Abstract

Polymer lasers are fabricated by an assembly method. A polymer membrane is directly attached on the one- or two- dimensional grating. The suspended membrane acts as an active waveguide, which is supported by the grating ridge, leaving air gaps in the grating valley. Most of the radiation is effectively confined within the active waveguide due to the strong reflection at the membrane/air interfaces. So, low threshold lasing can be achieved when the sample is optically pumped. This fabrication method provides an alternative to investigate low-threshold polymer lasers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermally tunable liquid crystal distributed feedback laser based on a polymer grating with nanogrooves fabricated by nanoimprint lithography

Kai-Yu Yu, Shih-Hui Chang, Chia-Rong Lee, Teng-Yuan Hsu, and Chie-Tong Kuo
Opt. Mater. Express 4(2) 234-240 (2014)

Design and analysis of a low-threshold polymer circular-grating distributed-feedback laser

Guy F. Barlow, Alan Shore, Graham A. Turnbull, and Ifor D. W. Samuel
J. Opt. Soc. Am. B 21(12) 2142-2150 (2004)

Organic dye lasers with distributed Bragg reflector grating and distributed feedback resonator

Naoto Tsutsumi and Takashi Ishibashi
Opt. Express 17(24) 21698-21703 (2009)

References

  • View by:
  • |
  • |
  • |

  1. N. Tessler, G. Denton, and R. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
    [Crossref]
  2. A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
    [Crossref] [PubMed]
  3. I. D. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
    [Crossref] [PubMed]
  4. C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
    [Crossref]
  5. T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
    [Crossref] [PubMed]
  6. G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
    [Crossref]
  7. E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
    [Crossref]
  8. T. Zhai, X. Zhang, and Z. Pang, “Polymer laser based on active waveguide grating structures,” Opt. Express 19(7), 6487–6492 (2011).
    [Crossref] [PubMed]
  9. C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, N. Laurand, and M. D. Dawson, “RGB and white-emitting organic lasers on flexible glass,” Opt. Express 24(3), 2273–2280 (2016).
    [Crossref] [PubMed]
  10. Y. Wang, G. Tsiminis, A. L. Kanibolotsky, P. J. Skabara, I. D. Samuel, and G. A. Turnbull, “Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators,” Opt. Express 21(12), 14362–14367 (2013).
    [Crossref] [PubMed]
  11. M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
    [Crossref]
  12. S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357–6364 (2012).
    [Crossref] [PubMed]
  13. X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
    [Crossref]
  14. X. Liu, S. Klinkhammer, Z. Wang, T. Wienhold, C. Vannahme, P.-J. Jakobs, A. Bacher, A. Muslija, T. Mappes, and U. Lemmer, “Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer,” Opt. Express 21(23), 27697–27706 (2013).
    [Crossref] [PubMed]
  15. C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
    [Crossref]
  16. T. Zhai, Y. Wang, L. Chen, X. Wu, S. Li, and X. Zhang, “Red-green-blue laser emission from cascaded polymer membranes,” Nanoscale 7(47), 19935–19939 (2015).
    [Crossref] [PubMed]
  17. T. Zhai, Y. Wang, L. Chen, and X. Zhang, “Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate,” Nanoscale 7(29), 12312–12317 (2015).
    [Crossref] [PubMed]
  18. S. Gianordoli, R. Hainberger, A. Köck, N. Finger, E. Gornik, C. Hanke, and L. Korte, “Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes,” Appl. Phys. Lett. 77(15), 2295–2297 (2000).
    [Crossref]

2016 (2)

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
[Crossref]

C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, N. Laurand, and M. D. Dawson, “RGB and white-emitting organic lasers on flexible glass,” Opt. Express 24(3), 2273–2280 (2016).
[Crossref] [PubMed]

2015 (2)

T. Zhai, Y. Wang, L. Chen, X. Wu, S. Li, and X. Zhang, “Red-green-blue laser emission from cascaded polymer membranes,” Nanoscale 7(47), 19935–19939 (2015).
[Crossref] [PubMed]

