Abstract

We present the possibility of steering the direction of correlations between the off-resonant Raman scattered photons from the angularly multimode atomic memory based on warm rubidium vapors. Using acousto-optic deflectors (AOD) driven by different modulation frequencies, we experimentally change the angle of incidence of the laser beams on the atomic ensemble. By performing correlation measurements for various deflection angles, we verify that we can choose the anti-Stokes light propagation direction independently of the correlated Stokes scattered light in a continuous way. As a result we can select the spatial mode of photons retrieved from the memory, which may be important for future development of quantum information processing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hamiltonian design in readout from room-temperature Raman atomic memory

Michał Dąbrowski, Radosław Chrapkiewicz, and Wojciech Wasilewski
Opt. Express 22(21) 26076-26091 (2014)

Generation and delayed retrieval of spatially multimode Raman scattering in warm rubidium vapors

Radosław Chrapkiewicz and Wojciech Wasilewski
Opt. Express 20(28) 29540-29552 (2012)

A Multiplexed Quantum Memory

S.-Y. Lan, A. G. Radnaev, O. A. Collins, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich
Opt. Express 17(16) 13639-13645 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68(21), 3121–3124 (1992).
    [Crossref] [PubMed]
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [Crossref]
  3. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
    [Crossref] [PubMed]
  4. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
    [Crossref]
  5. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
    [Crossref] [PubMed]
  6. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [Crossref] [PubMed]
  7. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
    [Crossref]
  8. A. B. U’Ren, Y. Jeronimo-Moreno, and H. Garcia-Gracia, “Generation of Fourier-transform-limited heralded single photons,” Phys. Rev. A 75(2), 023810 (2007).
    [Crossref]
  9. M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, “Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing,” Opt. Express 19(23), 22698 (2011).
    [Crossref] [PubMed]
  10. M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106(5), 053901 (2011).
    [Crossref] [PubMed]
  11. X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
    [Crossref]
  12. X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photonics 6(4), 225–228 (2012).
    [Crossref]
  13. M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
    [Crossref] [PubMed]
  14. J. Nunn, N. K. Langford, W. S. Kolthammer, T. F. M. Champion, M. R. Sprague, P. S. Michelberger, X.-M. Jin, D. G. England, and I. A. Walmsley, “Enhancing multiphoton rates with quantum memories,” Phys. Rev. Lett. 110(13), 133601 (2013).
    [Crossref] [PubMed]
  15. S.-Y. Lan, A. G. Radnaev, O. A. Collins, D. N. Matsukevich, T. A. Kennedy, and A. Kuzmich, “A multiplexed quantum memory,” Opt. Express 17(16), 13639 (2009).
    [Crossref] [PubMed]
  16. O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Phys. Rev. Lett. 98(6), 060502 (2007).
    [Crossref] [PubMed]
  17. K. Surmacz, J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. Sussman, I. A. Walmsley, and D. Jaksch, “Efficient spatially resolved multimode quantum memory,” Phys. Rev. A 78(3), 033806 (2008).
    [Crossref]
  18. D. B. Higginbottom, B. M. Sparkes, M. Rancic, O. Pinel, M. Hosseini, P. K. Lam, and B. C. Buchler, “Spatial-mode storage in a gradient-echo memory,” Phys. Rev. A 86(2), 023801 (2012).
    [Crossref]
  19. M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing Images in Warm Atomic Vapor,” P Phys. Rev. Lett. 100(22), 223601 (2008).
    [Crossref]
  20. M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88(3), 033845 (2013).
    [Crossref]
  21. M. Parniak, A. Leszczyński, and W. Wasilewski, “Coupling of four-wave mixing and Raman scattering by ground-state atomic coherence,” Phys. Rev. A 93(5), 053821 (2016).
    [Crossref]
  22. R. Chrapkiewicz and W. Wasilewski, “Generation and delayed retrieval of spatially multimode Raman scattering in warm rubidium vapors,” Opt. Express 20(28), 29540 (2012).
    [Crossref]
  23. M. Dąbrowski, R. Chrapkiewicz, and W. Wasilewski, “Magnetically tuned, robust and efficient filtering system for spatially multimode quantum memory in warm atomic vapors,” J. Mod. Opt. (to be published).
  24. R. Chrapkiewicz, W. Wasilewski, and K. Banaszek, “High-fidelity spatially resolved multiphoton counting for quantum imaging applications,” Opt. Lett. 39(17), 5090–50933 (2014).
    [Crossref] [PubMed]
  25. M. Jachura and R. Chrapkiewicz, “Shot-by-shot imaging of Hong-Ou-Mandel interference with an intensified sCMOS camera,” Opt. Lett. 40(7), 1540–1543 (2015).
    [Crossref] [PubMed]
  26. M. Dąbrowski, R. Chrapkiewicz, and W. Wasilewski, “Hamiltonian design in readout from room-temperature Raman atomic memory,” Opt. Express 22(21), 26076–26090 (2014).
    [Crossref]
  27. K. O. Roberts, T. McKellar, J. Fekete, A. Rakonjac, A. B. Deb, and N. Kjærgaard, “Steerable optical tweezers for ultracold atom studies,” Opt. Lett. 39(7), 2012–2015 (2014).
    [Crossref] [PubMed]
  28. R. Chrapkiewicz, M. Dąbrowski, and W. Wasilewski, “High-Capacity Angularly-Multiplexed Holographic Memory for Enhanced-Rate Generation of Photons,” http://www.arxiv.org/abs/1604.06049 .
  29. R. Chrapkiewicz, W. Wasilewski, and C. Radzewicz, “How to measure diffusional decoherence in multimode rubidium vapor memories?” Opt. Commun. 317, 1–6 (2014).
    [Crossref]

