Abstract

We present the design and characterization of a silicon-on-insulator based bandwidth and wavelength-tunable add-drop filter. The tunability of the device is achieved by independently controlling the central wavelength of two cascaded contra-directional grating assisted couplers. The device was fabricated using e-beam lithography and the tuning is demonstrated using the thermo-optic effect, which was obtained with metal heaters fabricated by a lift-off process. It is experimentally demonstrated that within the wavelength range of 1555 nm to 1573 nm the transmission bandwidth of the device can be tuned from 1.1 nm to 11.7 nm. Moreover, more than 4 nm of central wavelength tuning is demonstrated. The tunability of the central wavelength is limited by the breakdown current of the metal heaters.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-period contra-directional grating assisted coupler

M. T. Boroojerdi, M. Ménard, and A. G. Kirk
Opt. Express 24(20) 22865-22874 (2016)

Integrated tunable optical add/drop filter for polarization and wavelength multiplexed signals

Yaguang Qin, Yu Yu, Wenhao Wu, and Xinliang Zhang
Opt. Express 24(7) 7069-7078 (2016)

Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach-Zehnder interferometer couplers

Xinhong Jiang, Jiayang Wu, Yuxing Yang, Ting Pan, Junming Mao, Boyu Liu, Ruili Liu, Yong Zhang, Ciyuan Qiu, Christine Tremblay, and Yikai Su
Opt. Express 24(3) 2183-2188 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley, 2010).
  2. O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
    [Crossref]
  3. Y. Huang and S. Zhang, “Widely tunable optical filter with variable bandwidth based on the thermal effect on cholesteric liquid crystals,” Appl. Opt. 51(24), 5780–5784 (2012).
    [Crossref] [PubMed]
  4. J. Yao and M. C. Wu, “Bandwidth-tunable add-drop filters based on micro-electro-mechanical-system actuated silicon microtoroidal resonators,” Opt. Lett. 34(17), 2557–2559 (2009).
    [Crossref] [PubMed]
  5. J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using Cascaded High-Order Silicon Microring Filters,” IEEE Photonics Technol. Lett. 25(16), 1543–1546 (2013).
    [Crossref]
  6. J. St-Yves, H. Bahrami, P. Jean, S. LaRochelle, and W. Shi, “Widely bandwidth-tunable silicon filter with an unlimited free-spectral range,” Opt. Lett. 40(23), 5471–5474 (2015).
    [Crossref] [PubMed]
  7. P. Orlandi, M. Strain, C. Ferrari, A. Canciamilla, A. Melloni, M. Sorel, P. Bassi, and F. Morichetti, “Bandwidth-tunable optical filters in silicon photonics,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTu2A.5.
  8. Y. Ding, M. Pu, L. Liu, J. Xu, C. Peucheret, X. Zhang, D. Huang, and H. Ou, “Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure,” Opt. Express 19(7), 6462–6470 (2011).
    [Crossref] [PubMed]
  9. L. Chen, N. Sherwood-Droz, and M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Lett. 32(22), 3361–3363 (2007).
    [Crossref] [PubMed]
  10. M. T. Boroojerdi, M. Ménard, and A. G. Kirk, “Wavelength and bandwidth tunable SOI switch using integrated gratings,” in Proceedings of IEEE Photonics Conference (IEEE, 2013), pp. 440–441.
    [Crossref]
  11. M. T. Boroojerdi, M. Ménard, and A. G. Kirk, “Implementation of integrated bandwidth tunable optical add-drop filter using contra directional grating assisted couplers,” in Proceedings of IEEE Photonics Conference (IEEE 2015), pp. 355–356.
    [Crossref]
  12. W. Shi, H. Yun, C. Lin, X. Wang, J. Flueckiger, N. Jaeger, and L. Chrostowski, “Silicon CWDM demultiplexers using contra-directional couplers,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu3F.5.
  13. N. Rouger, L. Chrostowski, and R. Vafaei, “Temperature effects on silicon-on-insulator (SOI) racetrack resonators: A coupled analytic and 2-D finite difference approach,” J. Lightwave Technol. 28(9), 1380–1391 (2010).
    [Crossref]
  14. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
    [Crossref] [PubMed]

2015 (1)

2013 (1)

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using Cascaded High-Order Silicon Microring Filters,” IEEE Photonics Technol. Lett. 25(16), 1543–1546 (2013).
[Crossref]

2012 (2)

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[Crossref]

Y. Huang and S. Zhang, “Widely tunable optical filter with variable bandwidth based on the thermal effect on cholesteric liquid crystals,” Appl. Opt. 51(24), 5780–5784 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

2009 (1)

2007 (1)

Asghari, M.

Bahrami, H.

Boroojerdi, M. T.

