Abstract

The surface plasmon resonance (SPR) of Al thin films was investigated by varying the refractive index of the environment near the films in the far-ultraviolet (FUV, 120-200 nm) and deep-ultraviolet (DUV, 200-300 nm) regions. An original FUV-DUV spectrometer that adopts an attenuated total reflectance (ATR) system was used. The measurable wavelength range was down to the 180 nm, and the environment near the Al surface could be controlled. The resultant spectra enabled the dispersion relationship of Al-SPR in the FUV and DUV regions to be obtained. In the presence of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) on the Al film, the angle and wavelength of the SPR became larger and longer, respectively, compared to those in air. These shifts correspond well with the results of simulations performed using Fresnel equations.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles

S.-J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee
Opt. Lett. 29(12) 1390-1392 (2004)

Compact interferometer transducer based on surface plasmon phase resonance

Yassine Hadjar, Mikael Renault, Sylvain Blaize, Aurélien Bruyant, Rémi Vincent, and Abdelhamid Hmima
J. Opt. Soc. Am. A 32(5) 771-777 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola and M. Piliarik, Surface Plasmon Resonance (SPR) Sensors (Springer, 2006).
  2. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [Crossref] [PubMed]
  3. J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki, and N. Sugimoto, “SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles,” Anal. Chem. 77(13), 4282–4285 (2005).
    [Crossref] [PubMed]
  4. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  5. J. Wei, Y. Mu, D. Song, X. Fang, X. Liu, L. Bu, H. Zhang, G. Zhang, J. Ding, W. Wang, Q. Jin, and G. Luo, “A novel sandwich immunosensing method for measuring cardiac troponin I in sera,” Anal. Biochem. 321(2), 209–216 (2003).
    [Crossref] [PubMed]
  6. L. P. Wu, Y. F. Li, C. Z. Huang, and Q. Zhang, “Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles,” Anal. Chem. 78(15), 5570–5577 (2006).
    [Crossref] [PubMed]
  7. Y. Li, M. Kobayashi, K. Furui, N. Soh, K. Nakano, and T. Imato, “Surface plasmon resonance immunosensor for histamine based on an indirect competitive immunoreaction,” Anal. Chim. Acta 576(1), 77–83 (2006).
    [Crossref] [PubMed]
  8. T. Lim, M. Oyama, K. Ikebukuro, and I. Karube, “Detection of atrazine based on the SPR determination of P450 mRNA levels in Saccharomyces cerevisiae,” Anal. Chem. 72(13), 2856–2860 (2000).
    [Crossref] [PubMed]
  9. K. V. Gobi, H. Tanaka, Y. Shoyama, and N. Miura, “Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging,” Biosens. Bioelectron. 20(2), 350–357 (2004).
    [Crossref] [PubMed]
  10. M. Farré, E. Martínez, J. Ramón, A. Navarro, J. Radjenovic, E. Mauriz, L. Lechuga, M. P. Marco, and D. Barceló, “Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor,” Anal. Bioanal. Chem. 388(1), 207–214 (2007).
    [Crossref] [PubMed]
  11. S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
    [Crossref]
  12. T. Goto, A. Ikehata, Y. Morisawa, and Y. Ozaki, “Electronic transitions of protonated and deprotonated amino acids in aqueous solution in the region 145-300 nm studied by attenuated total reflection far-ultraviolet spectroscopy,” J. Phys. Chem. A 117(12), 2517–2528 (2013).
    [Crossref] [PubMed]
  13. Y. Ozaki and S. Kawata, Far-and Deep-ultraviolet Spectroscopy (Springer, 2015).
  14. E. D. Palik, Handbook of optical constants of solids (Academic press, 1991).
  15. C. Kittel, Introduction to solid state physics (Wiley, 2005).
  16. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. Macdonald, V. Mahajan, and E. Van Stryland, Handbook of optics, Volume II: Design, fabrication and testing, sources and detectors, radiometry and photometry (McGraw-Hill, Inc., 2009).
  17. J. Martin, J. Proust, D. Gérard, and J. Plain, “Localized surface plasmon resonances in the ultraviolet from large scale nanostructured aluminum films,” Opt. Mater. Express 3(7), 954–959 (2013).
    [Crossref]
  18. J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun. 286(5), 875–879 (2001).
