G. F. Schröder, M. Levitt, and A. T. Brunger, “Super-resolution biomolecular crystallography with low-resolution data,” Nature 464, 1218–1222 (2010).

[Crossref]
[PubMed]

A. Pearlman, A. Ling, E. A. Goldschmidt, C. F. Wildfeuer, J. Fan, and A. Migdall, “Enhancing image contrast using coherent states and photon number resolving detectors,” Opt. Express 18, 6033 (2010).

[Crossref]
[PubMed]

K. Wicker, S. Sindbert, and R. Heintzmann, “Characterization of a resolution enhancing image inversion interferometer,” Opt. Express 17, 15491 (2009).

[Crossref]
[PubMed]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photon. 3, 144–147 (2009).

[Crossref]

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, “Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP,” Nat Meth 5, 947–949 (2008).

[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).

[Crossref]
[PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Nat. Acad. Sci. 97, 8206–8210 (2000).

[Crossref]
[PubMed]

E. Bettens, D. V. Dyck, A. J. D. Dekker, J. Sijbers, and A. V. d. Bos, “Model-based two-object resolution from observations having counting statistics,” Ultramicroscopy 77, 37–48 (1999).

[Crossref]

M .G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “I5m: 3D widefield light microscopy with better than 100nm axial resolution,” J. Microscopy 195, 10–16 (1999).

[Crossref]

F. Lanni, B. Bailey, D. L. Farkas, and D. L. Taylor, “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscope,” Bioimaging 1, 187–196 (1993).

[Crossref]

H. H. Ku, “Notes on the use of propagation of error formulas,” J. Res. National Bureau of Standards 70, 4 (1966).

C. M. Sparrow, “On spectroscopic resolving power,” Astro Phys. 44, 76 (1916).

[Crossref]

L. Rayleigh, “Investigations in optics, with special reference to the spectroscope,” Philos. Mag. 8(49), 261–274 (1879).

[Crossref]

M .G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “I5m: 3D widefield light microscopy with better than 100nm axial resolution,” J. Microscopy 195, 10–16 (1999).

[Crossref]

F. Lanni, B. Bailey, D. L. Farkas, and D. L. Taylor, “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscope,” Bioimaging 1, 187–196 (1993).

[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).

[Crossref]
[PubMed]

E. Bettens, D. V. Dyck, A. J. D. Dekker, J. Sijbers, and A. V. d. Bos, “Model-based two-object resolution from observations having counting statistics,” Ultramicroscopy 77, 37–48 (1999).

[Crossref]

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, “Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP,” Nat Meth 5, 947–949 (2008).

[Crossref]

E. Bettens, D. V. Dyck, A. J. D. Dekker, J. Sijbers, and A. V. d. Bos, “Model-based two-object resolution from observations having counting statistics,” Ultramicroscopy 77, 37–48 (1999).

[Crossref]

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, “Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP,” Nat Meth 5, 947–949 (2008).

[Crossref]

G. F. Schröder, M. Levitt, and A. T. Brunger, “Super-resolution biomolecular crystallography with low-resolution data,” Nature 464, 1218–1222 (2010).

[Crossref]
[PubMed]

E. Bettens, D. V. Dyck, A. J. D. Dekker, J. Sijbers, and A. V. d. Bos, “Model-based two-object resolution from observations having counting statistics,” Ultramicroscopy 77, 37–48 (1999).

[Crossref]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Nat. Acad. Sci. 97, 8206–8210 (2000).

[Crossref]
[PubMed]

E. Bettens, D. V. Dyck, A. J. D. Dekker, J. Sijbers, and A. V. d. Bos, “Model-based two-object resolution from observations having counting statistics,” Ultramicroscopy 77, 37–48 (1999).

[Crossref]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photon. 3, 144–147 (2009).

[Crossref]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Nat. Acad. Sci. 97, 8206–8210 (2000).

[Crossref]
[PubMed]

F. Lanni, B. Bailey, D. L. Farkas, and D. L. Taylor, “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscope,” Bioimaging 1, 187–196 (1993).

[Crossref]

W. Kian Tham, H. Ferretti, and A. M. Steinberg, “Beating Rayleigh’s Curse by Imaging Using Phase Information,” arXiv:1606.02666 (2016).

M .G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “I5m: 3D widefield light microscopy with better than 100nm axial resolution,” J. Microscopy 195, 10–16 (1999).

[Crossref]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photon. 3, 144–147 (2009).

[Crossref]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photon. 3, 144–147 (2009).

[Crossref]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Nat. Acad. Sci. 97, 8206–8210 (2000).

[Crossref]
[PubMed]

S. W. Hell and J. Wichman, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).

[Crossref]
[PubMed]

M. Paur, B. Stoklasa, Z. Hradil, L. L. Sanchez-Soto, and J. Rehacek, “Achieving quantum-limited optical resolution,” arXiv:1606.08332v1 (2016).