M. T. Boroojerdi, M. Ménard, and A. G. Kirk, “Wavelength and bandwidth tunable SOI switch using integrated gratings,” in Proceedings of IEEE Photonics Conference (IEEE, 2013), pp. 440–441.
[Crossref]

Chen, L.

Chrostowski, L.

Cunningham, J. E.

Ding, Y.

Dong, P.

Feng, D.

Gerstel, O.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[Crossref]

Huang, D.

Huang, Y.

Jean, P.

Jinno, M.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[Crossref]

Kirk, A. G.

M. T. Boroojerdi, M. Ménard, and A. G. Kirk, “Wavelength and bandwidth tunable SOI switch using integrated gratings,” in Proceedings of IEEE Photonics Conference (IEEE, 2013), pp. 440–441.
[Crossref]

Krishnamoorthy, A. V.

Kumar, R.

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using Cascaded High-Order Silicon Microring Filters,” IEEE Photonics Technol. Lett. 25(16), 1543–1546 (2013).
[Crossref]

LaRochelle, S.

Li, G.

Liang, H.

Lipson, M.

Liu, L.

Lord, A.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[Crossref]

Ménard, M.

M. T. Boroojerdi, M. Ménard, and A. G. Kirk, “Wavelength and bandwidth tunable SOI switch using integrated gratings,” in Proceedings of IEEE Photonics Conference (IEEE, 2013), pp. 440–441.
[Crossref]

Mookherjea, S.

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using Cascaded High-Order Silicon Microring Filters,” IEEE Photonics Technol. Lett. 25(16), 1543–1546 (2013).
[Crossref]

Ong, J. R.

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using Cascaded High-Order Silicon Microring Filters,” IEEE Photonics Technol. Lett. 25(16), 1543–1546 (2013).
[Crossref]

Ou, H.

Peucheret, C.

Pu, M.

Qian, W.

Rouger, N.

Shafiiha, R.

Sherwood-Droz, N.

Shi, W.

St-Yves, J.

Vafaei, R.

Wu, M. C.

Xu, J.

Yao, J.

Yoo, S. J. B.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[Crossref]

Zhang, S.

Zhang, X.

Appl. Opt. (1)

IEEE Commun. Mag. (1)

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using Cascaded High-Order Silicon Microring Filters,” IEEE Photonics Technol. Lett. 25(16), 1543–1546 (2013).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (3)

Other (5)

G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley, 2010).

P. Orlandi, M. Strain, C. Ferrari, A. Canciamilla, A. Melloni, M. Sorel, P. Bassi, and F. Morichetti, “Bandwidth-tunable optical filters in silicon photonics,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTu2A.5.

M. T. Boroojerdi, M. Ménard, and A. G. Kirk, “Wavelength and bandwidth tunable SOI switch using integrated gratings,” in Proceedings of IEEE Photonics Conference (IEEE, 2013), pp. 440–441.
[Crossref]

M. T. Boroojerdi, M. Ménard, and A. G. Kirk, “Implementation of integrated bandwidth tunable optical add-drop filter using contra directional grating assisted couplers,” in Proceedings of IEEE Photonics Conference (IEEE 2015), pp. 355–356.
[Crossref]

W. Shi, H. Yun, C. Lin, X. Wang, J. Flueckiger, N. Jaeger, and L. Chrostowski, “Silicon CWDM demultiplexers using contra-directional couplers,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu3F.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 a) and b) add-drop filters with different pass bands, c) cascade of two add-drop filters from the thru port to make a bandwidth tunable filter.
Fig. 2
Fig. 2 a) Top view of a CDGAC, b) Measurement result of the CDGAC with a 150 nm gap between the waveguides and a maximum grating width of 24 nm on the narrow waveguide, and of 50 nm on the wide waveguide, and a period of Λ = 312 nm.
Fig. 3
Fig. 3 Top view of the wavelength and bandwidth-tunable filter consisting of cascade of two CDGACs with a buffer region between them.
Fig. 4
Fig. 4 Through and drop port response of the back to back configuration when no voltage is applied to the heaters.
Fig. 5
Fig. 5 a) and b) Through port response when current is only applied to the heater on long(short)-period CDGAC ( ΔT is the temperature change at the long(short)-period CDGAC), c) and d) central wavelength (solid) and 3-dB bandwidth (dotted) vs. applied current of respectively the graph in (a) and (b).
Fig. 6
Fig. 6 a) Through port response when the same current is applied to the heaters ( I 1 = I 2 ) on short-period and long-period CDGAC, Δ T 1 ( Δ T 2 ) is the temperature change at short(long)-period CDGAC, b) 3-dB bandwidth (dotted) and central wavelength (solid) of the passband for different applied current.
Fig. 7
Fig. 7 a) Through port response for different temperature at the CDGACs, Δ T 1 ( Δ T 2 ) is the temperature change at the short(long)-period CDGAC, b) 3-dB bandwidth (dotted) and central wavelength(solid) of the passband for different applied current.

Metrics