    [Crossref] [PubMed]
  19. A. Ono, M. Kikawada, R. Akimoto, W. Inami, and Y. Kawata, “Fluorescence enhancement with deep-ultraviolet surface plasmon excitation,” Opt. Express 21(15), 17447–17453 (2013).
    [Crossref] [PubMed]
  20. M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Enhanced multicolor fluorescence in bioimaging using deep-ultraviolet surface plasmon resonance,” Appl. Phys. Lett. 104(22), 223703 (2014).
    [Crossref]
  21. M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Surface plasmon-enhanced fluorescence cell imaging in deep-UV region,” Appl. Phys. Express 8(7), 072401 (2015).
    [Crossref]
  22. Y. Watanabe, W. Inami, and Y. Kawata, “Deep-ultraviolet light excites surface plasmon for the enhancement of photoelectron emission,” J. Appl. Phys. 109(2), 023112 (2011).
    [Crossref]
  23. T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
    [Crossref]
  24. S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
    [Crossref] [PubMed]
  25. A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
    [Crossref]
  26. M. Norek, M. Włodarski, and P. Matysik, “UV plasmonic-based sensing properties of aluminum nanoconcave arrays,” Curr. Appl. Phys. 14(11), 1514–1520 (2014).
    [Crossref]
  27. R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized aluminum films,” Phys. Rev. B 11(8), 3116–3123 (1975).
    [Crossref]
  28. T. A. Callcott and E. T. Arakawa, “Volume and surface photoemission processes from plasmon resonance fields,” Phys. Rev. B 11(8), 2750–2758 (1975).
    [Crossref]
  29. J. G. Endriz and W. E. Spicer, “Surface-plasmon-one-electron decay and its observation in photoemission,” Phys. Rev. Lett. 24(2), 64–68 (1970).
    [Crossref]
  30. Y. Ozaki, Y. Morisawa, A. Ikehata, and N. Higashi, “Far-ultraviolet spectroscopy in the solid and liquid states: a review,” Appl. Spectrosc. 66(1), 1–25 (2012).
    [Crossref]
  31. A. Ikehata, N. Higashi, and Y. Ozaki, “Direct observation of the absorption bands of the first electronic transition in liquid H2O and D2O by attenuated total reflectance far-UV spectroscopy,” J. Chem. Phys. 129(23), 234510 (2008).
    [Crossref] [PubMed]
  32. A. Ikehata, M. Mitsuoka, Y. Morisawa, N. Kariyama, N. Higashi, and Y. Ozaki, “Effect of cations on absorption bands of first electronic transition of liquid water,” J. Phys. Chem. A 114(32), 8319–8322 (2010).
    [Crossref] [PubMed]
  33. Y. Morisawa, S. Tachibana, M. Ehara, and Y. Ozaki, “Elucidating electronic transitions from σ orbitals of liquid n- and branched alkanes by far-ultraviolet spectroscopy and quantum chemical calculations,” J. Phys. Chem. A 116(48), 11957–11964 (2012).
    [Crossref] [PubMed]
  34. I. Tanabe and Y. Ozaki, “Consistent changes in electronic states and photocatalytic activities of metal (Au, Pd, Pt)-modified TiO2 studied by far-ultraviolet spectroscopy,” Chem. Commun. (Camb.) 50(17), 2117–2119 (2014).
    [Crossref] [PubMed]
  35. T. Goto, A. Ikehata, Y. Morisawa, and Y. Ozaki, “Surface effect of alumina on the first electronic transition of liquid water studied by far-ultraviolet spectroscopy,” J. Phys. Chem. Lett. 6(6), 1022–1026 (2015).
    [Crossref] [PubMed]
  36. P. E. Doherty and R. S. Davis, “Direct observation of the oxidation of aluminum single-crystal surfaces,” J. Appl. Phys. 34(3), 619–628 (1963).
    [Crossref]
  37. C. T. Kirk and E. E. Huber., “The oxidation of aluminum films in low-pressure oxygen atmospheres,” Surf. Sci. 9(2), 217–245 (1968).
    [Crossref]
  38. H. J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” J. Opt. Soc. Am. 65(6), 742–744 (1975).
    [Crossref]
  39. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. Petersson, “Gaussian 09, revision B. 01,” Gaussian Inc., Wallingford, CT (2010).
  40. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  41. I. H. Malitson and M. J. Dodge, “Refractive-index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62(11), 1405 (1972).
  42. J. R. Parrish and E. R. Blout, “Spectroscopic studies of random chain and -helical polypeptides in hexafluoroisopropanol,” Biopolymers 10(9), 1491–1512 (1971).
    [Crossref] [PubMed]

