Abstract

We report on the design, development and investigation of an optical system based on UV light emitting diode (LED) excitation at 340 nm for time-resolved fluorescence detection of immunoassays. The system was tested to measure cardiac marker Troponin I with a concentration of 200 ng/L in immunoassay. The signal-to-noise ratio was comparable to state-of-the-art Xenon flash lamp based unit with equal excitation energy and without overdriving the LED. We performed a comparative study of the flash lamp and the LED based system and discussed temporal, spatial, and spectral features of the LED excitation for time-resolved fluorimetry. Optimization of the suggested key parameters of the LED promises significant increase of the signal-to-noise ratio and hence of the sensitivity of immunoassay systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay

Olga Rodenko, Susann Eriksson, Peter Tidemand-Lichtenberg, Carl Peder Troldborg, Henrik Fodgaard, Sylvana van Os, and Christian Pedersen
Biomed. Opt. Express 8(8) 3749-3762 (2017)

Low repetition rate 343 nm passively Q-switched solid-state laser for time-resolved fluorescence spectroscopy

Olga Rodenko, Peter Tidemand-Lichtenberg, and Christian Pedersen
Opt. Express 26(16) 20614-20621 (2018)

Gas-phase molecular energy transfer studies with time-resolved spectroscopy

B. A. Carragher, J. Morrill, and W. Benesch
J. Opt. Soc. Am. B 8(1) 123-128 (1991)

References

  • View by:
  • |
  • |
  • |

  1. E. Soini and H. Kojola, “Time-resolved fluorometer for lanthanide chelates--a new generation of nonisotopic immunoassays,” Clin. Chem. 29(1), 65–68 (1983).
    [PubMed]
  2. G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, and T. M. Jovin, “Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60(6), 1374–1387 (1991).
    [Crossref] [PubMed]
  3. E. J. Hennink, R. de Haas, N. P. Verwoerd, and H. J. Tanke, “Evaluation of a time-resolved fluorescence microscope using a phosphorescent pt-porphine model system,” Cytometry 24(4), 312–320 (1996).
    [Crossref] [PubMed]
  4. E. P. Diamandis and T. K. Christopoulos, “Europium Chelate Labels in Time-Resolved Fluorescence immunoassays and DNA hybridization assays,” Anal. Chem. 62(22), 1149A–1157A (1990).
    [Crossref] [PubMed]
  5. L. Seveus, M. Väisälä, S. Syrjänen, M. Sandberg, A. Kuusisto, R. Harju, J. Salo, I. Hemmilä, H. Kojola, and E. Soini, “Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization,” Cytometry 13(4), 329–338 (1992).
    [Crossref] [PubMed]
  6. R. Connally, D. Veal, and J. Piper, “Flash lamp-excited time-resolved fluorescence microscope suppresses autofluorescence in water concentrates to deliver an 11-fold increase in signal-to-noise ratio,” J. Biomed. Opt. 9(4), 725–734 (2004).
    [Crossref] [PubMed]
  7. E. Reichstein, Y. Shami, M. Ramjeesingh, and E. P. Diamandis, “Laser-excited time-resolved solid-phase fluoroimmunoassays with the new europium chelate 4,7-Bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid as label,” Anal. Chem. 60(10), 1069–1074 (1988).
    [Crossref] [PubMed]
  8. D. Jin, R. Connally, and J. Piper, “Long-lived visible luminescence of UV LEDs and impact on LED excited time-resolved fluorescence applications,” J. Phys. D Appl. Phys. 39(3), 461–465 (2006).
    [Crossref]
  9. R. Connally, D. Jin, and J. Piper, “High intensity solid-state UV source for time-gated luminescence microscopy,” Cytometry A 69(9), 1020–1027 (2006).
    [Crossref] [PubMed]
  10. N. Gahlaut and L. W. Miller, “Time-resolved microscopy for imaging lanthanide luminescence in living cells,” Cytometry A 77(12), 1113–1125 (2010).
    [Crossref] [PubMed]
  11. K. Davitt, Y.-K. Song, W. Patterson Iii, A. Nurmikko, M. Gherasimova, J. Han, Y.-L. Pan, and R. Chang, “290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles,” Opt. Express 13(23), 9548–9555 (2005).
    [Crossref] [PubMed]
  12. H. Peng, E. Makarona, Y. He, Y.-K. Song, A. V. Nurmikko, J. Su, Z. Ren, M. Gherasimova, S.-R. Jeon, G. Cui, and J. Han, “Ultraviolet light-emitting diodes operating in the 340 nm wavelength range and application to time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 85(8), 1436–1438 (2004).
    [Crossref]
  13. P. von Lode, J. Rosenberg, K. Pettersson, and H. Takalo, “A europium chelate for quantitative point-of-care immunoassays using direct surface measurement,” Anal. Chem. 75(13), 3193–3201 (2003).
    [Crossref] [PubMed]
  14. N. K. Seitzinger, K. D. Hughes, and F. E. Lytle, “Optimization of signal-to-noise ratios in time-filtered fluorescence detection,” Anal. Chem. 61(23), 2611–2615 (1989).
    [Crossref]
  15. M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75(2), 149–169 (1997).
    [Crossref]