T. Zhai, Y. Wang, L. Chen, and X. Zhang, “Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate,” Nanoscale 7(29), 12312–12317 (2015).
[Crossref] [PubMed]

2013 (2)

2012 (2)

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357–6364 (2012).
[Crossref] [PubMed]

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

2011 (2)

T. Zhai, X. Zhang, and Z. Pang, “Polymer laser based on active waveguide grating structures,” Opt. Express 19(7), 6487–6492 (2011).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

2009 (1)

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

2007 (1)

I. D. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref] [PubMed]

2005 (1)

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref] [PubMed]

2004 (1)

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

2003 (1)

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

2000 (1)

S. Gianordoli, R. Hainberger, A. Köck, N. Finger, E. Gornik, C. Hanke, and L. Korte, “Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes,” Appl. Phys. Lett. 77(15), 2295–2297 (2000).
[Crossref]

1998 (1)

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

1996 (1)

N. Tessler, G. Denton, and R. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[Crossref]

Andrew, P.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Bacher, A.

Barnes, W.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Bradley, D.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Bräse, S.

Bulovic, V.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref] [PubMed]

Chen, L.

T. Zhai, Y. Wang, L. Chen, X. Wu, S. Li, and X. Zhang, “Red-green-blue laser emission from cascaded polymer membranes,” Nanoscale 7(47), 19935–19939 (2015).
[Crossref] [PubMed]

T. Zhai, Y. Wang, L. Chen, and X. Zhang, “Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate,” Nanoscale 7(29), 12312–12317 (2015).
[Crossref] [PubMed]

Dawson, M. D.

Denton, G.

N. Tessler, G. Denton, and R. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[Crossref]

Dou, F.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

Feldmann, J.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Finger, N.

S. Gianordoli, R. Hainberger, A. Köck, N. Finger, E. Gornik, C. Hanke, and L. Korte, “Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes,” Appl. Phys. Lett. 77(15), 2295–2297 (2000).
[Crossref]

Foucher, C.

Friend, R.

N. Tessler, G. Denton, and R. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[Crossref]

Gaal, M.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

Gadermaier, C.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

Gianordoli, S.

S. Gianordoli, R. Hainberger, A. Köck, N. Finger, E. Gornik, C. Hanke, and L. Korte, “Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes,” Appl. Phys. Lett. 77(15), 2295–2297 (2000).
[Crossref]

Gombert, A.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Gornik, E.

S. Gianordoli, R. Hainberger, A. Köck, N. Finger, E. Gornik, C. Hanke, and L. Korte, “Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes,” Appl. Phys. Lett. 77(15), 2295–2297 (2000).
[Crossref]

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
[Crossref]

Guilhabert, B.

Hainberger, R.

S. Gianordoli, R. Hainberger, A. Köck, N. Finger, E. Gornik, C. Hanke, and L. Korte, “Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes,” Appl. Phys. Lett. 77(15), 2295–2297 (2000).
[Crossref]

Hanke, C.

S. Gianordoli, R. Hainberger, A. Köck, N. Finger, E. Gornik, C. Hanke, and L. Korte, “Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes,” Appl. Phys. Lett. 77(15), 2295–2297 (2000).
[Crossref]

Haugeneder, A.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Heeger, A.

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

Heliotis, G.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Hilmer, M.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Huska, K.

Jakobs, P.-J.

Kallinger, C.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Kanibolotsky, A. L.

Kaschke, J.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Klinkhammer, S.

Köck, A.

S. Gianordoli, R. Hainberger, A. Köck, N. Finger, E. Gornik, C. Hanke, and L. Korte, “Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes,” Appl. Phys. Lett. 77(15), 2295–2297 (2000).
[Crossref]

Korte, L.

S. Gianordoli, R. Hainberger, A. Köck, N. Finger, E. Gornik, C. Hanke, and L. Korte, “Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes,” Appl. Phys. Lett. 77(15), 2295–2297 (2000).
[Crossref]

Laurand, N.

