Abstract

We demonstrate 20 Gsymbol/s, 256 QAM polarization multiplexed (pol-mux) 320 Gbit/s coherent transmission. By employing an LD-based injection locking circuit, we achieved low noise optical carrier-phase locking between the LO and the data signal. Furthermore, frequency domain equalization and digital back-propagation enabled us to realize precise compensation for transmitted waveform distortions. As a result, a 320 Gbit/s data was successfully transmitted over 160 km with a potential spectral efficiency of 10.9 bit/s/Hz. This is the highest symbol rate yet achieved in a pol-mux 256 QAM coherent transmission. In addition, we also describe a pol-mux 256 QAM transmission at a symbol rate of 10 Gsymbol/s.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-channel 200 Gbit/s, 10 Gsymbol/s-1024 QAM injection-locked coherent transmission over 160 km with a pilot-assisted adaptive equalizer

Yixin Wang, Seiji Okamoto, Keisuke Kasai, Masato Yoshida, and Masataka Nakazawa
Opt. Express 26(13) 17015-17024 (2018)

120 Gbit/s, polarization-multiplexed 10 Gsymbol/s, 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator

Yixin Wang, Keisuke Kasai, Tatsunori Omiya, and Masataka Nakazawa
Opt. Express 21(23) 28290-28296 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Kikuchi, “Coherent detection of phase-shift keying signals using digital carrier-phase estimation,” in Proceedings of the Optical Fiber Communication Conference (OFC, 2006), paper OTuI4.
    [Crossref]
  2. R. Noe, “PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing,” IEEE Photonics Technol. Lett. 17(4), 887–889 (2005).
    [Crossref]
  3. D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in Proceedings of the Optical Fiber Communication Conference (OFC, 2011), paper PDPB5.
  4. R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, and J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012).
    [Crossref] [PubMed]
  5. M. Huang, D. Qian, and E. Ip, “50.53-Gb/s PDM-1024QAM-OFDM transmission using pilot-based phase noise mitigation,” in Proceedings of Optoelectronics and Communications Conference (OECC, 2011), paper PDP1.
  6. R. Maher, L. Galdino, D. J. Elson, D. Lavery, A. Alvarado, and P. Bayvel, “Algorithms and reach enhancement for ultra high bandwidth transceivers,” in Proceedings of the Optical Fiber Communication Conference (OFC, 2016), paper Th3A.1.
    [Crossref]
  7. H. Chien, Z. Jia, and J. Yu, “256-Gb/s single-carrier PM-256QAM implementation using coordinated DD-LMS and CMA equalization,” in Proceedings of the European Conference on Optical Communications (ECOC, 2015), paper Mo.3.3.2.
    [Crossref]
  8. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
    [Crossref] [PubMed]
  9. K. Kasai, Y. Wang, S. Beppu, M. Yoshida, and M. Nakazawa, “80 Gbit/s, 256 QAM coherent transmission over 150 km with an injection-locked homodyne receiver,” Opt. Express 23(22), 29174–29183 (2015).
    [Crossref] [PubMed]
  10. K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H. Masuda, and Y. Miyamoto, “Coherent optical transmission with frequency-domain equalization,” in Proceedings of the European Conference on Optical Communications (ECOC, 2008), paper We2E3.
    [Crossref]
  11. C. Paré, A. Villeneuve, P.-A. Bélanger, and N. J. Doran, “Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,” Opt. Lett. 21(7), 459–461 (1996).
    [Crossref] [PubMed]
  12. L. Stolpner, S. Lee, S. Li, A. Mehnert, P. Mols, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7004, 700457 (2008).
    [Crossref]
  13. Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “120 Gbit/s injection-locked homodyne coherent transmission of polarization-multiplexed 64 QAM signals over 150 km,” Opt. Express 22(25), 31310–31316 (2014).
    [Crossref] [PubMed]
  14. R. H. Walden, “Analog–to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
    [Crossref]
  15. B. Szafraniec, B. Nebendahl, and T. Marshall, “Polarization demultiplexing in Stokes space,” Opt. Express 18(17), 17928–17939 (2010).
    [Crossref] [PubMed]

2015 (2)

2014 (1)

2012 (1)

2010 (1)

2008 (1)

L. Stolpner, S. Lee, S. Li, A. Mehnert, P. Mols, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7004, 700457 (2008).
[Crossref]

2005 (1)

R. Noe, “PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing,” IEEE Photonics Technol. Lett. 17(4), 887–889 (2005).
[Crossref]

1999 (1)

R. H. Walden, “Analog–to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[Crossref]

1996 (1)

Bäuerle, B.

Bélanger, P.-A.

Beppu, S.

Bush, J.

L. Stolpner, S. Lee, S. Li, A. Mehnert, P. Mols, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7004, 700457 (2008).
[Crossref]

Dippon, T.

Doran, N. J.

Freude, W.

Hillerkuss, D.

Kasai, K.

Kleinow, P.

Koos, C.

Lee, S.