2010 (1)

N. Gahlaut and L. W. Miller, “Time-resolved microscopy for imaging lanthanide luminescence in living cells,” Cytometry A 77(12), 1113–1125 (2010).
[Crossref] [PubMed]

2006 (2)

D. Jin, R. Connally, and J. Piper, “Long-lived visible luminescence of UV LEDs and impact on LED excited time-resolved fluorescence applications,” J. Phys. D Appl. Phys. 39(3), 461–465 (2006).
[Crossref]

R. Connally, D. Jin, and J. Piper, “High intensity solid-state UV source for time-gated luminescence microscopy,” Cytometry A 69(9), 1020–1027 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (2)

H. Peng, E. Makarona, Y. He, Y.-K. Song, A. V. Nurmikko, J. Su, Z. Ren, M. Gherasimova, S.-R. Jeon, G. Cui, and J. Han, “Ultraviolet light-emitting diodes operating in the 340 nm wavelength range and application to time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 85(8), 1436–1438 (2004).
[Crossref]

R. Connally, D. Veal, and J. Piper, “Flash lamp-excited time-resolved fluorescence microscope suppresses autofluorescence in water concentrates to deliver an 11-fold increase in signal-to-noise ratio,” J. Biomed. Opt. 9(4), 725–734 (2004).
[Crossref] [PubMed]

2003 (1)

P. von Lode, J. Rosenberg, K. Pettersson, and H. Takalo, “A europium chelate for quantitative point-of-care immunoassays using direct surface measurement,” Anal. Chem. 75(13), 3193–3201 (2003).
[Crossref] [PubMed]

1997 (1)

M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75(2), 149–169 (1997).
[Crossref]

1996 (1)

E. J. Hennink, R. de Haas, N. P. Verwoerd, and H. J. Tanke, “Evaluation of a time-resolved fluorescence microscope using a phosphorescent pt-porphine model system,” Cytometry 24(4), 312–320 (1996).
[Crossref] [PubMed]

1992 (1)

L. Seveus, M. Väisälä, S. Syrjänen, M. Sandberg, A. Kuusisto, R. Harju, J. Salo, I. Hemmilä, H. Kojola, and E. Soini, “Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization,” Cytometry 13(4), 329–338 (1992).
[Crossref] [PubMed]

1991 (1)

G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, and T. M. Jovin, “Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60(6), 1374–1387 (1991).
[Crossref] [PubMed]

1990 (1)

E. P. Diamandis and T. K. Christopoulos, “Europium Chelate Labels in Time-Resolved Fluorescence immunoassays and DNA hybridization assays,” Anal. Chem. 62(22), 1149A–1157A (1990).
[Crossref] [PubMed]

1989 (1)

N. K. Seitzinger, K. D. Hughes, and F. E. Lytle, “Optimization of signal-to-noise ratios in time-filtered fluorescence detection,” Anal. Chem. 61(23), 2611–2615 (1989).
[Crossref]