2016 (1)

M. Parniak, A. Leszczyński, and W. Wasilewski, “Coupling of four-wave mixing and Raman scattering by ground-state atomic coherence,” Phys. Rev. A 93(5), 053821 (2016).
[Crossref]

2015 (1)

2014 (4)

2013 (3)

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

J. Nunn, N. K. Langford, W. S. Kolthammer, T. F. M. Champion, M. R. Sprague, P. S. Michelberger, X.-M. Jin, D. G. England, and I. A. Walmsley, “Enhancing multiphoton rates with quantum memories,” Phys. Rev. Lett. 110(13), 133601 (2013).
[Crossref] [PubMed]

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88(3), 033845 (2013).
[Crossref]

2012 (3)

D. B. Higginbottom, B. M. Sparkes, M. Rancic, O. Pinel, M. Hosseini, P. K. Lam, and B. C. Buchler, “Spatial-mode storage in a gradient-echo memory,” Phys. Rev. A 86(2), 023801 (2012).
[Crossref]

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photonics 6(4), 225–228 (2012).
[Crossref]

R. Chrapkiewicz and W. Wasilewski, “Generation and delayed retrieval of spatially multimode Raman scattering in warm rubidium vapors,” Opt. Express 20(28), 29540 (2012).
[Crossref]

2011 (3)

M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, “Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing,” Opt. Express 19(23), 22698 (2011).
[Crossref] [PubMed]

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106(5), 053901 (2011).
[Crossref] [PubMed]

X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

2009 (1)

2008 (2)

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing Images in Warm Atomic Vapor,” P Phys. Rev. Lett. 100(22), 223601 (2008).
[Crossref]

K. Surmacz, J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. Sussman, I. A. Walmsley, and D. Jaksch, “Efficient spatially resolved multimode quantum memory,” Phys. Rev. A 78(3), 033806 (2008).
[Crossref]

2007 (3)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

A. B. U’Ren, Y. Jeronimo-Moreno, and H. Garcia-Gracia, “Generation of Fourier-transform-limited heralded single photons,” Phys. Rev. A 75(2), 023810 (2007).
[Crossref]

O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Phys. Rev. Lett. 98(6), 060502 (2007).
[Crossref] [PubMed]

2004 (1)

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
[Crossref]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

2001 (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

1992 (1)

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68(21), 3121–3124 (1992).
[Crossref] [PubMed]

Almeida, M. P.

Altepeter, J. B.

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106(5), 053901 (2011).
[Crossref] [PubMed]

Banaszek, K.

