Abstract

Imaging-based flow measurement techniques, like particle image velocimetry (PIV), are vulnerable to time-varying distortions like refractive index inhomogeneities or fluctuating phase boundaries. Such distortions strongly increase the velocity error, as the position assignment of the tracer particles and the decrease of image contrast exhibit significant uncertainties. We demonstrate that wavefront shaping based on spatially distributed guide stars has the potential to significantly reduce the measurement uncertainty. Proof of concept experiments show an improvement by more than one order of magnitude. Possible applications for the wavefront shaping PIV range from measurements in jets and film flows to biomedical applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interferometric velocity measurements through a fluctuating phase boundary using two Fresnel guide stars

Hannes Radner, Lars Büttner, and Jürgen Czarske
Opt. Lett. 40(16) 3766-3769 (2015)

Spiral phase mask shadow-imaging for 3D-measurement of flow fields

Martin Teich, Michael Mattern, Jeremy Sturm, Lars Büttner, and Jürgen W. Czarske
Opt. Express 24(24) 27371-27381 (2016)

Volume three-dimensional flow measurements using wavelength multiplexing

Andrew J. Moore, Jason Smith, and Nicholas J. Lawson
Opt. Lett. 30(19) 2569-2571 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
    [Crossref]
  2. A. Ronald and J. Westerweel, Particle Image Velocimetry (Cambridge University, 2010).
  3. M. Raffel, C. E. Willert, S. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide, 2nd ed. (Springer, 2007).
  4. J. Westerweel, G. E. Elsinga, and R. J. Adrian, “Particle image velocimetry for complex and turbulent flows,” Annu. Rev. Fluid Mech. 45(1), 409–436 (2013).
    [Crossref]
  5. J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8(12), 1379–1392 (1997).
    [Crossref]
  6. H. G. Maas, A. Gruen, and D. Papantoniou, “Particle tracking velocimetry in three-dimensional flows,” Exp. Fluids 15(2), 133–146 (1993).
    [Crossref]
  7. A. A. Adamczyk and L. Rimai, “2D particle tracking velocimetry (PTV): Technique and image processing algorithms,” Exp. Fluids 6(6), 373–380 (1988).
    [Crossref]
  8. D. Reuss, L. David, M. Megerle, and V. Sick, “Particle-image velocimetry measurement errors when imaging through a transparent engine cylinder,” Meas. Sci. Technol. 13(7), 1029–1035 (2012).
    [Crossref]
  9. G. Minor, P. Oshkai, and N. Djilali, “Optical distortion correction for liquid droplet visualization using the ray tracing method: further considerations,” Meas. Sci. Technol. 18(11), L23–L28 (2007).
    [Crossref]
  10. B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: Multi-parameter high-speed planar laser diagnostics,” Flow Turbul. Combus. 86(3), 313–341 (2010).
    [Crossref]
  11. C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17(7), 1670–1679 (2006).
    [Crossref]
  12. G. E. Elsinga, B. W. van Oudheusden, and F. Scarano, “Evaluation of aero-optical distortion effects in PIV,” Exp. Fluids 39(2), 246–256 (2005).
    [Crossref]
  13. T. Weier, C. Cierpka, J. Hüller, and G. Gerbeth, “Velocity measurements and concentration field visualizations in copper electrolysis under the influence of Lorentz forces and buoyancy,” Magnetohydrodynamics 42, 379–387 (2006).
  14. J. König, K. Tschulik, L. Büttner, M. Uhlemann, and J. Czarske, “Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields,” Anal. Chem. 85(6), 3087–3094 (2013).
    [Crossref] [PubMed]
  15. G. Gomit, L. Chatellier, D. Calluaud, and D. Laurent, “Free surface measurement by stereorefraction,” Exp. Fluids 54(6), 1540 (2013).
    [Crossref]
  16. E. Schleicher, M. J. da Silva, S. Thiele, A. Li, E. Wollrab, and U. Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
    [Crossref]
  17. Y. Abe, Y. Yamamoto, D. Hyuga, K. Aoki, and A. Fujiwara, “Interfacial stability and internal flow of a levitated droplet,” Microgravity Sci. Technol. 19(3-4), 33–34 (2007).
    [Crossref]
  18. A. E. Hosoi and J. W. Bush, “Evaporative instabilities in climbing films,” J. Fluid Mech. 442, 217–239 (2001).
    [Crossref]
  19. S. Kalliadasis, C. Ruyer-Quil, B. Scheid, and M. G. Velarde, Falling Liquid Films (Springer, 2012).
  20. R. Schlüßler, J. Czarske, and A. Fischer, “Uncertainty of flow velocity measurements due to refractive index fluctuations,” Opt. Lasers Eng. 54, 93–104 (2014).
    [Crossref]
  21. R. Tyson, Principles of Adaptive Optics (CRC Press, 2010).