1988 (1)

E. Reichstein, Y. Shami, M. Ramjeesingh, and E. P. Diamandis, “Laser-excited time-resolved solid-phase fluoroimmunoassays with the new europium chelate 4,7-Bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid as label,” Anal. Chem. 60(10), 1069–1074 (1988).
[Crossref] [PubMed]

1983 (1)

E. Soini and H. Kojola, “Time-resolved fluorometer for lanthanide chelates--a new generation of nonisotopic immunoassays,” Clin. Chem. 29(1), 65–68 (1983).
[PubMed]

Arndt-Jovin, D. J.

G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, and T. M. Jovin, “Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60(6), 1374–1387 (1991).
[Crossref] [PubMed]

Chang, R.

Christopoulos, T. K.

E. P. Diamandis and T. K. Christopoulos, “Europium Chelate Labels in Time-Resolved Fluorescence immunoassays and DNA hybridization assays,” Anal. Chem. 62(22), 1149A–1157A (1990).
[Crossref] [PubMed]

Clegg, R. M.

G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, and T. M. Jovin, “Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60(6), 1374–1387 (1991).
[Crossref] [PubMed]

Connally, R.

D. Jin, R. Connally, and J. Piper, “Long-lived visible luminescence of UV LEDs and impact on LED excited time-resolved fluorescence applications,” J. Phys. D Appl. Phys. 39(3), 461–465 (2006).
[Crossref]

R. Connally, D. Jin, and J. Piper, “High intensity solid-state UV source for time-gated luminescence microscopy,” Cytometry A 69(9), 1020–1027 (2006).
[Crossref] [PubMed]

R. Connally, D. Veal, and J. Piper, “Flash lamp-excited time-resolved fluorescence microscope suppresses autofluorescence in water concentrates to deliver an 11-fold increase in signal-to-noise ratio,” J. Biomed. Opt. 9(4), 725–734 (2004).
[Crossref] [PubMed]

Cui, G.

H. Peng, E. Makarona, Y. He, Y.-K. Song, A. V. Nurmikko, J. Su, Z. Ren, M. Gherasimova, S.-R. Jeon, G. Cui, and J. Han, “Ultraviolet light-emitting diodes operating in the 340 nm wavelength range and application to time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 85(8), 1436–1438 (2004).
[Crossref]

Davitt, K.

de Haas, R.

E. J. Hennink, R. de Haas, N. P. Verwoerd, and H. J. Tanke, “Evaluation of a time-resolved fluorescence microscope using a phosphorescent pt-porphine model system,” Cytometry 24(4), 312–320 (1996).
[Crossref] [PubMed]

Diamandis, E. P.

E. P. Diamandis and T. K. Christopoulos, “Europium Chelate Labels in Time-Resolved Fluorescence immunoassays and DNA hybridization assays,” Anal. Chem. 62(22), 1149A–1157A (1990).
[Crossref] [PubMed]

E. Reichstein, Y. Shami, M. Ramjeesingh, and E. P. Diamandis, “Laser-excited time-resolved solid-phase fluoroimmunoassays with the new europium chelate 4,7-Bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid as label,” Anal. Chem. 60(10), 1069–1074 (1988).
[Crossref] [PubMed]

Gahlaut, N.

N. Gahlaut and L. W. Miller, “Time-resolved microscopy for imaging lanthanide luminescence in living cells,” Cytometry A 77(12), 1113–1125 (2010).
[Crossref] [PubMed]

Gherasimova, M.

K. Davitt, Y.-K. Song, W. Patterson Iii, A. Nurmikko, M. Gherasimova, J. Han, Y.-L. Pan, and R. Chang, “290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles,” Opt. Express 13(23), 9548–9555 (2005).
[Crossref] [PubMed]

H. Peng, E. Makarona, Y. He, Y.-K. Song, A. V. Nurmikko, J. Su, Z. Ren, M. Gherasimova, S.-R. Jeon, G. Cui, and J. Han, “Ultraviolet light-emitting diodes operating in the 340 nm wavelength range and application to time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 85(8), 1436–1438 (2004).
[Crossref]

Han, J.