P. J. Huber and E. M. Ronchetti, Robust Statistics, 2nd ed. (John Wiley & Sons, 2011).

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photon. 3, 144–147 (2009).

[Crossref]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Nat. Acad. Sci. 97, 8206–8210 (2000).

[Crossref]
[PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Nat. Acad. Sci. 97, 8206–8210 (2000).

[Crossref]
[PubMed]

H. H. Ku, “Notes on the use of propagation of error formulas,” J. Res. National Bureau of Standards 70, 4 (1966).

F. Lanni, B. Bailey, D. L. Farkas, and D. L. Taylor, “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscope,” Bioimaging 1, 187–196 (1993).

[Crossref]

G. F. Schröder, M. Levitt, and A. T. Brunger, “Super-resolution biomolecular crystallography with low-resolution data,” Nature 464, 1218–1222 (2010).

[Crossref]
[PubMed]

M. Tsang, R. Nair, and X. M. Lu, “Quantum theory of superresolution for two incoherent optical point sources,” arXiv:1511.00552 (2015).

C. Lupo and S. Pirandola, “Ultimate precision limits for quantum sub-Rayleigh imaging,” arXiv:1604.07367v3 (2016).

F. Yang, A. Taschilina, E. S. Moiseev, C. Simon, and A. I. Lvovsky, “Far-field linear optical superresolution via heterodyne detection in a higher-order local oscillator mode,” arXiv:1606.02662v2 (2016).

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, “Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP,” Nat Meth 5, 947–949 (2008).

[Crossref]

F. Yang, A. Taschilina, E. S. Moiseev, C. Simon, and A. I. Lvovsky, “Far-field linear optical superresolution via heterodyne detection in a higher-order local oscillator mode,” arXiv:1606.02662v2 (2016).

D. S. Moore, The Basic Practice of Statistics (W.H. Freeman, 2007, Vol. II).

M. Paur, B. Stoklasa, Z. Hradil, L. L. Sanchez-Soto, and J. Rehacek, “Achieving quantum-limited optical resolution,” arXiv:1606.08332v1 (2016).

C. Lupo and S. Pirandola, “Ultimate precision limits for quantum sub-Rayleigh imaging,” arXiv:1604.07367v3 (2016).

L. Rayleigh, “Investigations in optics, with special reference to the spectroscope,” Philos. Mag. 8(49), 261–274 (1879).

[Crossref]

M. Paur, B. Stoklasa, Z. Hradil, L. L. Sanchez-Soto, and J. Rehacek, “Achieving quantum-limited optical resolution,” arXiv:1606.08332v1 (2016).

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photon. 3, 144–147 (2009).

[Crossref]

P. J. Huber and E. M. Ronchetti, Robust Statistics, 2nd ed. (John Wiley & Sons, 2011).

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).

[Crossref]
[PubMed]

M. Paur, B. Stoklasa, Z. Hradil, L. L. Sanchez-Soto, and J. Rehacek, “Achieving quantum-limited optical resolution,” arXiv:1606.08332v1 (2016).

G. F. Schröder, M. Levitt, and A. T. Brunger, “Super-resolution biomolecular crystallography with low-resolution data,” Nature 464, 1218–1222 (2010).

[Crossref]
[PubMed]

M .G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “I5m: 3D widefield light microscopy with better than 100nm axial resolution,” J. Microscopy 195, 10–16 (1999).

[Crossref]

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, “Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP,” Nat Meth 5, 947–949 (2008).

[Crossref]

E. Bettens, D. V. Dyck, A. J. D. Dekker, J. Sijbers, and A. V. d. Bos, “Model-based two-object resolution from observations having counting statistics,” Ultramicroscopy 77, 37–48 (1999).

[Crossref]

F. Yang, A. Taschilina, E. S. Moiseev, C. Simon, and A. I. Lvovsky, “Far-field linear optical superresolution via heterodyne detection in a higher-order local oscillator mode,” arXiv:1606.02662v2 (2016).

C. M. Sparrow, “On spectroscopic resolving power,” Astro Phys. 44, 76 (1916).

[Crossref]

W. Kian Tham, H. Ferretti, and A. M. Steinberg, “Beating Rayleigh’s Curse by Imaging Using Phase Information,” arXiv:1606.02666 (2016).

M. Paur, B. Stoklasa, Z. Hradil, L. L. Sanchez-Soto, and J. Rehacek, “Achieving quantum-limited optical resolution,” arXiv:1606.08332v1 (2016).

F. Yang, A. Taschilina, E. S. Moiseev, C. Simon, and A. I. Lvovsky, “Far-field linear optical superresolution via heterodyne detection in a higher-order local oscillator mode,” arXiv:1606.02662v2 (2016).

F. Lanni, B. Bailey, D. L. Farkas, and D. L. Taylor, “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscope,” Bioimaging 1, 187–196 (1993).