  22. I. M. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).
  23. M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
    [Crossref]
  24. M. Jang, A. Sentenac, and C. Yang, “Optical phase conjugation (OPC)-assisted isotropic focusing,” Opt. Express 21(7), 8781–8792 (2013).
    [Crossref] [PubMed]
  25. Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
    [Crossref] [PubMed]
  26. J. W. Czarske, D. Haufe, N. Koukourakis, and L. Büttner, “Transmission of independent signals through a multimode fiber using digital optical phase conjugation,” Opt. Express 24(13), 15128–15136 (2016).
    [Crossref] [PubMed]
  27. D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
    [Crossref] [PubMed]
  28. Y. Shen, Y. Liu, C. Ma, and L. V. Wang, “Focusing light through scattering media by full-polarization DOPC,” Opt. Lett. 41(6), 1130–1133 (2016).
    [Crossref] [PubMed]
  29. R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
    [Crossref] [PubMed]
  30. I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
    [Crossref] [PubMed]
  31. E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1(4), 227–232 (2014).
    [Crossref] [PubMed]
  32. J. Czarske and H. Müller, “Two-dimensional directional fiber-optic laser Doppler anemometer based on heterodyning by means of a chirp frequency modulated Nd:YAG miniature ring laser,” Opt. Commun. 132(5), 421–426 (1996).
    [Crossref]
  33. L. Büttner and J. Czarske, “Determination of the axial velocity component by a laser-Doppler velocity profile sensor,” J. Opt. Soc. Am. A 23(2), 444–454 (2006).
    [Crossref] [PubMed]
  34. J. König, A. Voigt, L. Büttner, and J. Czarske, “Precise micro flow rate measurements by a laser Doppler velocity profile sensor with time division multiplexing,” Meas. Sci. Technol. 21(7), 074005 (2010).
    [Crossref]
  35. L. Büttner, C. Leithold, and J. Czarske, “Interferometric velocity measurements through a fluctuating gas-liquid interface employing adaptive optics,” Opt. Express 21(25), 30653–30663 (2013).
    [Crossref] [PubMed]
  36. H. Radner, L. Büttner, and J. Czarske, “Interferometric velocity measurements through a fluctuating phase boundary using two Fresnel guide stars,” Opt. Lett. 40(16), 3766–3769 (2015).
    [Crossref] [PubMed]
  37. M. G. Olsen and R. J. Adrian, “Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry,” Exp. Fluids 29(7), S166–S174 (2000).
    [Crossref]
  38. M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
    [Crossref] [PubMed]
  39. N. Koukourakis, T. Abdelwahab, M. Y. Li, H. Höpfner, Y. W. Lai, E. Darakis, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, “Photorefractive two-wave mixing for image amplification in digital holography,” Opt. Express 19(22), 22004–22023 (2011).
    [Crossref] [PubMed]
  40. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [Crossref] [PubMed]
  41. P. de Groot, “Interferometric laser profilometer for rough surfaces,” Opt. Lett. 16(6), 357–359 (1991).
    [Crossref] [PubMed]
  42. A. F. Fercher, H. Z. Hu, and U. Vry, “Rough surface interferometry with a two-wavelength heterodyne speckle interferometer,” Appl. Opt. 24(14), 2181–2188 (1985).
    [Crossref] [PubMed]
  43. N. Koukourakis, V. Jaedicke, A. Adinda-Ougba, S. Goebel, H. Wiethoff, H. Höpfner, N. C. Gerhardt, and M. R. Hofmann, “Depth-filtered digital holography,” Opt. Express 20(20), 22636–22648 (2012).
    [Crossref] [PubMed]
  44. M. K. Kim, “Wavelength-scanning digital interference holography for optical section imaging,” Opt. Lett. 24(23), 1693–1695 (1999).
    [Crossref] [PubMed]
  45. M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express 7(9), 305–310 (2000).
    [Crossref] [PubMed]
  46. Y. C. Lin, C. J. Cheng, and T.-C. Poon, “Optical sectioning with a low-coherence phase-shifting digital holographic microscope,” Appl. Opt. 50(7), B25–B30 (2011).
    [Crossref] [PubMed]

2016 (2)

2015 (3)

2014 (4)

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
[Crossref] [PubMed]

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1(4), 227–232 (2014).
[Crossref] [PubMed]

R. Schlüßler, J. Czarske, and A. Fischer, “Uncertainty of flow velocity measurements due to refractive index fluctuations,” Opt. Lasers Eng. 54, 93–104 (2014).
[Crossref]

2013 (5)

J. König, K. Tschulik, L. Büttner, M. Uhlemann, and J. Czarske, “Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields,” Anal. Chem. 85(6), 3087–3094 (2013).
[Crossref] [PubMed]