K. Davitt, Y.-K. Song, W. Patterson Iii, A. Nurmikko, M. Gherasimova, J. Han, Y.-L. Pan, and R. Chang, “290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles,” Opt. Express 13(23), 9548–9555 (2005).
[Crossref] [PubMed]

H. Peng, E. Makarona, Y. He, Y.-K. Song, A. V. Nurmikko, J. Su, Z. Ren, M. Gherasimova, S.-R. Jeon, G. Cui, and J. Han, “Ultraviolet light-emitting diodes operating in the 340 nm wavelength range and application to time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 85(8), 1436–1438 (2004).
[Crossref]

Harju, R.

L. Seveus, M. Väisälä, S. Syrjänen, M. Sandberg, A. Kuusisto, R. Harju, J. Salo, I. Hemmilä, H. Kojola, and E. Soini, “Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization,” Cytometry 13(4), 329–338 (1992).
[Crossref] [PubMed]

He, Y.

H. Peng, E. Makarona, Y. He, Y.-K. Song, A. V. Nurmikko, J. Su, Z. Ren, M. Gherasimova, S.-R. Jeon, G. Cui, and J. Han, “Ultraviolet light-emitting diodes operating in the 340 nm wavelength range and application to time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 85(8), 1436–1438 (2004).
[Crossref]

Hemmilä, I.

L. Seveus, M. Väisälä, S. Syrjänen, M. Sandberg, A. Kuusisto, R. Harju, J. Salo, I. Hemmilä, H. Kojola, and E. Soini, “Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization,” Cytometry 13(4), 329–338 (1992).
[Crossref] [PubMed]

Hennink, E. J.

E. J. Hennink, R. de Haas, N. P. Verwoerd, and H. J. Tanke, “Evaluation of a time-resolved fluorescence microscope using a phosphorescent pt-porphine model system,” Cytometry 24(4), 312–320 (1996).
[Crossref] [PubMed]

Hughes, K. D.

N. K. Seitzinger, K. D. Hughes, and F. E. Lytle, “Optimization of signal-to-noise ratios in time-filtered fluorescence detection,” Anal. Chem. 61(23), 2611–2615 (1989).
[Crossref]

Jeon, S.-R.

H. Peng, E. Makarona, Y. He, Y.-K. Song, A. V. Nurmikko, J. Su, Z. Ren, M. Gherasimova, S.-R. Jeon, G. Cui, and J. Han, “Ultraviolet light-emitting diodes operating in the 340 nm wavelength range and application to time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 85(8), 1436–1438 (2004).
[Crossref]

Jin, D.

R. Connally, D. Jin, and J. Piper, “High intensity solid-state UV source for time-gated luminescence microscopy,” Cytometry A 69(9), 1020–1027 (2006).
[Crossref] [PubMed]

D. Jin, R. Connally, and J. Piper, “Long-lived visible luminescence of UV LEDs and impact on LED excited time-resolved fluorescence applications,” J. Phys. D Appl. Phys. 39(3), 461–465 (2006).
[Crossref]

Jovin, T. M.

G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, and T. M. Jovin, “Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60(6), 1374–1387 (1991).
[Crossref] [PubMed]

Kankare, J.

M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75(2), 149–169 (1997).
[Crossref]

Kojola, H.

L. Seveus, M. Väisälä, S. Syrjänen, M. Sandberg, A. Kuusisto, R. Harju, J. Salo, I. Hemmilä, H. Kojola, and E. Soini, “Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization,” Cytometry 13(4), 329–338 (1992).
[Crossref] [PubMed]

E. Soini and H. Kojola, “Time-resolved fluorometer for lanthanide chelates--a new generation of nonisotopic immunoassays,” Clin. Chem. 29(1), 65–68 (1983).
[PubMed]

Kuusisto, A.