R. Chrapkiewicz, W. Wasilewski, and K. Banaszek, “High-fidelity spatially resolved multiphoton counting for quantum imaging applications,” Opt. Lett. 39(17), 5090–50933 (2014).
[Crossref] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
[Crossref]

Bao, X.-H.

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photonics 6(4), 225–228 (2012).
[Crossref]

Bennett, C. H.

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68(21), 3121–3124 (1992).
[Crossref] [PubMed]

Boyer, V.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88(3), 033845 (2013).
[Crossref]

Broome, M. A.

Buchler, B. C.

D. B. Higginbottom, B. M. Sparkes, M. Rancic, O. Pinel, M. Hosseini, P. K. Lam, and B. C. Buchler, “Spatial-mode storage in a gradient-echo memory,” Phys. Rev. A 86(2), 023801 (2012).
[Crossref]

Champion, T. F. M.

J. Nunn, N. K. Langford, W. S. Kolthammer, T. F. M. Champion, M. R. Sprague, P. S. Michelberger, X.-M. Jin, D. G. England, and I. A. Walmsley, “Enhancing multiphoton rates with quantum memories,” Phys. Rev. Lett. 110(13), 133601 (2013).
[Crossref] [PubMed]

Chen, Y.-A.

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photonics 6(4), 225–228 (2012).
[Crossref]

Chrapkiewicz, R.

Cirac, J. I.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Clark, A. S.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Collins, M. J.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Collins, O. A.

S.-Y. Lan, A. G. Radnaev, O. A. Collins, D. N. Matsukevich, T. A. Kennedy, and A. Kuzmich, “A multiplexed quantum memory,” Opt. Express 17(16), 13639 (2009).
[Crossref] [PubMed]

O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Phys. Rev. Lett. 98(6), 060502 (2007).
[Crossref] [PubMed]

Dabrowski, M.

M. Dąbrowski, R. Chrapkiewicz, and W. Wasilewski, “Hamiltonian design in readout from room-temperature Raman atomic memory,” Opt. Express 22(21), 26076–26090 (2014).
[Crossref]

M. Dąbrowski, R. Chrapkiewicz, and W. Wasilewski, “Magnetically tuned, robust and efficient filtering system for spatially multimode quantum memory in warm atomic vapors,” J. Mod. Opt. (to be published).

Davidson, N.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing Images in Warm Atomic Vapor,” P Phys. Rev. Lett. 100(22), 223601 (2008).
[Crossref]

Deb, A. B.

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Duan, L. M.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Eggleton, B. J.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Embrey, C. S.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88(3), 033845 (2013).
[Crossref]

England, D. G.

J. Nunn, N. K. Langford, W. S. Kolthammer, T. F. M. Champion, M. R. Sprague, P. S. Michelberger, X.-M. Jin, D. G. England, and I. A. Walmsley, “Enhancing multiphoton rates with quantum memories,” Phys. Rev. Lett. 110(13), 133601 (2013).
[Crossref] [PubMed]

Fedrizzi, A.

Fekete, J.

Firstenberg, O.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing Images in Warm Atomic Vapor,” P Phys. Rev. Lett. 100(22), 223601 (2008).
[Crossref]

Garcia-Gracia, H.

A. B. U’Ren, Y. Jeronimo-Moreno, and H. Garcia-Gracia, “Generation of Fourier-transform-limited heralded single photons,” Phys. Rev. A 75(2), 023810 (2007).
[Crossref]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Hall, M. A.

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106(5), 053901 (2011).
[Crossref] [PubMed]

He, J.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Higginbottom, D. B.

D. B. Higginbottom, B. M. Sparkes, M. Rancic, O. Pinel, M. Hosseini, P. K. Lam, and B. C. Buchler, “Spatial-mode storage in a gradient-echo memory,” Phys. Rev. A 86(2), 023801 (2012).
[Crossref]

Hosseini, M.

D. B. Higginbottom, B. M. Sparkes, M. Rancic, O. Pinel, M. Hosseini, P. K. Lam, and B. C. Buchler, “Spatial-mode storage in a gradient-echo memory,” Phys. Rev. A 86(2), 023801 (2012).
[Crossref]

Jachura, M.