G. Gomit, L. Chatellier, D. Calluaud, and D. Laurent, “Free surface measurement by stereorefraction,” Exp. Fluids 54(6), 1540 (2013).
[Crossref]

J. Westerweel, G. E. Elsinga, and R. J. Adrian, “Particle image velocimetry for complex and turbulent flows,” Annu. Rev. Fluid Mech. 45(1), 409–436 (2013).
[Crossref]

M. Jang, A. Sentenac, and C. Yang, “Optical phase conjugation (OPC)-assisted isotropic focusing,” Opt. Express 21(7), 8781–8792 (2013).
[Crossref] [PubMed]

L. Büttner, C. Leithold, and J. Czarske, “Interferometric velocity measurements through a fluctuating gas-liquid interface employing adaptive optics,” Opt. Express 21(25), 30653–30663 (2013).
[Crossref] [PubMed]

2012 (4)

N. Koukourakis, V. Jaedicke, A. Adinda-Ougba, S. Goebel, H. Wiethoff, H. Höpfner, N. C. Gerhardt, and M. R. Hofmann, “Depth-filtered digital holography,” Opt. Express 20(20), 22636–22648 (2012).
[Crossref] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref] [PubMed]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

D. Reuss, L. David, M. Megerle, and V. Sick, “Particle-image velocimetry measurement errors when imaging through a transparent engine cylinder,” Meas. Sci. Technol. 13(7), 1029–1035 (2012).
[Crossref]

2011 (2)

2010 (3)

J. König, A. Voigt, L. Büttner, and J. Czarske, “Precise micro flow rate measurements by a laser Doppler velocity profile sensor with time division multiplexing,” Meas. Sci. Technol. 21(7), 074005 (2010).
[Crossref]

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: Multi-parameter high-speed planar laser diagnostics,” Flow Turbul. Combus. 86(3), 313–341 (2010).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

2008 (1)

E. Schleicher, M. J. da Silva, S. Thiele, A. Li, E. Wollrab, and U. Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
[Crossref]

2007 (2)

Y. Abe, Y. Yamamoto, D. Hyuga, K. Aoki, and A. Fujiwara, “Interfacial stability and internal flow of a levitated droplet,” Microgravity Sci. Technol. 19(3-4), 33–34 (2007).
[Crossref]

G. Minor, P. Oshkai, and N. Djilali, “Optical distortion correction for liquid droplet visualization using the ray tracing method: further considerations,” Meas. Sci. Technol. 18(11), L23–L28 (2007).
[Crossref]

2006 (3)

C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17(7), 1670–1679 (2006).
[Crossref]

T. Weier, C. Cierpka, J. Hüller, and G. Gerbeth, “Velocity measurements and concentration field visualizations in copper electrolysis under the influence of Lorentz forces and buoyancy,” Magnetohydrodynamics 42, 379–387 (2006).

L. Büttner and J. Czarske, “Determination of the axial velocity component by a laser-Doppler velocity profile sensor,” J. Opt. Soc. Am. A 23(2), 444–454 (2006).
[Crossref] [PubMed]

2005 (1)

G. E. Elsinga, B. W. van Oudheusden, and F. Scarano, “Evaluation of aero-optical distortion effects in PIV,” Exp. Fluids 39(2), 246–256 (2005).
[Crossref]

2001 (1)

A. E. Hosoi and J. W. Bush, “Evaporative instabilities in climbing films,” J. Fluid Mech. 442, 217–239 (2001).
[Crossref]

2000 (2)

M. G. Olsen and R. J. Adrian, “Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry,” Exp. Fluids 29(7), S166–S174 (2000).
[Crossref]

M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express 7(9), 305–310 (2000).
[Crossref] [PubMed]

1999 (1)

1998 (1)

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

1997 (2)

J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8(12), 1379–1392 (1997).
[Crossref]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
[Crossref] [PubMed]

1996 (1)

J. Czarske and H. Müller, “Two-dimensional directional fiber-optic laser Doppler anemometer based on heterodyning by means of a chirp frequency modulated Nd:YAG miniature ring laser,” Opt. Commun. 132(5), 421–426 (1996).
[Crossref]

1993 (1)

H. G. Maas, A. Gruen, and D. Papantoniou, “Particle tracking velocimetry in three-dimensional flows,” Exp. Fluids 15(2), 133–146 (1993).
[Crossref]

1991 (1)

1988 (1)

A. A. Adamczyk and L. Rimai, “2D particle tracking velocimetry (PTV): Technique and image processing algorithms,” Exp. Fluids 6(6), 373–380 (1988).
[Crossref]

1985 (1)

Abdelwahab, T.

Abe, Y.

Y. Abe, Y. Yamamoto, D. Hyuga, K. Aoki, and A. Fujiwara, “Interfacial stability and internal flow of a levitated droplet,” Microgravity Sci. Technol. 19(3-4), 33–34 (2007).
[Crossref]

Adamczyk, A. A.