[Crossref]

W. Kian Tham, H. Ferretti, and A. M. Steinberg, “Beating Rayleigh’s Curse by Imaging Using Phase Information,” arXiv:1606.02666 (2016).

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, “Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP,” Nat Meth 5, 947–949 (2008).

[Crossref]

R. Nair and M. Tsang, “Interferometric superlocalization of two incoherent optical point sources,” Opt. Express 24, 3584 (2016).

[Crossref]

M. Tsang, “Quantum limits to optical point-source localization,” Optica 2, 646–653 (2015).

[Crossref]

M. Tsang, R. Nair, and X. M. Lu, “Quantum theory of superresolution for two incoherent optical point sources,” arXiv:1511.00552 (2015).

M. Tsang, “Conservative error measures for classical and quantum metrology,” arXiv:1605.03799 [quant-ph] (2016).

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, “Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP,” Nat Meth 5, 947–949 (2008).

[Crossref]

F. Yang, A. Taschilina, E. S. Moiseev, C. Simon, and A. I. Lvovsky, “Far-field linear optical superresolution via heterodyne detection in a higher-order local oscillator mode,” arXiv:1606.02662v2 (2016).

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).

[Crossref]
[PubMed]

C. M. Sparrow, “On spectroscopic resolving power,” Astro Phys. 44, 76 (1916).

[Crossref]

F. Lanni, B. Bailey, D. L. Farkas, and D. L. Taylor, “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscope,” Bioimaging 1, 187–196 (1993).

[Crossref]

M .G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “I5m: 3D widefield light microscopy with better than 100nm axial resolution,” J. Microscopy 195, 10–16 (1999).

[Crossref]

H. H. Ku, “Notes on the use of propagation of error formulas,” J. Res. National Bureau of Standards 70, 4 (1966).

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, “Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP,” Nat Meth 5, 947–949 (2008).

[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).

[Crossref]
[PubMed]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photon. 3, 144–147 (2009).

[Crossref]

G. F. Schröder, M. Levitt, and A. T. Brunger, “Super-resolution biomolecular crystallography with low-resolution data,” Nature 464, 1218–1222 (2010).

[Crossref]
[PubMed]

R. Nair and M. Tsang, “Interferometric superlocalization of two incoherent optical point sources,” Opt. Express 24, 3584 (2016).

[Crossref]

K. Wicker and R. Heintzmann, “Interferometric resolution improvement for confocal microscopes,” Opt. Express 15, 12206 (2007).

[Crossref]
[PubMed]

K. Wicker, S. Sindbert, and R. Heintzmann, “Characterization of a resolution enhancing image inversion interferometer,” Opt. Express 17, 15491 (2009).

[Crossref]
[PubMed]

A. Pearlman, A. Ling, E. A. Goldschmidt, C. F. Wildfeuer, J. Fan, and A. Migdall, “Enhancing image contrast using coherent states and photon number resolving detectors,” Opt. Express 18, 6033 (2010).

[Crossref]
[PubMed]

L. Rayleigh, “Investigations in optics, with special reference to the spectroscope,” Philos. Mag. 8(49), 261–274 (1879).

[Crossref]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Nat. Acad. Sci. 97, 8206–8210 (2000).

[Crossref]
[PubMed]

E. Bettens, D. V. Dyck, A. J. D. Dekker, J. Sijbers, and A. V. d. Bos, “Model-based two-object resolution from observations having counting statistics,” Ultramicroscopy 77, 37–48 (1999).

[Crossref]

M. Tsang, R. Nair, and X. M. Lu, “Quantum theory of superresolution for two incoherent optical point sources,” arXiv:1511.00552 (2015).

P. J. Huber and E. M. Ronchetti, Robust Statistics, 2nd ed. (John Wiley & Sons, 2011).

D. S. Moore, The Basic Practice of Statistics (W.H. Freeman, 2007, Vol. II).

M. Tsang, “Conservative error measures for classical and quantum metrology,” arXiv:1605.03799 [quant-ph] (2016).

C. Lupo and S. Pirandola, “Ultimate precision limits for quantum sub-Rayleigh imaging,” arXiv:1604.07367v3 (2016).

F. Yang, A. Taschilina, E. S. Moiseev, C. Simon, and A. I. Lvovsky, “Far-field linear optical superresolution via heterodyne detection in a higher-order local oscillator mode,” arXiv:1606.02662v2 (2016).

W. Kian Tham, H. Ferretti, and A. M. Steinberg, “Beating Rayleigh’s Curse by Imaging Using Phase Information,” arXiv:1606.02666 (2016).

M. Paur, B. Stoklasa, Z. Hradil, L. L. Sanchez-Soto, and J. Rehacek, “Achieving quantum-limited optical resolution,” arXiv:1606.08332v1 (2016).