nd:YAG laser,” Opt. Lett. 12(12), 999–1001 (1987).
[Crossref] [PubMed]

C. L. Wang and C. L. Pan, “Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20(11), 1292–1294 (1995).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Opt. Photonics News (1)

M. Koch, “Terahertz technology: A land to be discovered,” Opt. Photonics News 18(3), 20–25 (2007).
[Crossref]

Phys. Rev. Lett. (3)

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

J. Javaloyes, J. Mulet, and S. Balle, “Passive mode locking of lasers by crossed-polarization gain modulation,” Phys. Rev. Lett. 97(16), 163902 (2006).
[Crossref] [PubMed]

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup for the monolithic Nd:YAG laser at cryogenic temperatures.
Fig. 2
Fig. 2 Normalized intensity of the two dominant peaks at 1061 and 1064 nm with respect to the temperature. The inset: the fluorescence spectra in the range of 1060-1066 nm for temperatures of 120, 190, and 290 K.
Fig. 3
Fig. 3 Output power with respect to the incident pump power for different temperatures of 120, 150, 190, 240, and 290 K.
Fig. 4
Fig. 4 The lasing spectra at the incident pump power of 5.5 W for different temperatures of 120, 150, 190, 240, and 290 K.
Fig. 5
Fig. 5 Autocorrelation traces under 190 K at an incident pump power of 5.5 W with the delay time of (a) 120 ps and (b) 16ps for the cryogenic monolithic Nd:YAG laser.
Fig. 6
Fig. 6 Temporal traces of the polarization-resolved output intensities under 190 K at an incident pump power of 1.1 W for (a) θ = 0° and θ = 90°, (b) θ = 45° and θ = 135°.
Fig. 7
Fig. 7 Schematic diagram of the lasing spectra at 1061 and 1064 nm for the monolithic Nd:YAG laser under 190 K at an incident pump power of 5.5 W.
Fig. 8
Fig. 8 Beat frequency of the self-mode-locked monolithic Nd:YAG laser measured as a function of temperature at an incident pump power of 1.1 W.

Metrics