Jaksch, D.

K. Surmacz, J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. Sussman, I. A. Walmsley, and D. Jaksch, “Efficient spatially resolved multimode quantum memory,” Phys. Rev. A 78(3), 033806 (2008).
[Crossref]

Jenkins, S. D.

O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Phys. Rev. Lett. 98(6), 060502 (2007).
[Crossref] [PubMed]

Jennewein, T.

X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

Jeronimo-Moreno, Y.

A. B. U’Ren, Y. Jeronimo-Moreno, and H. Garcia-Gracia, “Generation of Fourier-transform-limited heralded single photons,” Phys. Rev. A 75(2), 023810 (2007).
[Crossref]

Jin, X.-M.

J. Nunn, N. K. Langford, W. S. Kolthammer, T. F. M. Champion, M. R. Sprague, P. S. Michelberger, X.-M. Jin, D. G. England, and I. A. Walmsley, “Enhancing multiphoton rates with quantum memories,” Phys. Rev. Lett. 110(13), 133601 (2013).
[Crossref] [PubMed]

Kennedy, T. A.

Kennedy, T. A. B.

O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Phys. Rev. Lett. 98(6), 060502 (2007).
[Crossref] [PubMed]

Kjærgaard, N.

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Kofler, J.

X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Kolthammer, W. S.

J. Nunn, N. K. Langford, W. S. Kolthammer, T. F. M. Champion, M. R. Sprague, P. S. Michelberger, X.-M. Jin, D. G. England, and I. A. Walmsley, “Enhancing multiphoton rates with quantum memories,” Phys. Rev. Lett. 110(13), 133601 (2013).
[Crossref] [PubMed]

Krauss, T. F.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Kumar, P.

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106(5), 053901 (2011).
[Crossref] [PubMed]

Kuzmich, A.

S.-Y. Lan, A. G. Radnaev, O. A. Collins, D. N. Matsukevich, T. A. Kennedy, and A. Kuzmich, “A multiplexed quantum memory,” Opt. Express 17(16), 13639 (2009).
[Crossref] [PubMed]

O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Phys. Rev. Lett. 98(6), 060502 (2007).
[Crossref] [PubMed]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Lam, P. K.

D. B. Higginbottom, B. M. Sparkes, M. Rancic, O. Pinel, M. Hosseini, P. K. Lam, and B. C. Buchler, “Spatial-mode storage in a gradient-echo memory,” Phys. Rev. A 86(2), 023801 (2012).
[Crossref]

Lan, S.-Y.

Langford, N. K.

J. Nunn, N. K. Langford, W. S. Kolthammer, T. F. M. Champion, M. R. Sprague, P. S. Michelberger, X.-M. Jin, D. G. England, and I. A. Walmsley, “Enhancing multiphoton rates with quantum memories,” Phys. Rev. Lett. 110(13), 133601 (2013).
[Crossref] [PubMed]

Lee, K. C.

K. Surmacz, J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. Sussman, I. A. Walmsley, and D. Jaksch, “Efficient spatially resolved multimode quantum memory,” Phys. Rev. A 78(3), 033806 (2008).
[Crossref]

Leszczynski, A.

M. Parniak, A. Leszczyński, and W. Wasilewski, “Coupling of four-wave mixing and Raman scattering by ground-state atomic coherence,” Phys. Rev. A 93(5), 053821 (2016).
[Crossref]

Lorenz, V. O.

K. Surmacz, J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. Sussman, I. A. Walmsley, and D. Jaksch, “Efficient spatially resolved multimode quantum memory,” Phys. Rev. A 78(3), 033806 (2008).
[Crossref]

Lu, C.-Y.

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photonics 6(4), 225–228 (2012).
[Crossref]

Lu, H.

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photonics 6(4), 225–228 (2012).
[Crossref]

Lukin, M. D.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Ma, X.-S.

X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

Marino, A. M.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88(3), 033845 (2013).
[Crossref]

Matsukevich, D. N.

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

McKellar, T.

Michelberger, P. S.