Ledochowitsch, P.

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

Leising, G.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

Lemmer, U.

X. Liu, S. Klinkhammer, Z. Wang, T. Wienhold, C. Vannahme, P.-J. Jakobs, A. Bacher, A. Muslija, T. Mappes, and U. Lemmer, “Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer,” Opt. Express 21(23), 27697–27706 (2013).
[Crossref] [PubMed]

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357–6364 (2012).
[Crossref] [PubMed]

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Li, S.

T. Zhai, Y. Wang, L. Chen, X. Wu, S. Li, and X. Zhang, “Red-green-blue laser emission from cascaded polymer membranes,” Nanoscale 7(47), 19935–19939 (2015).
[Crossref] [PubMed]

List, E.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

Liu, X.

Madigan, C. F.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref] [PubMed]

Mappes, T.

Mechau, N.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Mednick, S.

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

Moderegger, E.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

Moses, D.

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

Müllen, K.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Muslija, A.

Namdas, E.

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

Pang, Z.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

T. Zhai, X. Zhang, and Z. Pang, “Polymer laser based on active waveguide grating structures,” Opt. Express 19(7), 6487–6492 (2011).
[Crossref] [PubMed]

Perner, M.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Plank, H.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

Pogantsch, A.

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

Rose, A.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref] [PubMed]

Samuel, I.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Samuel, I. D.

Scherf, U.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Shen, Y.

Skabara, P. J.

Spirkl, W.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Sudau, K.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Swager, T. M.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref] [PubMed]

Tessler, N.

N. Tessler, G. Denton, and R. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[Crossref]

Tong, M.

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

Tsiminis, G.

Turnbull, G.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Turnbull, G. A.

Valouch, S.

Vanderheiden, S.

Vannahme, C.

Wang, Y.

T. Zhai, Y. Wang, L. Chen, and X. Zhang, “Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate,” Nanoscale 7(29), 12312–12317 (2015).
[Crossref] [PubMed]

T. Zhai, Y. Wang, L. Chen, X. Wu, S. Li, and X. Zhang, “Red-green-blue laser emission from cascaded polymer membranes,” Nanoscale 7(47), 19935–19939 (2015).
[Crossref] [PubMed]

Y. Wang, G. Tsiminis, A. L. Kanibolotsky, P. J. Skabara, I. D. Samuel, and G. A. Turnbull, “Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators,” Opt. Express 21(12), 14362–14367 (2013).
[Crossref] [PubMed]

Wang, Z.

Wegener, M.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Wienhold, T.

Wittwer, V.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Wu, X.

T. Zhai, Y. Wang, L. Chen, X. Wu, S. Li, and X. Zhang, “Red-green-blue laser emission from cascaded polymer membranes,” Nanoscale 7(47), 19935–19939 (2015).
[Crossref] [PubMed]

Xia, R.

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Yuen, J.

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

Zhai, T.

T. Zhai, Y. Wang, L. Chen, X. Wu, S. Li, and X. Zhang, “Red-green-blue laser emission from cascaded polymer membranes,” Nanoscale 7(47), 19935–19939 (2015).
[Crossref] [PubMed]

T. Zhai, Y. Wang, L. Chen, and X. Zhang, “Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate,” Nanoscale 7(29), 12312–12317 (2015).
[Crossref] [PubMed]

T. Zhai, X. Zhang, and Z. Pang, “Polymer laser based on active waveguide grating structures,” Opt. Express 19(7), 6487–6492 (2011).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

Zhang, X.

T. Zhai, Y. Wang, L. Chen, X. Wu, S. Li, and X. Zhang, “Red-green-blue laser emission from cascaded polymer membranes,” Nanoscale 7(47), 19935–19939 (2015).
[Crossref] [PubMed]

T. Zhai, Y. Wang, L. Chen, and X. Zhang, “Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate,” Nanoscale 7(29), 12312–12317 (2015).
[Crossref] [PubMed]

T. Zhai, X. Zhang, and Z. Pang, “Polymer laser based on active waveguide grating structures,” Opt. Express 19(7), 6487–6492 (2011).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

Zhu, Z.