2015 (2)

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Surface plasmon-enhanced fluorescence cell imaging in deep-UV region,” Appl. Phys. Express 8(7), 072401 (2015).
[Crossref]

T. Goto, A. Ikehata, Y. Morisawa, and Y. Ozaki, “Surface effect of alumina on the first electronic transition of liquid water studied by far-ultraviolet spectroscopy,” J. Phys. Chem. Lett. 6(6), 1022–1026 (2015).
[Crossref] [PubMed]

2014 (3)

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Enhanced multicolor fluorescence in bioimaging using deep-ultraviolet surface plasmon resonance,” Appl. Phys. Lett. 104(22), 223703 (2014).
[Crossref]

I. Tanabe and Y. Ozaki, “Consistent changes in electronic states and photocatalytic activities of metal (Au, Pd, Pt)-modified TiO2 studied by far-ultraviolet spectroscopy,” Chem. Commun. (Camb.) 50(17), 2117–2119 (2014).
[Crossref] [PubMed]

M. Norek, M. Włodarski, and P. Matysik, “UV plasmonic-based sensing properties of aluminum nanoconcave arrays,” Curr. Appl. Phys. 14(11), 1514–1520 (2014).
[Crossref]

2013 (3)

2012 (3)

Y. Ozaki, Y. Morisawa, A. Ikehata, and N. Higashi, “Far-ultraviolet spectroscopy in the solid and liquid states: a review,” Appl. Spectrosc. 66(1), 1–25 (2012).
[Crossref]

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Y. Morisawa, S. Tachibana, M. Ehara, and Y. Ozaki, “Elucidating electronic transitions from σ orbitals of liquid n- and branched alkanes by far-ultraviolet spectroscopy and quantum chemical calculations,” J. Phys. Chem. A 116(48), 11957–11964 (2012).
[Crossref] [PubMed]

2011 (1)

Y. Watanabe, W. Inami, and Y. Kawata, “Deep-ultraviolet light excites surface plasmon for the enhancement of photoelectron emission,” J. Appl. Phys. 109(2), 023112 (2011).
[Crossref]

2010 (1)

A. Ikehata, M. Mitsuoka, Y. Morisawa, N. Kariyama, N. Higashi, and Y. Ozaki, “Effect of cations on absorption bands of first electronic transition of liquid water,” J. Phys. Chem. A 114(32), 8319–8322 (2010).
[Crossref] [PubMed]

2009 (1)

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[Crossref]

2008 (2)

A. Ikehata, N. Higashi, and Y. Ozaki, “Direct observation of the absorption bands of the first electronic transition in liquid H2O and D2O by attenuated total reflectance far-UV spectroscopy,” J. Chem. Phys. 129(23), 234510 (2008).
[Crossref] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

2007 (2)

M. Farré, E. Martínez, J. Ramón, A. Navarro, J. Radjenovic, E. Mauriz, L. Lechuga, M. P. Marco, and D. Barceló, “Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor,” Anal. Bioanal. Chem. 388(1), 207–214 (2007).
[Crossref] [PubMed]

T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
[Crossref]

2006 (2)

L. P. Wu, Y. F. Li, C. Z. Huang, and Q. Zhang, “Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles,” Anal. Chem. 78(15), 5570–5577 (2006).
[Crossref] [PubMed]

Y. Li, M. Kobayashi, K. Furui, N. Soh, K. Nakano, and T. Imato, “Surface plasmon resonance immunosensor for histamine based on an indirect competitive immunoreaction,” Anal. Chim. Acta 576(1), 77–83 (2006).
[Crossref] [PubMed]

2005 (1)

J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki, and N. Sugimoto, “SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles,” Anal. Chem. 77(13), 4282–4285 (2005).
[Crossref] [PubMed]

2004 (1)

K. V. Gobi, H. Tanaka, Y. Shoyama, and N. Miura, “Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging,” Biosens. Bioelectron. 20(2), 350–357 (2004).
[Crossref] [PubMed]

2003 (2)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

J. Wei, Y. Mu, D. Song, X. Fang, X. Liu, L. Bu, H. Zhang, G. Zhang, J. Ding, W. Wang, Q. Jin, and G. Luo, “A novel sandwich immunosensing method for measuring cardiac troponin I in sera,” Anal. Biochem. 321(2), 209–216 (2003).
[Crossref] [PubMed]

2001 (1)

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun. 286(5), 875–879 (2001).
[Crossref] [PubMed]