L. Seveus, M. Väisälä, S. Syrjänen, M. Sandberg, A. Kuusisto, R. Harju, J. Salo, I. Hemmilä, H. Kojola, and E. Soini, “Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization,” Cytometry 13(4), 329–338 (1992).
[Crossref] [PubMed]

Latva, M.

M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75(2), 149–169 (1997).
[Crossref]

Lytle, F. E.

N. K. Seitzinger, K. D. Hughes, and F. E. Lytle, “Optimization of signal-to-noise ratios in time-filtered fluorescence detection,” Anal. Chem. 61(23), 2611–2615 (1989).
[Crossref]

Makarona, E.

H. Peng, E. Makarona, Y. He, Y.-K. Song, A. V. Nurmikko, J. Su, Z. Ren, M. Gherasimova, S.-R. Jeon, G. Cui, and J. Han, “Ultraviolet light-emitting diodes operating in the 340 nm wavelength range and application to time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 85(8), 1436–1438 (2004).
[Crossref]

Marriott, G.

G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, and T. M. Jovin, “Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60(6), 1374–1387 (1991).
[Crossref] [PubMed]

Matachescu, C.

M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75(2), 149–169 (1997).
[Crossref]

Miller, L. W.

N. Gahlaut and L. W. Miller, “Time-resolved microscopy for imaging lanthanide luminescence in living cells,” Cytometry A 77(12), 1113–1125 (2010).
[Crossref] [PubMed]

Mukkala, V.-M.

M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75(2), 149–169 (1997).
[Crossref]

Nurmikko, A.

Nurmikko, A. V.

H. Peng, E. Makarona, Y. He, Y.-K. Song, A. V. Nurmikko, J. Su, Z. Ren, M. Gherasimova, S.-R. Jeon, G. Cui, and J. Han, “Ultraviolet light-emitting diodes operating in the 340 nm wavelength range and application to time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 85(8), 1436–1438 (2004).
[Crossref]

Pan, Y.-L.

Patterson Iii, W.

Peng, H.

H. Peng, E. Makarona, Y. He, Y.-K. Song, A. V. Nurmikko, J. Su, Z. Ren, M. Gherasimova, S.-R. Jeon, G. Cui, and J. Han, “Ultraviolet light-emitting diodes operating in the 340 nm wavelength range and application to time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 85(8), 1436–1438 (2004).
[Crossref]

Pettersson, K.

P. von Lode, J. Rosenberg, K. Pettersson, and H. Takalo, “A europium chelate for quantitative point-of-care immunoassays using direct surface measurement,” Anal. Chem. 75(13), 3193–3201 (2003).
[Crossref] [PubMed]

Piper, J.

R. Connally, D. Jin, and J. Piper, “High intensity solid-state UV source for time-gated luminescence microscopy,” Cytometry A 69(9), 1020–1027 (2006).
[Crossref] [PubMed]

D. Jin, R. Connally, and J. Piper, “Long-lived visible luminescence of UV LEDs and impact on LED excited time-resolved fluorescence applications,” J. Phys. D Appl. Phys. 39(3), 461–465 (2006).
[Crossref]

R. Connally, D. Veal, and J. Piper, “Flash lamp-excited time-resolved fluorescence microscope suppresses autofluorescence in water concentrates to deliver an 11-fold increase in signal-to-noise ratio,” J. Biomed. Opt. 9(4), 725–734 (2004).
[Crossref] [PubMed]

Ramjeesingh, M.

E. Reichstein, Y. Shami, M. Ramjeesingh, and E. P. Diamandis, “Laser-excited time-resolved solid-phase fluoroimmunoassays with the new europium chelate 4,7-Bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid as label,” Anal. Chem. 60(10), 1069–1074 (1988).
[Crossref] [PubMed]

Reichstein, E.

E. Reichstein, Y. Shami, M. Ramjeesingh, and E. P. Diamandis, “Laser-excited time-resolved solid-phase fluoroimmunoassays with the new europium chelate 4,7-Bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid as label,” Anal. Chem. 60(10), 1069–1074 (1988).
[Crossref] [PubMed]

Ren, Z.