A. A. Adamczyk and L. Rimai, “2D particle tracking velocimetry (PTV): Technique and image processing algorithms,” Exp. Fluids 6(6), 373–380 (1988).
[Crossref]

Adinda-Ougba, A.

Adrian, R. J.

J. Westerweel, G. E. Elsinga, and R. J. Adrian, “Particle image velocimetry for complex and turbulent flows,” Annu. Rev. Fluid Mech. 45(1), 409–436 (2013).
[Crossref]

M. G. Olsen and R. J. Adrian, “Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry,” Exp. Fluids 29(7), S166–S174 (2000).
[Crossref]

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Aoki, K.

Y. Abe, Y. Yamamoto, D. Hyuga, K. Aoki, and A. Fujiwara, “Interfacial stability and internal flow of a levitated droplet,” Microgravity Sci. Technol. 19(3-4), 33–34 (2007).
[Crossref]

Beebe, D. J.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Böhm, B.

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: Multi-parameter high-speed planar laser diagnostics,” Flow Turbul. Combus. 86(3), 313–341 (2010).
[Crossref]

Booth, M. J.

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

Brake, J.

Brenner, C.

Bush, J. W.

A. E. Hosoi and J. W. Bush, “Evaporative instabilities in climbing films,” J. Fluid Mech. 442, 217–239 (2001).
[Crossref]

Büttner, L.

Calluaud, D.

G. Gomit, L. Chatellier, D. Calluaud, and D. Laurent, “Free surface measurement by stereorefraction,” Exp. Fluids 54(6), 1540 (2013).
[Crossref]

Chatellier, L.

G. Gomit, L. Chatellier, D. Calluaud, and D. Laurent, “Free surface measurement by stereorefraction,” Exp. Fluids 54(6), 1540 (2013).
[Crossref]

Cheng, C. J.

Cierpka, C.

T. Weier, C. Cierpka, J. Hüller, and G. Gerbeth, “Velocity measurements and concentration field visualizations in copper electrolysis under the influence of Lorentz forces and buoyancy,” Magnetohydrodynamics 42, 379–387 (2006).

Cui, M.

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

Czarske, J.

H. Radner, L. Büttner, and J. Czarske, “Interferometric velocity measurements through a fluctuating phase boundary using two Fresnel guide stars,” Opt. Lett. 40(16), 3766–3769 (2015).
[Crossref] [PubMed]

R. Schlüßler, J. Czarske, and A. Fischer, “Uncertainty of flow velocity measurements due to refractive index fluctuations,” Opt. Lasers Eng. 54, 93–104 (2014).
[Crossref]

J. König, K. Tschulik, L. Büttner, M. Uhlemann, and J. Czarske, “Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields,” Anal. Chem. 85(6), 3087–3094 (2013).
[Crossref] [PubMed]

L. Büttner, C. Leithold, and J. Czarske, “Interferometric velocity measurements through a fluctuating gas-liquid interface employing adaptive optics,” Opt. Express 21(25), 30653–30663 (2013).
[Crossref] [PubMed]

J. König, A. Voigt, L. Büttner, and J. Czarske, “Precise micro flow rate measurements by a laser Doppler velocity profile sensor with time division multiplexing,” Meas. Sci. Technol. 21(7), 074005 (2010).
[Crossref]

L. Büttner and J. Czarske, “Determination of the axial velocity component by a laser-Doppler velocity profile sensor,” J. Opt. Soc. Am. A 23(2), 444–454 (2006).
[Crossref] [PubMed]

J. Czarske and H. Müller, “Two-dimensional directional fiber-optic laser Doppler anemometer based on heterodyning by means of a chirp frequency modulated Nd:YAG miniature ring laser,” Opt. Commun. 132(5), 421–426 (1996).
[Crossref]

Czarske, J. W.

da Silva, M. J.

E. Schleicher, M. J. da Silva, S. Thiele, A. Li, E. Wollrab, and U. Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
[Crossref]

Darakis, E.

David, L.

D. Reuss, L. David, M. Megerle, and V. Sick, “Particle-image velocimetry measurement errors when imaging through a transparent engine cylinder,” Meas. Sci. Technol. 13(7), 1029–1035 (2012).
[Crossref]

de Groot, P.

Dimarzio, C. A.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref] [PubMed]

Djilali, N.

G. Minor, P. Oshkai, and N. Djilali, “Optical distortion correction for liquid droplet visualization using the ray tracing method: further considerations,” Meas. Sci. Technol. 18(11), L23–L28 (2007).
[Crossref]

Dreizler, A.

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: Multi-parameter high-speed planar laser diagnostics,” Flow Turbul. Combus. 86(3), 313–341 (2010).
[Crossref]

Elsinga, G. E.