2000 (1)

T. Lim, M. Oyama, K. Ikebukuro, and I. Karube, “Detection of atrazine based on the SPR determination of P450 mRNA levels in Saccharomyces cerevisiae,” Anal. Chem. 72(13), 2856–2860 (2000).
[Crossref] [PubMed]

1985 (1)

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]

1975 (3)

R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized aluminum films,” Phys. Rev. B 11(8), 3116–3123 (1975).
[Crossref]

T. A. Callcott and E. T. Arakawa, “Volume and surface photoemission processes from plasmon resonance fields,” Phys. Rev. B 11(8), 2750–2758 (1975).
[Crossref]

H. J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” J. Opt. Soc. Am. 65(6), 742–744 (1975).
[Crossref]

1972 (1)

I. H. Malitson and M. J. Dodge, “Refractive-index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62(11), 1405 (1972).

1971 (1)

J. R. Parrish and E. R. Blout, “Spectroscopic studies of random chain and -helical polypeptides in hexafluoroisopropanol,” Biopolymers 10(9), 1491–1512 (1971).
[Crossref] [PubMed]

1970 (1)

J. G. Endriz and W. E. Spicer, “Surface-plasmon-one-electron decay and its observation in photoemission,” Phys. Rev. Lett. 24(2), 64–68 (1970).
[Crossref]

1968 (1)

C. T. Kirk and E. E. Huber., “The oxidation of aluminum films in low-pressure oxygen atmospheres,” Surf. Sci. 9(2), 217–245 (1968).
[Crossref]

1963 (1)

P. E. Doherty and R. S. Davis, “Direct observation of the oxidation of aluminum single-crystal surfaces,” J. Appl. Phys. 34(3), 619–628 (1963).
[Crossref]

Agio, M.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Ahmed, Z.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Akamatsu, K.

J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki, and N. Sugimoto, “SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles,” Anal. Chem. 77(13), 4282–4285 (2005).
[Crossref] [PubMed]

Akimoto, R.

Arakawa, E. T.

T. A. Callcott and E. T. Arakawa, “Volume and surface photoemission processes from plasmon resonance fields,” Phys. Rev. B 11(8), 2750–2758 (1975).
[Crossref]

Barceló, D.

M. Farré, E. Martínez, J. Ramón, A. Navarro, J. Radjenovic, E. Mauriz, L. Lechuga, M. P. Marco, and D. Barceló, “Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor,” Anal. Bioanal. Chem. 388(1), 207–214 (2007).
[Crossref] [PubMed]

Blout, E. R.

J. R. Parrish and E. R. Blout, “Spectroscopic studies of random chain and -helical polypeptides in hexafluoroisopropanol,” Biopolymers 10(9), 1491–1512 (1971).
[Crossref] [PubMed]

Bu, L.

J. Wei, Y. Mu, D. Song, X. Fang, X. Liu, L. Bu, H. Zhang, G. Zhang, J. Ding, W. Wang, Q. Jin, and G. Luo, “A novel sandwich immunosensing method for measuring cardiac troponin I in sera,” Anal. Biochem. 321(2), 209–216 (2003).
[Crossref] [PubMed]

Callcott, T. A.

T. A. Callcott and E. T. Arakawa, “Volume and surface photoemission processes from plasmon resonance fields,” Phys. Rev. B 11(8), 2750–2758 (1975).
[Crossref]

D’Auria, S.

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun. 286(5), 875–879 (2001).
[Crossref] [PubMed]

Davis, R. S.

P. E. Doherty and R. S. Davis, “Direct observation of the oxidation of aluminum single-crystal surfaces,” J. Appl. Phys. 34(3), 619–628 (1963).
[Crossref]

Ding, J.

J. Wei, Y. Mu, D. Song, X. Fang, X. Liu, L. Bu, H. Zhang, G. Zhang, J. Ding, W. Wang, Q. Jin, and G. Luo, “A novel sandwich immunosensing method for measuring cardiac troponin I in sera,” Anal. Biochem. 321(2), 209–216 (2003).
[Crossref] [PubMed]

Dodge, M. J.

I. H. Malitson and M. J. Dodge, “Refractive-index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62(11), 1405 (1972).

Doherty, P. E.

P. E. Doherty and R. S. Davis, “Direct observation of the oxidation of aluminum single-crystal surfaces,” J. Appl. Phys. 34(3), 619–628 (1963).
[Crossref]

Dörfer, T.