L. Stolpner, S. Lee, S. Li, A. Mehnert, P. Mols, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7004, 700457 (2008).
[Crossref]

Leuthold, J.

Li, S.

L. Stolpner, S. Lee, S. Li, A. Mehnert, P. Mols, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7004, 700457 (2008).
[Crossref]

Marshall, T.

Mehnert, A.

L. Stolpner, S. Lee, S. Li, A. Mehnert, P. Mols, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7004, 700457 (2008).
[Crossref]

Mols, P.

L. Stolpner, S. Lee, S. Li, A. Mehnert, P. Mols, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7004, 700457 (2008).
[Crossref]

Nakazawa, M.

Nebendahl, B.

Noe, R.

R. Noe, “PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing,” IEEE Photonics Technol. Lett. 17(4), 887–889 (2005).
[Crossref]

Paré, C.

Schindler, P. C.

Schmogrow, R.

Siala, S.

L. Stolpner, S. Lee, S. Li, A. Mehnert, P. Mols, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7004, 700457 (2008).
[Crossref]

Stolpner, L.

L. Stolpner, S. Lee, S. Li, A. Mehnert, P. Mols, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7004, 700457 (2008).
[Crossref]

Szafraniec, B.

Villeneuve, A.

Walden, R. H.

R. H. Walden, “Analog–to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[Crossref]

Wang, Y.

Winter, M.

Wolf, S.

Yoshida, M.

IEEE J. Sel. Areas Comm. (1)

R. H. Walden, “Analog–to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. Noe, “PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing,” IEEE Photonics Technol. Lett. 17(4), 887–889 (2005).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Proc. SPIE (1)

L. Stolpner, S. Lee, S. Li, A. Mehnert, P. Mols, S. Siala, and J. Bush, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7004, 700457 (2008).
[Crossref]

Other (6)

K. Kikuchi, “Coherent detection of phase-shift keying signals using digital carrier-phase estimation,” in Proceedings of the Optical Fiber Communication Conference (OFC, 2006), paper OTuI4.
[Crossref]

M. Huang, D. Qian, and E. Ip, “50.53-Gb/s PDM-1024QAM-OFDM transmission using pilot-based phase noise mitigation,” in Proceedings of Optoelectronics and Communications Conference (OECC, 2011), paper PDP1.

R. Maher, L. Galdino, D. J. Elson, D. Lavery, A. Alvarado, and P. Bayvel, “Algorithms and reach enhancement for ultra high bandwidth transceivers,” in Proceedings of the Optical Fiber Communication Conference (OFC, 2016), paper Th3A.1.
[Crossref]

H. Chien, Z. Jia, and J. Yu, “256-Gb/s single-carrier PM-256QAM implementation using coordinated DD-LMS and CMA equalization,” in Proceedings of the European Conference on Optical Communications (ECOC, 2015), paper Mo.3.3.2.
[Crossref]

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H. Masuda, and Y. Miyamoto, “Coherent optical transmission with frequency-domain equalization,” in Proceedings of the European Conference on Optical Communications (ECOC, 2008), paper We2E3.
[Crossref]

D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in Proceedings of the Optical Fiber Communication Conference (OFC, 2011), paper PDPB5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Experimental setup for 320 Gbit/s pol-mux, 256 QAM-160 km coherent transmission.
Fig. 2
Fig. 2 Optical spectra of 20 Gsymbol/s 256 QAM data and pilot tone signals (0.01 nm resolution bandwidth).
Fig. 3
Fig. 3 IF spectrum of beat between pilot and injection-locked LO in (a) 2 MHz span and, (b) its SSB phase noise spectrum (10 Hz~1 MHz).
Fig. 4
Fig. 4 Constellations for a 20 Gsymbol/s, 256 QAM signal under a back-to-back condition when equalized with (a) an FIR filter and (b) FDE.
Fig. 5
Fig. 5 Optical spectra of 20 Gsymbol/s 256 QAM data signal before and after 160 km transmission (0.1 nm resolution bandwidth).
Fig. 6
Fig. 6 (a) BER characteristics for pol-mux, 20 Gsymbol/s, 256 QAM (320 Gbit/s)-160 km transmission, (b) constellations for 160 km transmission.
Fig. 7
Fig. 7 RF spectrum of demodulated 20 Gsymbol/s 256 QAM signal.
Fig. 8
Fig. 8 Optical spectra of 10 Gsymbol/s 256 QAM data signal before and after a 160 km transmission (0.1 nm resolution bandwidth).
Fig. 9
Fig. 9 BER characteristics for pol-mux, 10 Gsymbol/s, 256 QAM (160 Gbit/s)-160 km transmission.
Fig. 10
Fig. 10 Constellations for a 10 Gsymbol/s, 256 QAM signal for (a) back-to-back, and (b) 160 km transmissions.
Fig. 11
Fig. 11 RF spectrum of demodulated 10 Gsymbol/s 256 QAM signal.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ENOB(bit)= SNR(dB)1.76 6.02

Metrics