J. Westerweel, G. E. Elsinga, and R. J. Adrian, “Particle image velocimetry for complex and turbulent flows,” Annu. Rev. Fluid Mech. 45(1), 409–436 (2013).
[Crossref]

G. E. Elsinga, B. W. van Oudheusden, and F. Scarano, “Evaluation of aero-optical distortion effects in PIV,” Exp. Fluids 39(2), 246–256 (2005).
[Crossref]

Fercher, A. F.

Fischer, A.

R. Schlüßler, J. Czarske, and A. Fischer, “Uncertainty of flow velocity measurements due to refractive index fluctuations,” Opt. Lasers Eng. 54, 93–104 (2014).
[Crossref]

Fujiwara, A.

Y. Abe, Y. Yamamoto, D. Hyuga, K. Aoki, and A. Fujiwara, “Interfacial stability and internal flow of a levitated droplet,” Microgravity Sci. Technol. 19(3-4), 33–34 (2007).
[Crossref]

Gerbeth, G.

T. Weier, C. Cierpka, J. Hüller, and G. Gerbeth, “Velocity measurements and concentration field visualizations in copper electrolysis under the influence of Lorentz forces and buoyancy,” Magnetohydrodynamics 42, 379–387 (2006).

Gerhardt, N. C.

Goebel, S.

Gomit, G.

G. Gomit, L. Chatellier, D. Calluaud, and D. Laurent, “Free surface measurement by stereorefraction,” Exp. Fluids 54(6), 1540 (2013).
[Crossref]

Gordon, R. L.

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: Multi-parameter high-speed planar laser diagnostics,” Flow Turbul. Combus. 86(3), 313–341 (2010).
[Crossref]

Gruen, A.

H. G. Maas, A. Gruen, and D. Papantoniou, “Particle tracking velocimetry in three-dimensional flows,” Exp. Fluids 15(2), 133–146 (1993).
[Crossref]

Hampel, U.

E. Schleicher, M. J. da Silva, S. Thiele, A. Li, E. Wollrab, and U. Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
[Crossref]

Hassa, C.

C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17(7), 1670–1679 (2006).
[Crossref]

Haufe, D.

Heeger, C.

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: Multi-parameter high-speed planar laser diagnostics,” Flow Turbul. Combus. 86(3), 313–341 (2010).
[Crossref]

Hofmann, M. R.

Höpfner, H.

Horstmeyer, R.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref] [PubMed]

Hosoi, A. E.

A. E. Hosoi and J. W. Bush, “Evaporative instabilities in climbing films,” J. Fluid Mech. 442, 217–239 (2001).
[Crossref]

Hu, H. Z.

Hüller, J.

T. Weier, C. Cierpka, J. Hüller, and G. Gerbeth, “Velocity measurements and concentration field visualizations in copper electrolysis under the influence of Lorentz forces and buoyancy,” Magnetohydrodynamics 42, 379–387 (2006).

Hyuga, D.

Y. Abe, Y. Yamamoto, D. Hyuga, K. Aoki, and A. Fujiwara, “Interfacial stability and internal flow of a levitated droplet,” Microgravity Sci. Technol. 19(3-4), 33–34 (2007).
[Crossref]

Jaedicke, V.

Jang, M.

Jarius, M.

C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17(7), 1670–1679 (2006).
[Crossref]

Judkewitz, B.

Kim, M. K.

Klinner, J.

C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17(7), 1670–1679 (2006).
[Crossref]

König, J.

J. König, K. Tschulik, L. Büttner, M. Uhlemann, and J. Czarske, “Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields,” Anal. Chem. 85(6), 3087–3094 (2013).
[Crossref] [PubMed]

J. König, A. Voigt, L. Büttner, and J. Czarske, “Precise micro flow rate measurements by a laser Doppler velocity profile sensor with time division multiplexing,” Meas. Sci. Technol. 21(7), 074005 (2010).
[Crossref]

Koukourakis, N.

Lagendijk, A.

I. M. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

Lai, Y. W.

Laurent, D.

G. Gomit, L. Chatellier, D. Calluaud, and D. Laurent, “Free surface measurement by stereorefraction,” Exp. Fluids 54(6), 1540 (2013).
[Crossref]

Leithold, C.

Li, A.

E. Schleicher, M. J. da Silva, S. Thiele, A. Li, E. Wollrab, and U. Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
[Crossref]

Li, M. Y.

Lin, Y. C.

Liu, Y.

Ma, C.

Maas, H. G.

H. G. Maas, A. Gruen, and D. Papantoniou, “Particle tracking velocimetry in three-dimensional flows,” Exp. Fluids 15(2), 133–146 (1993).
[Crossref]

Megerle, M.