T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
[Crossref]

Ehara, M.

Y. Morisawa, S. Tachibana, M. Ehara, and Y. Ozaki, “Elucidating electronic transitions from σ orbitals of liquid n- and branched alkanes by far-ultraviolet spectroscopy and quantum chemical calculations,” J. Phys. Chem. A 116(48), 11957–11964 (2012).
[Crossref] [PubMed]

Ekinci, Y.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Endriz, J. G.

J. G. Endriz and W. E. Spicer, “Surface-plasmon-one-electron decay and its observation in photoemission,” Phys. Rev. Lett. 24(2), 64–68 (1970).
[Crossref]

Fang, X.

J. Wei, Y. Mu, D. Song, X. Fang, X. Liu, L. Bu, H. Zhang, G. Zhang, J. Ding, W. Wang, Q. Jin, and G. Luo, “A novel sandwich immunosensing method for measuring cardiac troponin I in sera,” Anal. Biochem. 321(2), 209–216 (2003).
[Crossref] [PubMed]

Farré, M.

M. Farré, E. Martínez, J. Ramón, A. Navarro, J. Radjenovic, E. Mauriz, L. Lechuga, M. P. Marco, and D. Barceló, “Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor,” Anal. Bioanal. Chem. 388(1), 207–214 (2007).
[Crossref] [PubMed]

Fodor, S. P. A.

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]

Furui, K.

Y. Li, M. Kobayashi, K. Furui, N. Soh, K. Nakano, and T. Imato, “Surface plasmon resonance immunosensor for histamine based on an indirect competitive immunoreaction,” Anal. Chim. Acta 576(1), 77–83 (2006).
[Crossref] [PubMed]

Furusawa, K.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[Crossref]

Gérard, D.

Gobi, K. V.

K. V. Gobi, H. Tanaka, Y. Shoyama, and N. Miura, “Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging,” Biosens. Bioelectron. 20(2), 350–357 (2004).
[Crossref] [PubMed]

Goto, T.

T. Goto, A. Ikehata, Y. Morisawa, and Y. Ozaki, “Surface effect of alumina on the first electronic transition of liquid water studied by far-ultraviolet spectroscopy,” J. Phys. Chem. Lett. 6(6), 1022–1026 (2015).
[Crossref] [PubMed]

T. Goto, A. Ikehata, Y. Morisawa, and Y. Ozaki, “Electronic transitions of protonated and deprotonated amino acids in aqueous solution in the region 145-300 nm studied by attenuated total reflection far-ultraviolet spectroscopy,” J. Phys. Chem. A 117(12), 2517–2528 (2013).
[Crossref] [PubMed]

Gryczynski, I.

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun. 286(5), 875–879 (2001).
[Crossref] [PubMed]

Gryczynski, Z.

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun. 286(5), 875–879 (2001).
[Crossref] [PubMed]

Gudat, W.

Hagemann, H. J.

Hara, N.

J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki, and N. Sugimoto, “SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles,” Anal. Chem. 77(13), 4282–4285 (2005).
[Crossref] [PubMed]

Hayazawa, N.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[Crossref]

Hays, T. R.

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]

Higashi, N.

Y. Ozaki, Y. Morisawa, A. Ikehata, and N. Higashi, “Far-ultraviolet spectroscopy in the solid and liquid states: a review,” Appl. Spectrosc. 66(1), 1–25 (2012).
[Crossref]

A. Ikehata, M. Mitsuoka, Y. Morisawa, N. Kariyama, N. Higashi, and Y. Ozaki, “Effect of cations on absorption bands of first electronic transition of liquid water,” J. Phys. Chem. A 114(32), 8319–8322 (2010).
[Crossref] [PubMed]

A. Ikehata, N. Higashi, and Y. Ozaki, “Direct observation of the absorption bands of the first electronic transition in liquid H2O and D2O by attenuated total reflectance far-UV spectroscopy,” J. Chem. Phys. 129(23), 234510 (2008).
[Crossref] [PubMed]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Huang, C. Z.

L. P. Wu, Y. F. Li, C. Z. Huang, and Q. Zhang, “Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles,” Anal. Chem. 78(15), 5570–5577 (2006).
[Crossref] [PubMed]

Huber, E. E.

C. T. Kirk and E. E. Huber., “The oxidation of aluminum films in low-pressure oxygen atmospheres,” Surf. Sci. 9(2), 217–245 (1968).
[Crossref]

Ikebukuro, K.