H. Peng, E. Makarona, Y. He, Y.-K. Song, A. V. Nurmikko, J. Su, Z. Ren, M. Gherasimova, S.-R. Jeon, G. Cui, and J. Han, “Ultraviolet light-emitting diodes operating in the 340 nm wavelength range and application to time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 85(8), 1436–1438 (2004).
[Crossref]

Rodriguez-Ubis, J. C.

M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75(2), 149–169 (1997).
[Crossref]

Rosenberg, J.

P. von Lode, J. Rosenberg, K. Pettersson, and H. Takalo, “A europium chelate for quantitative point-of-care immunoassays using direct surface measurement,” Anal. Chem. 75(13), 3193–3201 (2003).
[Crossref] [PubMed]

Salo, J.

L. Seveus, M. Väisälä, S. Syrjänen, M. Sandberg, A. Kuusisto, R. Harju, J. Salo, I. Hemmilä, H. Kojola, and E. Soini, “Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization,” Cytometry 13(4), 329–338 (1992).
[Crossref] [PubMed]

Sandberg, M.

L. Seveus, M. Väisälä, S. Syrjänen, M. Sandberg, A. Kuusisto, R. Harju, J. Salo, I. Hemmilä, H. Kojola, and E. Soini, “Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization,” Cytometry 13(4), 329–338 (1992).
[Crossref] [PubMed]

Seitzinger, N. K.

N. K. Seitzinger, K. D. Hughes, and F. E. Lytle, “Optimization of signal-to-noise ratios in time-filtered fluorescence detection,” Anal. Chem. 61(23), 2611–2615 (1989).
[Crossref]

Seveus, L.

L. Seveus, M. Väisälä, S. Syrjänen, M. Sandberg, A. Kuusisto, R. Harju, J. Salo, I. Hemmilä, H. Kojola, and E. Soini, “Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization,” Cytometry 13(4), 329–338 (1992).
[Crossref] [PubMed]

Shami, Y.

E. Reichstein, Y. Shami, M. Ramjeesingh, and E. P. Diamandis, “Laser-excited time-resolved solid-phase fluoroimmunoassays with the new europium chelate 4,7-Bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid as label,” Anal. Chem. 60(10), 1069–1074 (1988).
[Crossref] [PubMed]

Soini, E.

L. Seveus, M. Väisälä, S. Syrjänen, M. Sandberg, A. Kuusisto, R. Harju, J. Salo, I. Hemmilä, H. Kojola, and E. Soini, “Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization,” Cytometry 13(4), 329–338 (1992).
[Crossref] [PubMed]

E. Soini and H. Kojola, “Time-resolved fluorometer for lanthanide chelates--a new generation of nonisotopic immunoassays,” Clin. Chem. 29(1), 65–68 (1983).
[PubMed]

Song, Y.-K.

K. Davitt, Y.-K. Song, W. Patterson Iii, A. Nurmikko, M. Gherasimova, J. Han, Y.-L. Pan, and R. Chang, “290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles,” Opt. Express 13(23), 9548–9555 (2005).
[Crossref] [PubMed]

H. Peng, E. Makarona, Y. He, Y.-K. Song, A. V. Nurmikko, J. Su, Z. Ren, M. Gherasimova, S.-R. Jeon, G. Cui, and J. Han, “Ultraviolet light-emitting diodes operating in the 340 nm wavelength range and application to time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 85(8), 1436–1438 (2004).
[Crossref]

Su, J.

H. Peng, E. Makarona, Y. He, Y.-K. Song, A. V. Nurmikko, J. Su, Z. Ren, M. Gherasimova, S.-R. Jeon, G. Cui, and J. Han, “Ultraviolet light-emitting diodes operating in the 340 nm wavelength range and application to time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 85(8), 1436–1438 (2004).
[Crossref]

Syrjänen, S.

L. Seveus, M. Väisälä, S. Syrjänen, M. Sandberg, A. Kuusisto, R. Harju, J. Salo, I. Hemmilä, H. Kojola, and E. Soini, “Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization,” Cytometry 13(4), 329–338 (1992).
[Crossref] [PubMed]

Takalo, H.