D. Reuss, L. David, M. Megerle, and V. Sick, “Particle-image velocimetry measurement errors when imaging through a transparent engine cylinder,” Meas. Sci. Technol. 13(7), 1029–1035 (2012).
[Crossref]

Meinhart, C. D.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Minor, G.

G. Minor, P. Oshkai, and N. Djilali, “Optical distortion correction for liquid droplet visualization using the ray tracing method: further considerations,” Meas. Sci. Technol. 18(11), L23–L28 (2007).
[Crossref]

Mosk, A.

I. M. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

Müller, H.

J. Czarske and H. Müller, “Two-dimensional directional fiber-optic laser Doppler anemometer based on heterodyning by means of a chirp frequency modulated Nd:YAG miniature ring laser,” Opt. Commun. 132(5), 421–426 (1996).
[Crossref]

Olsen, M. G.

M. G. Olsen and R. J. Adrian, “Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry,” Exp. Fluids 29(7), S166–S174 (2000).
[Crossref]

Oshkai, P.

G. Minor, P. Oshkai, and N. Djilali, “Optical distortion correction for liquid droplet visualization using the ray tracing method: further considerations,” Meas. Sci. Technol. 18(11), L23–L28 (2007).
[Crossref]

Papantoniou, D.

H. G. Maas, A. Gruen, and D. Papantoniou, “Particle tracking velocimetry in three-dimensional flows,” Exp. Fluids 15(2), 133–146 (1993).
[Crossref]

Poon, T.-C.

Radner, H.

Reuss, D.

D. Reuss, L. David, M. Megerle, and V. Sick, “Particle-image velocimetry measurement errors when imaging through a transparent engine cylinder,” Meas. Sci. Technol. 13(7), 1029–1035 (2012).
[Crossref]

Rimai, L.

A. A. Adamczyk and L. Rimai, “2D particle tracking velocimetry (PTV): Technique and image processing algorithms,” Exp. Fluids 6(6), 373–380 (1988).
[Crossref]

Ruan, H.

Santiago, J. G.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Scarano, F.

G. E. Elsinga, B. W. van Oudheusden, and F. Scarano, “Evaluation of aero-optical distortion effects in PIV,” Exp. Fluids 39(2), 246–256 (2005).
[Crossref]

Schleicher, E.

E. Schleicher, M. J. da Silva, S. Thiele, A. Li, E. Wollrab, and U. Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
[Crossref]

Schlüßler, R.

R. Schlüßler, J. Czarske, and A. Fischer, “Uncertainty of flow velocity measurements due to refractive index fluctuations,” Opt. Lasers Eng. 54, 93–104 (2014).
[Crossref]

Sentenac, A.

Shen, Y.

Sick, V.

D. Reuss, L. David, M. Megerle, and V. Sick, “Particle-image velocimetry measurement errors when imaging through a transparent engine cylinder,” Meas. Sci. Technol. 13(7), 1029–1035 (2012).
[Crossref]

Stockhausen, G.

C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17(7), 1670–1679 (2006).
[Crossref]

Thiele, S.

E. Schleicher, M. J. da Silva, S. Thiele, A. Li, E. Wollrab, and U. Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
[Crossref]

Tschulik, K.

J. König, K. Tschulik, L. Büttner, M. Uhlemann, and J. Czarske, “Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields,” Anal. Chem. 85(6), 3087–3094 (2013).
[Crossref] [PubMed]

Uhlemann, M.

J. König, K. Tschulik, L. Büttner, M. Uhlemann, and J. Czarske, “Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields,” Anal. Chem. 85(6), 3087–3094 (2013).
[Crossref] [PubMed]

van Oudheusden, B. W.

G. E. Elsinga, B. W. van Oudheusden, and F. Scarano, “Evaluation of aero-optical distortion effects in PIV,” Exp. Fluids 39(2), 246–256 (2005).
[Crossref]

Vellekoop, I. M.

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

Voges, M.

C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17(7), 1670–1679 (2006).
[Crossref]

Voigt, A.

J. König, A. Voigt, L. Büttner, and J. Czarske, “Precise micro flow rate measurements by a laser Doppler velocity profile sensor with time division multiplexing,” Meas. Sci. Technol. 21(7), 074005 (2010).
[Crossref]

Vry, U.

Wang, D.

Wang, L. V.

Wang, Y. M.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref] [PubMed]

Weier, T.

T. Weier, C. Cierpka, J. Hüller, and G. Gerbeth, “Velocity measurements and concentration field visualizations in copper electrolysis under the influence of Lorentz forces and buoyancy,” Magnetohydrodynamics 42, 379–387 (2006).

Wereley, S. T.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Westerweel, J.

J. Westerweel, G. E. Elsinga, and R. J. Adrian, “Particle image velocimetry for complex and turbulent flows,” Annu. Rev. Fluid Mech. 45(1), 409–436 (2013).
[Crossref]

J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8(12), 1379–1392 (1997).
[Crossref]

Wiethoff, H.