T. Lim, M. Oyama, K. Ikebukuro, and I. Karube, “Detection of atrazine based on the SPR determination of P450 mRNA levels in Saccharomyces cerevisiae,” Anal. Chem. 72(13), 2856–2860 (2000).
[Crossref] [PubMed]

Ikehata, A.

T. Goto, A. Ikehata, Y. Morisawa, and Y. Ozaki, “Surface effect of alumina on the first electronic transition of liquid water studied by far-ultraviolet spectroscopy,” J. Phys. Chem. Lett. 6(6), 1022–1026 (2015).
[Crossref] [PubMed]

T. Goto, A. Ikehata, Y. Morisawa, and Y. Ozaki, “Electronic transitions of protonated and deprotonated amino acids in aqueous solution in the region 145-300 nm studied by attenuated total reflection far-ultraviolet spectroscopy,” J. Phys. Chem. A 117(12), 2517–2528 (2013).
[Crossref] [PubMed]

Y. Ozaki, Y. Morisawa, A. Ikehata, and N. Higashi, “Far-ultraviolet spectroscopy in the solid and liquid states: a review,” Appl. Spectrosc. 66(1), 1–25 (2012).
[Crossref]

A. Ikehata, M. Mitsuoka, Y. Morisawa, N. Kariyama, N. Higashi, and Y. Ozaki, “Effect of cations on absorption bands of first electronic transition of liquid water,” J. Phys. Chem. A 114(32), 8319–8322 (2010).
[Crossref] [PubMed]

A. Ikehata, N. Higashi, and Y. Ozaki, “Direct observation of the absorption bands of the first electronic transition in liquid H2O and D2O by attenuated total reflectance far-UV spectroscopy,” J. Chem. Phys. 129(23), 234510 (2008).
[Crossref] [PubMed]

Imato, T.

Y. Li, M. Kobayashi, K. Furui, N. Soh, K. Nakano, and T. Imato, “Surface plasmon resonance immunosensor for histamine based on an indirect competitive immunoreaction,” Anal. Chim. Acta 576(1), 77–83 (2006).
[Crossref] [PubMed]

Inami, W.

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Surface plasmon-enhanced fluorescence cell imaging in deep-UV region,” Appl. Phys. Express 8(7), 072401 (2015).
[Crossref]

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Enhanced multicolor fluorescence in bioimaging using deep-ultraviolet surface plasmon resonance,” Appl. Phys. Lett. 104(22), 223703 (2014).
[Crossref]

A. Ono, M. Kikawada, R. Akimoto, W. Inami, and Y. Kawata, “Fluorescence enhancement with deep-ultraviolet surface plasmon excitation,” Opt. Express 21(15), 17447–17453 (2013).
[Crossref] [PubMed]

Y. Watanabe, W. Inami, and Y. Kawata, “Deep-ultraviolet light excites surface plasmon for the enhancement of photoelectron emission,” J. Appl. Phys. 109(2), 023112 (2011).
[Crossref]

Ishitobi, H.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[Crossref]

Jha, S. K.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Jin, Q.

J. Wei, Y. Mu, D. Song, X. Fang, X. Liu, L. Bu, H. Zhang, G. Zhang, J. Ding, W. Wang, Q. Jin, and G. Luo, “A novel sandwich immunosensing method for measuring cardiac troponin I in sera,” Anal. Biochem. 321(2), 209–216 (2003).
[Crossref] [PubMed]

Kariyama, N.

A. Ikehata, M. Mitsuoka, Y. Morisawa, N. Kariyama, N. Higashi, and Y. Ozaki, “Effect of cations on absorption bands of first electronic transition of liquid water,” J. Phys. Chem. A 114(32), 8319–8322 (2010).
[Crossref] [PubMed]

Karube, I.

T. Lim, M. Oyama, K. Ikebukuro, and I. Karube, “Detection of atrazine based on the SPR determination of P450 mRNA levels in Saccharomyces cerevisiae,” Anal. Chem. 72(13), 2856–2860 (2000).
[Crossref] [PubMed]

Kawata, S.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[Crossref]

Kawata, Y.