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

G. Heliotis, R. Xia, G. Turnbull, P. Andrew, W. Barnes, I. Samuel, and D. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Adv. Mater. (4)

E. Namdas, M. Tong, P. Ledochowitsch, S. Mednick, J. Yuen, D. Moses, and A. Heeger, “Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009).
[Crossref]

M. Gaal, C. Gadermaier, H. Plank, E. Moderegger, A. Pogantsch, G. Leising, and E. List, “Imprinted conjugated polymer laser,” Adv. Mater. 15(14), 1165–1167 (2003).
[Crossref]

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

Appl. Phys. Express (1)

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Appl. Phys. Lett. (1)

S. Gianordoli, R. Hainberger, A. Köck, N. Finger, E. Gornik, C. Hanke, and L. Korte, “Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes,” Appl. Phys. Lett. 77(15), 2295–2297 (2000).
[Crossref]

Chem. Rev. (1)

I. D. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref] [PubMed]

Nanoscale (2)

T. Zhai, Y. Wang, L. Chen, X. Wu, S. Li, and X. Zhang, “Red-green-blue laser emission from cascaded polymer membranes,” Nanoscale 7(47), 19935–19939 (2015).
[Crossref] [PubMed]

T. Zhai, Y. Wang, L. Chen, and X. Zhang, “Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate,” Nanoscale 7(29), 12312–12317 (2015).
[Crossref] [PubMed]

Nature (2)

N. Tessler, G. Denton, and R. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[Crossref]

A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref] [PubMed]

Opt. Express (5)

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fabrication procedures of polymer laser based on a suspended membrane structure. (a) The polymer/PVA bilayer structure is immersed in deionized water for 30 mins to dissolve the PVA layer. (b) A free-standing polymer membrane is obtained after complete dissolution of the PVA layer. (c) A PR film coated on the glass substrate is exposed to an interference pattern of two UV laser beams. α is the included angle between the two laser beams, which determines the period of the pattern. (d) The PR grating fabricated by interference lithography. (e) The polymer laser fabricated by directly attaching the wet polymer film in (b) to the surface of the grating in (d).

Fig. 2
Fig. 2

SEM images of the (a) 1D and (b) 2D DFB grating. The period of the 1D DFB grating is 360 nm. For the 2D rectangular grating, Λ1 = 370 nm; Λ2 = 360 nm. The inset in (a) is the AFM image of the 1D grating. The scale bar is 500 nm. (c) Cross-sectional SEM image and (d) photograph of the polymer laser based on the suspended membrane structure. The inset in (c) is the AFM image of the 1D grating covered by the membrane. The scale bar is 600 nm.

Fig. 3
Fig. 3

Measured emission spectra of the polymer laser with (a) 1D and (c) 2D distributed feedback. The output intensity of the polymer laser based on the (b) 1D and (d) 2D DFB cavity. The threshold of the 1D polymer laser is 23.4 μJ/cm2. The thresholds of the 2D polymer laser are 14.2 μJ/cm2 and 15.2 μJ/cm2 for the two orthogonal cavities, respectively.

Fig. 4
Fig. 4

(a) Schematic of the optical layout for measuring the polarization dependency of the polymer laser. The red dotted line indicates the optical axis of the half-wave plate. The double-headed red arrow denotes the polarization direction of the pump beam. β is the included angle between the optical axis and the polarization direction of the pump. (b) The output intensity as a function of β. (c) Enlarged view of the laser spot.① and ② identify the emission wavelengths of the 360 nm and 370 nm cavity, respectively. The red dotted line indicates the polarization direction of the polarizer. γ is the angle between the polarization direction of the polarizer and the lasing line. ② (d) The output intensity of the 2D DFB polymer laser with different angle γ.

Metrics