J. Nunn, N. K. Langford, W. S. Kolthammer, T. F. M. Champion, M. R. Sprague, P. S. Michelberger, X.-M. Jin, D. G. England, and I. A. Walmsley, “Enhancing multiphoton rates with quantum memories,” Phys. Rev. Lett. 110(13), 133601 (2013).
[Crossref] [PubMed]

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Nunn, J.

J. Nunn, N. K. Langford, W. S. Kolthammer, T. F. M. Champion, M. R. Sprague, P. S. Michelberger, X.-M. Jin, D. G. England, and I. A. Walmsley, “Enhancing multiphoton rates with quantum memories,” Phys. Rev. Lett. 110(13), 133601 (2013).
[Crossref] [PubMed]

K. Surmacz, J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. Sussman, I. A. Walmsley, and D. Jaksch, “Efficient spatially resolved multimode quantum memory,” Phys. Rev. A 78(3), 033806 (2008).
[Crossref]

Pan, G.-S.

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photonics 6(4), 225–228 (2012).
[Crossref]

Pan, J.-W.

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photonics 6(4), 225–228 (2012).
[Crossref]

Parniak, M.

M. Parniak, A. Leszczyński, and W. Wasilewski, “Coupling of four-wave mixing and Raman scattering by ground-state atomic coherence,” Phys. Rev. A 93(5), 053821 (2016).
[Crossref]

Peng, C.-Z.

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photonics 6(4), 225–228 (2012).
[Crossref]

Petrov, P. G.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88(3), 033845 (2013).
[Crossref]

Pinel, O.

D. B. Higginbottom, B. M. Sparkes, M. Rancic, O. Pinel, M. Hosseini, P. K. Lam, and B. C. Buchler, “Spatial-mode storage in a gradient-echo memory,” Phys. Rev. A 86(2), 023801 (2012).
[Crossref]

Pugatch, R.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing Images in Warm Atomic Vapor,” P Phys. Rev. Lett. 100(22), 223601 (2008).
[Crossref]

Radnaev, A. G.

Radzewicz, C.

R. Chrapkiewicz, W. Wasilewski, and C. Radzewicz, “How to measure diffusional decoherence in multimode rubidium vapor memories?” Opt. Commun. 317, 1–6 (2014).
[Crossref]

Rakonjac, A.

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Rancic, M.

D. B. Higginbottom, B. M. Sparkes, M. Rancic, O. Pinel, M. Hosseini, P. K. Lam, and B. C. Buchler, “Spatial-mode storage in a gradient-echo memory,” Phys. Rev. A 86(2), 023801 (2012).
[Crossref]

Reardon, C.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Reim, K.

K. Surmacz, J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. Sussman, I. A. Walmsley, and D. Jaksch, “Efficient spatially resolved multimode quantum memory,” Phys. Rev. A 78(3), 033806 (2008).
[Crossref]

Rey, I. H.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Roberts, K. O.

Ron, A.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing Images in Warm Atomic Vapor,” P Phys. Rev. Lett. 100(22), 223601 (2008).
[Crossref]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Shahnia, S.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Shuker, M.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing Images in Warm Atomic Vapor,” P Phys. Rev. Lett. 100(22), 223601 (2008).
[Crossref]

Silberhorn, C.

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
[Crossref]

Sparkes, B. M.

D. B. Higginbottom, B. M. Sparkes, M. Rancic, O. Pinel, M. Hosseini, P. K. Lam, and B. C. Buchler, “Spatial-mode storage in a gradient-echo memory,” Phys. Rev. A 86(2), 023801 (2012).
[Crossref]

Sprague, M. R.

J. Nunn, N. K. Langford, W. S. Kolthammer, T. F. M. Champion, M. R. Sprague, P. S. Michelberger, X.-M. Jin, D. G. England, and I. A. Walmsley, “Enhancing multiphoton rates with quantum memories,” Phys. Rev. Lett. 110(13), 133601 (2013).
[Crossref] [PubMed]

Steel, M. J.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Surmacz, K.

K. Surmacz, J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. Sussman, I. A. Walmsley, and D. Jaksch, “Efficient spatially resolved multimode quantum memory,” Phys. Rev. A 78(3), 033806 (2008).
[Crossref]

Sussman, B.