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Surface plasmon-enhanced fluorescence cell imaging in deep-UV region,” Appl. Phys. Express 8(7), 072401 (2015).
[Crossref]

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Enhanced multicolor fluorescence in bioimaging using deep-ultraviolet surface plasmon resonance,” Appl. Phys. Lett. 104(22), 223703 (2014).
[Crossref]

A. Ono, M. Kikawada, R. Akimoto, W. Inami, and Y. Kawata, “Fluorescence enhancement with deep-ultraviolet surface plasmon excitation,” Opt. Express 21(15), 17447–17453 (2013).
[Crossref] [PubMed]

Y. Watanabe, W. Inami, and Y. Kawata, “Deep-ultraviolet light excites surface plasmon for the enhancement of photoelectron emission,” J. Appl. Phys. 109(2), 023112 (2011).
[Crossref]

Kikawada, M.

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Surface plasmon-enhanced fluorescence cell imaging in deep-UV region,” Appl. Phys. Express 8(7), 072401 (2015).
[Crossref]

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Enhanced multicolor fluorescence in bioimaging using deep-ultraviolet surface plasmon resonance,” Appl. Phys. Lett. 104(22), 223703 (2014).
[Crossref]

A. Ono, M. Kikawada, R. Akimoto, W. Inami, and Y. Kawata, “Fluorescence enhancement with deep-ultraviolet surface plasmon excitation,” Opt. Express 21(15), 17447–17453 (2013).
[Crossref] [PubMed]

Kirk, C. T.

C. T. Kirk and E. E. Huber., “The oxidation of aluminum films in low-pressure oxygen atmospheres,” Surf. Sci. 9(2), 217–245 (1968).
[Crossref]

Kobayashi, M.

Y. Li, M. Kobayashi, K. Furui, N. Soh, K. Nakano, and T. Imato, “Surface plasmon resonance immunosensor for histamine based on an indirect competitive immunoreaction,” Anal. Chim. Acta 576(1), 77–83 (2006).
[Crossref] [PubMed]

Kunz, C.

Lakowicz, J. R.

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun. 286(5), 875–879 (2001).
[Crossref] [PubMed]

Lechuga, L.

M. Farré, E. Martínez, J. Ramón, A. Navarro, J. Radjenovic, E. Mauriz, L. Lechuga, M. P. Marco, and D. Barceló, “Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor,” Anal. Bioanal. Chem. 388(1), 207–214 (2007).
[Crossref] [PubMed]

Li, Y.

Y. Li, M. Kobayashi, K. Furui, N. Soh, K. Nakano, and T. Imato, “Surface plasmon resonance immunosensor for histamine based on an indirect competitive immunoreaction,” Anal. Chim. Acta 576(1), 77–83 (2006).
[Crossref] [PubMed]

Li, Y. F.

L. P. Wu, Y. F. Li, C. Z. Huang, and Q. Zhang, “Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles,” Anal. Chem. 78(15), 5570–5577 (2006).
[Crossref] [PubMed]

Lim, T.

T. Lim, M. Oyama, K. Ikebukuro, and I. Karube, “Detection of atrazine based on the SPR determination of P450 mRNA levels in Saccharomyces cerevisiae,” Anal. Chem. 72(13), 2856–2860 (2000).
[Crossref] [PubMed]

Liu, X.

J. Wei, Y. Mu, D. Song, X. Fang, X. Liu, L. Bu, H. Zhang, G. Zhang, J. Ding, W. Wang, Q. Jin, and G. Luo, “A novel sandwich immunosensing method for measuring cardiac troponin I in sera,” Anal. Biochem. 321(2), 209–216 (2003).
[Crossref] [PubMed]

Löffler, J. F.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Luo, G.

J. Wei, Y. Mu, D. Song, X. Fang, X. Liu, L. Bu, H. Zhang, G. Zhang, J. Ding, W. Wang, Q. Jin, and G. Luo, “A novel sandwich immunosensing method for measuring cardiac troponin I in sera,” Anal. Biochem. 321(2), 209–216 (2003).
[Crossref] [PubMed]

Malitson, I. H.

I. H. Malitson and M. J. Dodge, “Refractive-index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62(11), 1405 (1972).

Marco, M. P.

M. Farré, E. Martínez, J. Ramón, A. Navarro, J. Radjenovic, E. Mauriz, L. Lechuga, M. P. Marco, and D. Barceló, “Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor,” Anal. Bioanal. Chem. 388(1), 207–214 (2007).
[Crossref] [PubMed]

Martin, J.

Martínez, E.

M. Farré, E. Martínez, J. Ramón, A. Navarro, J. Radjenovic, E. Mauriz, L. Lechuga, M. P. Marco, and D. Barceló, “Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor,” Anal. Bioanal. Chem. 388(1), 207–214 (2007).
[Crossref] [PubMed]

Matsui, J.