Willert, C.

C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17(7), 1670–1679 (2006).
[Crossref]

Wollrab, E.

E. Schleicher, M. J. da Silva, S. Thiele, A. Li, E. Wollrab, and U. Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
[Crossref]

Yamaguchi, I.

Yamamoto, Y.

Y. Abe, Y. Yamamoto, D. Hyuga, K. Aoki, and A. Fujiwara, “Interfacial stability and internal flow of a levitated droplet,” Microgravity Sci. Technol. 19(3-4), 33–34 (2007).
[Crossref]

Yang, C.

Zhang, T.

Zhou, E. H.

Zhou, H.

Anal. Chem. (1)

J. König, K. Tschulik, L. Büttner, M. Uhlemann, and J. Czarske, “Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields,” Anal. Chem. 85(6), 3087–3094 (2013).
[Crossref] [PubMed]

Annu. Rev. Fluid Mech. (1)

J. Westerweel, G. E. Elsinga, and R. J. Adrian, “Particle image velocimetry for complex and turbulent flows,” Annu. Rev. Fluid Mech. 45(1), 409–436 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

Exp. Fluids (6)

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

H. G. Maas, A. Gruen, and D. Papantoniou, “Particle tracking velocimetry in three-dimensional flows,” Exp. Fluids 15(2), 133–146 (1993).
[Crossref]

A. A. Adamczyk and L. Rimai, “2D particle tracking velocimetry (PTV): Technique and image processing algorithms,” Exp. Fluids 6(6), 373–380 (1988).
[Crossref]

G. Gomit, L. Chatellier, D. Calluaud, and D. Laurent, “Free surface measurement by stereorefraction,” Exp. Fluids 54(6), 1540 (2013).
[Crossref]

G. E. Elsinga, B. W. van Oudheusden, and F. Scarano, “Evaluation of aero-optical distortion effects in PIV,” Exp. Fluids 39(2), 246–256 (2005).
[Crossref]

M. G. Olsen and R. J. Adrian, “Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry,” Exp. Fluids 29(7), S166–S174 (2000).
[Crossref]

Flow Turbul. Combus. (1)

B. Böhm, C. Heeger, R. L. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: Multi-parameter high-speed planar laser diagnostics,” Flow Turbul. Combus. 86(3), 313–341 (2010).
[Crossref]

J. Fluid Mech. (1)

A. E. Hosoi and J. W. Bush, “Evaporative instabilities in climbing films,” J. Fluid Mech. 442, 217–239 (2001).
[Crossref]

J. Opt. Soc. Am. A (1)

Light Sci. Appl. (1)

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

Magnetohydrodynamics (1)

T. Weier, C. Cierpka, J. Hüller, and G. Gerbeth, “Velocity measurements and concentration field visualizations in copper electrolysis under the influence of Lorentz forces and buoyancy,” Magnetohydrodynamics 42, 379–387 (2006).

Meas. Sci. Technol. (6)

C. Willert, C. Hassa, G. Stockhausen, M. Jarius, M. Voges, and J. Klinner, “Combined PIV and DGV applied to a pressurized gas turbine combustion facility,” Meas. Sci. Technol. 17(7), 1670–1679 (2006).
[Crossref]

E. Schleicher, M. J. da Silva, S. Thiele, A. Li, E. Wollrab, and U. Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
[Crossref]

D. Reuss, L. David, M. Megerle, and V. Sick, “Particle-image velocimetry measurement errors when imaging through a transparent engine cylinder,” Meas. Sci. Technol. 13(7), 1029–1035 (2012).
[Crossref]

G. Minor, P. Oshkai, and N. Djilali, “Optical distortion correction for liquid droplet visualization using the ray tracing method: further considerations,” Meas. Sci. Technol. 18(11), L23–L28 (2007).
[Crossref]

J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8(12), 1379–1392 (1997).
[Crossref]

J. König, A. Voigt, L. Büttner, and J. Czarske, “Precise micro flow rate measurements by a laser Doppler velocity profile sensor with time division multiplexing,” Meas. Sci. Technol. 21(7), 074005 (2010).
[Crossref]

Microgravity Sci. Technol. (1)

Y. Abe, Y. Yamamoto, D. Hyuga, K. Aoki, and A. Fujiwara, “Interfacial stability and internal flow of a levitated droplet,” Microgravity Sci. Technol. 19(3-4), 33–34 (2007).
[Crossref]

Nat. Commun. (1)

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

I. M. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Czarske and H. Müller, “Two-dimensional directional fiber-optic laser Doppler anemometer based on heterodyning by means of a chirp frequency modulated Nd:YAG miniature ring laser,” Opt. Commun. 132(5), 421–426 (1996).
[Crossref]