K. Surmacz, J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. Sussman, I. A. Walmsley, and D. Jaksch, “Efficient spatially resolved multimode quantum memory,” Phys. Rev. A 78(3), 033806 (2008).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Turnbull, M. T.

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88(3), 033845 (2013).
[Crossref]

U’Ren, A. B.

A. B. U’Ren, Y. Jeronimo-Moreno, and H. Garcia-Gracia, “Generation of Fourier-transform-limited heralded single photons,” Phys. Rev. A 75(2), 023810 (2007).
[Crossref]

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
[Crossref]

Vo, T. D.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Walmsley, I. A.

J. Nunn, N. K. Langford, W. S. Kolthammer, T. F. M. Champion, M. R. Sprague, P. S. Michelberger, X.-M. Jin, D. G. England, and I. A. Walmsley, “Enhancing multiphoton rates with quantum memories,” Phys. Rev. Lett. 110(13), 133601 (2013).
[Crossref] [PubMed]

K. Surmacz, J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. Sussman, I. A. Walmsley, and D. Jaksch, “Efficient spatially resolved multimode quantum memory,” Phys. Rev. A 78(3), 033806 (2008).
[Crossref]

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
[Crossref]

Wang, T.-X.

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photonics 6(4), 225–228 (2012).
[Crossref]

Wasilewski, W.

M. Parniak, A. Leszczyński, and W. Wasilewski, “Coupling of four-wave mixing and Raman scattering by ground-state atomic coherence,” Phys. Rev. A 93(5), 053821 (2016).
[Crossref]

M. Dąbrowski, R. Chrapkiewicz, and W. Wasilewski, “Hamiltonian design in readout from room-temperature Raman atomic memory,” Opt. Express 22(21), 26076–26090 (2014).
[Crossref]

R. Chrapkiewicz, W. Wasilewski, and K. Banaszek, “High-fidelity spatially resolved multiphoton counting for quantum imaging applications,” Opt. Lett. 39(17), 5090–50933 (2014).
[Crossref] [PubMed]

R. Chrapkiewicz, W. Wasilewski, and C. Radzewicz, “How to measure diffusional decoherence in multimode rubidium vapor memories?” Opt. Commun. 317, 1–6 (2014).
[Crossref]

R. Chrapkiewicz and W. Wasilewski, “Generation and delayed retrieval of spatially multimode Raman scattering in warm rubidium vapors,” Opt. Express 20(28), 29540 (2012).
[Crossref]

M. Dąbrowski, R. Chrapkiewicz, and W. Wasilewski, “Magnetically tuned, robust and efficient filtering system for spatially multimode quantum memory in warm atomic vapors,” J. Mod. Opt. (to be published).

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

White, A. G.

Xiong, C.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Xu, P.

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photonics 6(4), 225–228 (2012).
[Crossref]

Yao, X.-C.

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photonics 6(4), 225–228 (2012).
[Crossref]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Zeilinger, A.

X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Zoller, P.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Zotter, S.

X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

Nat. Commun. (1)

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photonics 6(4), 225–228 (2012).
[Crossref]

Nature (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Opt. Commun. (1)

R. Chrapkiewicz, W. Wasilewski, and C. Radzewicz, “How to measure diffusional decoherence in multimode rubidium vapor memories?” Opt. Commun. 317, 1–6 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

P Phys. Rev. Lett. (1)

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing Images in Warm Atomic Vapor,” P Phys. Rev. Lett. 100(22), 223601 (2008).
[Crossref]

Phys. Rev. A (6)

M. T. Turnbull, P. G. Petrov, C. S. Embrey, A. M. Marino, and V. Boyer, “Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light,” Phys. Rev. A 88(3), 033845 (2013).
[Crossref]

M. Parniak, A. Leszczyński, and W. Wasilewski, “Coupling of four-wave mixing and Raman scattering by ground-state atomic coherence,” Phys. Rev. A 93(5), 053821 (2016).
[Crossref]

X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[Crossref]

A. B. U’Ren, Y. Jeronimo-Moreno, and H. Garcia-Gracia, “Generation of Fourier-transform-limited heralded single photons,” Phys. Rev. A 75(2), 023810 (2007).
[Crossref]