P. von Lode, J. Rosenberg, K. Pettersson, and H. Takalo, “A europium chelate for quantitative point-of-care immunoassays using direct surface measurement,” Anal. Chem. 75(13), 3193–3201 (2003).
[Crossref] [PubMed]

M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75(2), 149–169 (1997).
[Crossref]

Tanke, H. J.

E. J. Hennink, R. de Haas, N. P. Verwoerd, and H. J. Tanke, “Evaluation of a time-resolved fluorescence microscope using a phosphorescent pt-porphine model system,” Cytometry 24(4), 312–320 (1996).
[Crossref] [PubMed]

Väisälä, M.

L. Seveus, M. Väisälä, S. Syrjänen, M. Sandberg, A. Kuusisto, R. Harju, J. Salo, I. Hemmilä, H. Kojola, and E. Soini, “Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization,” Cytometry 13(4), 329–338 (1992).
[Crossref] [PubMed]

Veal, D.

R. Connally, D. Veal, and J. Piper, “Flash lamp-excited time-resolved fluorescence microscope suppresses autofluorescence in water concentrates to deliver an 11-fold increase in signal-to-noise ratio,” J. Biomed. Opt. 9(4), 725–734 (2004).
[Crossref] [PubMed]

Verwoerd, N. P.

E. J. Hennink, R. de Haas, N. P. Verwoerd, and H. J. Tanke, “Evaluation of a time-resolved fluorescence microscope using a phosphorescent pt-porphine model system,” Cytometry 24(4), 312–320 (1996).
[Crossref] [PubMed]

von Lode, P.

P. von Lode, J. Rosenberg, K. Pettersson, and H. Takalo, “A europium chelate for quantitative point-of-care immunoassays using direct surface measurement,” Anal. Chem. 75(13), 3193–3201 (2003).
[Crossref] [PubMed]

Anal. Chem. (4)

E. P. Diamandis and T. K. Christopoulos, “Europium Chelate Labels in Time-Resolved Fluorescence immunoassays and DNA hybridization assays,” Anal. Chem. 62(22), 1149A–1157A (1990).
[Crossref] [PubMed]

E. Reichstein, Y. Shami, M. Ramjeesingh, and E. P. Diamandis, “Laser-excited time-resolved solid-phase fluoroimmunoassays with the new europium chelate 4,7-Bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid as label,” Anal. Chem. 60(10), 1069–1074 (1988).
[Crossref] [PubMed]

P. von Lode, J. Rosenberg, K. Pettersson, and H. Takalo, “A europium chelate for quantitative point-of-care immunoassays using direct surface measurement,” Anal. Chem. 75(13), 3193–3201 (2003).
[Crossref] [PubMed]

N. K. Seitzinger, K. D. Hughes, and F. E. Lytle, “Optimization of signal-to-noise ratios in time-filtered fluorescence detection,” Anal. Chem. 61(23), 2611–2615 (1989).
[Crossref]

Appl. Phys. Lett. (1)

H. Peng, E. Makarona, Y. He, Y.-K. Song, A. V. Nurmikko, J. Su, Z. Ren, M. Gherasimova, S.-R. Jeon, G. Cui, and J. Han, “Ultraviolet light-emitting diodes operating in the 340 nm wavelength range and application to time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 85(8), 1436–1438 (2004).
[Crossref]

Biophys. J. (1)

G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, and T. M. Jovin, “Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60(6), 1374–1387 (1991).
[Crossref] [PubMed]

Clin. Chem. (1)

E. Soini and H. Kojola, “Time-resolved fluorometer for lanthanide chelates--a new generation of nonisotopic immunoassays,” Clin. Chem. 29(1), 65–68 (1983).
[PubMed]

Cytometry (2)

E. J. Hennink, R. de Haas, N. P. Verwoerd, and H. J. Tanke, “Evaluation of a time-resolved fluorescence microscope using a phosphorescent pt-porphine model system,” Cytometry 24(4), 312–320 (1996).
[Crossref] [PubMed]