Opt. Express (7)

N. Koukourakis, V. Jaedicke, A. Adinda-Ougba, S. Goebel, H. Wiethoff, H. Höpfner, N. C. Gerhardt, and M. R. Hofmann, “Depth-filtered digital holography,” Opt. Express 20(20), 22636–22648 (2012).
[Crossref] [PubMed]

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
[Crossref] [PubMed]

N. Koukourakis, T. Abdelwahab, M. Y. Li, H. Höpfner, Y. W. Lai, E. Darakis, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, “Photorefractive two-wave mixing for image amplification in digital holography,” Opt. Express 19(22), 22004–22023 (2011).
[Crossref] [PubMed]

M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express 7(9), 305–310 (2000).
[Crossref] [PubMed]

L. Büttner, C. Leithold, and J. Czarske, “Interferometric velocity measurements through a fluctuating gas-liquid interface employing adaptive optics,” Opt. Express 21(25), 30653–30663 (2013).
[Crossref] [PubMed]

J. W. Czarske, D. Haufe, N. Koukourakis, and L. Büttner, “Transmission of independent signals through a multimode fiber using digital optical phase conjugation,” Opt. Express 24(13), 15128–15136 (2016).
[Crossref] [PubMed]

M. Jang, A. Sentenac, and C. Yang, “Optical phase conjugation (OPC)-assisted isotropic focusing,” Opt. Express 21(7), 8781–8792 (2013).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

R. Schlüßler, J. Czarske, and A. Fischer, “Uncertainty of flow velocity measurements due to refractive index fluctuations,” Opt. Lasers Eng. 54, 93–104 (2014).
[Crossref]

Opt. Lett. (5)

Optica (2)

Other (4)

R. Tyson, Principles of Adaptive Optics (CRC Press, 2010).

S. Kalliadasis, C. Ruyer-Quil, B. Scheid, and M. G. Velarde, Falling Liquid Films (Springer, 2012).

A. Ronald and J. Westerweel, Particle Image Velocimetry (Cambridge University, 2010).

M. Raffel, C. E. Willert, S. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide, 2nd ed. (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Exemplary condition of a reference (left) and a changed phase boundary (right).
Fig. 2
Fig. 2 The TGS (left) interacts with the aberration as the sample light does. The FGS (right) probes the aberration from the opposite side.
Fig. 3
Fig. 3 Sketch of the micro PIV setup using the transmission guide star (TGS) approach.
Fig. 4
Fig. 4 Exemplary raw images of particles flowing in y-direction in the micro channel for the reference, the distorted and the corrected case. The static image background is removed by subtracting the mean of the image sequence. The zoomed-in image section shows the background subtracted images.
Fig. 5
Fig. 5 a) Exemplary flow velocity profiles for the reference, distorted and corrected particle flows in the micro channel. b) The improvement due to wavefront shaping is clearly visible at the strongly decreased velocity errors.
Fig. 6
Fig. 6 Cross-section through the maximum of the mean PIV cross correlation.
Fig. 7
Fig. 7 The setup is aligned to measure at the middle of the micro channel. Without aberration, the depth of interest (DOI) and the depth of measurement (DOM) overlap (left). A distortion in the beam path leads to dislocation of the DOI and the DOM. While a defocus aberration introduces a smooth axial shift (middle), a speckled distortion leads to locally varying measurement depths (right).
Fig. 8
Fig. 8 The phase conjugate of the TGS is displayed on the SLM for correction
Fig. 9
Fig. 9 Sketch of the micro PIV setup using the Fresnel guide star (FGS) approach
Fig. 10
Fig. 10 a) Flow profiles for reference, distorted and corrected particle flows in the micro channel and b) corresponding velocity errors.
Fig. 11
Fig. 11 Performing the FGS correction with a wrongly chosen refractive index, i.e. mismatched phase factor, results in a correction with a residual defocus aberration.
Fig. 12
Fig. 12 Maximum of the cross correlation between the reference and the distorted (red line) and between the reference and several corrections with false refractive indices (black line). The experimentally obtained optimum agrees well to the theoretical calculations.
Fig. 13
Fig. 13 a) Flow profiles for reference, distorted and corrected particle flows, with a false phase factor, due to different refractive index deviations. b) The mean velocity error is smaller than 10% for a refractive index mismatch of ~5% and minimal for the theoretical phase factor.
Fig. 14
Fig. 14 Simulation of FGS correction procedure of a rough layer using two wavelength interferometry. The synthetic wavelength enables measuring the path length change induced by the phase boundary (a). The path length can be expressed in phase shifts of λ1 = 532 nm (b). The path length scaled by the phase factor (c) is used to obtain the corrected phase (d).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ SLM,FGS = c ϕ Δ ϕ FGS

Metrics