K. Surmacz, J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. Sussman, I. A. Walmsley, and D. Jaksch, “Efficient spatially resolved multimode quantum memory,” Phys. Rev. A 78(3), 033806 (2008).
[Crossref]

D. B. Higginbottom, B. M. Sparkes, M. Rancic, O. Pinel, M. Hosseini, P. K. Lam, and B. C. Buchler, “Spatial-mode storage in a gradient-echo memory,” Phys. Rev. A 86(2), 023801 (2012).
[Crossref]

Phys. Rev. Lett. (6)

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106(5), 053901 (2011).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
[Crossref]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68(21), 3121–3124 (1992).
[Crossref] [PubMed]

J. Nunn, N. K. Langford, W. S. Kolthammer, T. F. M. Champion, M. R. Sprague, P. S. Michelberger, X.-M. Jin, D. G. England, and I. A. Walmsley, “Enhancing multiphoton rates with quantum memories,” Phys. Rev. Lett. 110(13), 133601 (2013).
[Crossref] [PubMed]

O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Phys. Rev. Lett. 98(6), 060502 (2007).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Other (2)

M. Dąbrowski, R. Chrapkiewicz, and W. Wasilewski, “Magnetically tuned, robust and efficient filtering system for spatially multimode quantum memory in warm atomic vapors,” J. Mod. Opt. (to be published).

R. Chrapkiewicz, M. Dąbrowski, and W. Wasilewski, “High-Capacity Angularly-Multiplexed Holographic Memory for Enhanced-Rate Generation of Photons,” http://www.arxiv.org/abs/1604.06049 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Redirecting heralded photons into the same mode in warm rubidium vapors atomic memory. (a) Photons are scattered at random directions during the write-in process. By redirecting readout beam we can launch the readout photon into the same fiber each time. (b) Phase-matching in the Raman scattering process. The momenta difference between the write laser kw and scattered photon kS is stored in the spinwave wavevector K. Then, it is added to the readout laser kr leading to a well defined readout photon momentum kaS. For any write-in photon direction kS or k S and any spinwaves with wavevectors K or K′, the direction of the readout beam can be adjusted accordingly from kr to k r so as to preserve k a S = k a S .

Fig. 2
Fig. 2

(a) Atomic levels structure of rubidium-87 used in the experiment. (b) Experimental setup: LD – laser diodes, FP – Fabry-Pérot interferometer, AOD – acousto-optic deflector, 87Rb memory – atomic memory cell, 87Rb filter – absorption filter, Faraday – Faraday filter, IF – interference filter, I-sCMOS – sCMOS camera with image intersifier.

Fig. 3
Fig. 3

The optical 4f relay transfers the angle of deflection of AOD into the centre of atomic memory. The deflection angle is proportional to AOD electrical drive frequency. The centre of AOD is optically imaged onto the center of atomic memory cell and next the crossing beams are projected onto I-sCMOS camera pane situated in the far-field with respect to the memory cell. The focal length of lenses: f1 = 50 mm, f2 = 750 mm, f3 = 500 mm. Basic modulation frequency was set to ν = 80 MHz, the laser beam diameter at the AOD input w = 250 μm. Such a configuration does not change the position of beams intersection inside memory cell but only changes the angle of crossing thus effectively changing the beams position in the far field camera.

Fig. 4
Fig. 4

Maps of correlations between intensity registered at a reference angle and the registered far field images around Stokes (write-in) driving beams (upper parts) and anti-Stokes (readout, lower parts). Rows represent situations with: (a) different reference angles ΔθS, (b) different AOD deflection angles Δθread, (c) combination of reference points from (a) and deflection angles from (b) simultaneously, leading to static position of the twin spot center. That coresponds to coupling the light always into the same fiber of conceptual fiber matrix, depicted as dashed circles.

Fig. 5
Fig. 5

Cross-sections of correlation maps from Fig. 4(a)–(c). The FWHM of correlation peak is about 0.24 mrad.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k a S = K + k r = k w k S + k r ,
C ( θ , θ ) = I ( θ ) I ( θ ) I ( θ ) I ( θ ) ( Δ I ( θ ) ) 2 ( Δ I ( θ ) ) 2 ,

Metrics