L. Seveus, M. Väisälä, S. Syrjänen, M. Sandberg, A. Kuusisto, R. Harju, J. Salo, I. Hemmilä, H. Kojola, and E. Soini, “Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization,” Cytometry 13(4), 329–338 (1992).
[Crossref] [PubMed]

Cytometry A (2)

R. Connally, D. Jin, and J. Piper, “High intensity solid-state UV source for time-gated luminescence microscopy,” Cytometry A 69(9), 1020–1027 (2006).
[Crossref] [PubMed]

N. Gahlaut and L. W. Miller, “Time-resolved microscopy for imaging lanthanide luminescence in living cells,” Cytometry A 77(12), 1113–1125 (2010).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

R. Connally, D. Veal, and J. Piper, “Flash lamp-excited time-resolved fluorescence microscope suppresses autofluorescence in water concentrates to deliver an 11-fold increase in signal-to-noise ratio,” J. Biomed. Opt. 9(4), 725–734 (2004).
[Crossref] [PubMed]

J. Lumin. (1)

M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75(2), 149–169 (1997).
[Crossref]

J. Phys. D Appl. Phys. (1)

D. Jin, R. Connally, and J. Piper, “Long-lived visible luminescence of UV LEDs and impact on LED excited time-resolved fluorescence applications,” J. Phys. D Appl. Phys. 39(3), 461–465 (2006).
[Crossref]

Opt. Express (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic layout of the optical system including excitation and detection light paths.
Fig. 2
Fig. 2 Images formed in the test cup and its normalized intensity distribution, a) modeled LED image using commercial ray trace software; b) experimentally obtained LED image; the blue circle shows the boundary of cup bottom which is 6.7 mm in diameter; c) image of flash lamp arc (current light source). The illuminated area is 2x4 mm2, thus three times smaller than that of the LED image.
Fig. 3
Fig. 3 Left: Normalized excitation spectrum of Europium chelate (green), normalized emission spectrum of the LED (red), and normalized emission spectrum of the filtered flash lamp (blue); right: normalized emission spectra of the LED for different LED currents ranging from 100 mA to 1 A (curves overlap); inset figure: normalized irradiance of the LED in logarithmic scale (chelate excitation spectrum courtesy: Radiometer Turku).
Fig. 4
Fig. 4 Excitation pulse energy delivered to the cup vs. LED current. The pulse width is 200 μs and the duty cycle is 0.05. At a current of 370 mA, the delivered energy is equal to that of the currently used Xenon flash lamp. Energy levels up to 15 μJ are achieved when overdriving the LED three times above the specified maximum current of 500 mA (indicated by the dotted line).
Fig. 5
Fig. 5 Left: time response of the LED pulse triggering system; trigger pulse from the FPGA (dark blue); pulse generator (light blue); LED current pulse (magenta); and optical output (light green). The delay between the LED current pulse and the trigger is 8 μs and the LED fall time is below 3 μs; right: the Xenon flash lamp pulse showing a FWHM of 200 ns and a fall time of 400 ns.
Fig. 6
Fig. 6 Left: excitation pulse and number of excited molecules for a LED pulse of 200 μs (orange curve) and a 200 ns flash lamp pulse (blue curve); during the excitation pulse the number of excited molecules builds up exponentially and reaches the maximum value by the end of the pulse; then it decays exponentially with the decay rate constant, k, related to the europium lifetime of 1 ms. The number of excited molecules is 10% smaller for the longer excitation pulse; right: number of excited molecules vs. excitation pulse width with constant total energy for different fluorophore lifetimes.
Fig. 7
Fig. 7 Signal-to-noise ratio averaged for four cups vs. LED current for a TnI concentration of 200 ng/L; the SNR grows with the square root of excitation power (red circles); blue square and magenta rhomb show mean values for an experiment with 15 replicates for the flash lamp and LED based unit, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dN dt = R(t)kN
N 0 = R(t) k {1exp(k τ p )}
N(t)=R(t)τ{1exp( τ p τ )}exp( t τ )

Metrics