J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki, and N. Sugimoto, “SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles,” Anal. Chem. 77(13), 4282–4285 (2005).
[Crossref] [PubMed]

Matysik, P.

M. Norek, M. Włodarski, and P. Matysik, “UV plasmonic-based sensing properties of aluminum nanoconcave arrays,” Curr. Appl. Phys. 14(11), 1514–1520 (2014).
[Crossref]

Mauriz, E.

M. Farré, E. Martínez, J. Ramón, A. Navarro, J. Radjenovic, E. Mauriz, L. Lechuga, M. P. Marco, and D. Barceló, “Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor,” Anal. Bioanal. Chem. 388(1), 207–214 (2007).
[Crossref] [PubMed]

Mitsuoka, M.

A. Ikehata, M. Mitsuoka, Y. Morisawa, N. Kariyama, N. Higashi, and Y. Ozaki, “Effect of cations on absorption bands of first electronic transition of liquid water,” J. Phys. Chem. A 114(32), 8319–8322 (2010).
[Crossref] [PubMed]

Miura, N.

K. V. Gobi, H. Tanaka, Y. Shoyama, and N. Miura, “Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging,” Biosens. Bioelectron. 20(2), 350–357 (2004).
[Crossref] [PubMed]

Miyoshi, D.

J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki, and N. Sugimoto, “SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles,” Anal. Chem. 77(13), 4282–4285 (2005).
[Crossref] [PubMed]

Morisawa, Y.

T. Goto, A. Ikehata, Y. Morisawa, and Y. Ozaki, “Surface effect of alumina on the first electronic transition of liquid water studied by far-ultraviolet spectroscopy,” J. Phys. Chem. Lett. 6(6), 1022–1026 (2015).
[Crossref] [PubMed]

T. Goto, A. Ikehata, Y. Morisawa, and Y. Ozaki, “Electronic transitions of protonated and deprotonated amino acids in aqueous solution in the region 145-300 nm studied by attenuated total reflection far-ultraviolet spectroscopy,” J. Phys. Chem. A 117(12), 2517–2528 (2013).
[Crossref] [PubMed]

Y. Morisawa, S. Tachibana, M. Ehara, and Y. Ozaki, “Elucidating electronic transitions from σ orbitals of liquid n- and branched alkanes by far-ultraviolet spectroscopy and quantum chemical calculations,” J. Phys. Chem. A 116(48), 11957–11964 (2012).
[Crossref] [PubMed]

Y. Ozaki, Y. Morisawa, A. Ikehata, and N. Higashi, “Far-ultraviolet spectroscopy in the solid and liquid states: a review,” Appl. Spectrosc. 66(1), 1–25 (2012).
[Crossref]

A. Ikehata, M. Mitsuoka, Y. Morisawa, N. Kariyama, N. Higashi, and Y. Ozaki, “Effect of cations on absorption bands of first electronic transition of liquid water,” J. Phys. Chem. A 114(32), 8319–8322 (2010).
[Crossref] [PubMed]

Mu, Y.

J. Wei, Y. Mu, D. Song, X. Fang, X. Liu, L. Bu, H. Zhang, G. Zhang, J. Ding, W. Wang, Q. Jin, and G. Luo, “A novel sandwich immunosensing method for measuring cardiac troponin I in sera,” Anal. Biochem. 321(2), 209–216 (2003).
[Crossref] [PubMed]

Nakano, K.

Y. Li, M. Kobayashi, K. Furui, N. Soh, K. Nakano, and T. Imato, “Surface plasmon resonance immunosensor for histamine based on an indirect competitive immunoreaction,” Anal. Chim. Acta 576(1), 77–83 (2006).
[Crossref] [PubMed]

Navarro, A.

M. Farré, E. Martínez, J. Ramón, A. Navarro, J. Radjenovic, E. Mauriz, L. Lechuga, M. P. Marco, and D. Barceló, “Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor,” Anal. Bioanal. Chem. 388(1), 207–214 (2007).
[Crossref] [PubMed]

Nawafune, H.

J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki, and N. Sugimoto, “SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles,” Anal. Chem. 77(13), 4282–4285 (2005).
[Crossref] [PubMed]

Norek, M.

M. Norek, M. Włodarski, and P. Matysik, “UV plasmonic-based sensing properties of aluminum nanoconcave arrays,” Curr. Appl. Phys. 14(11), 1514–1520 (2014).
[Crossref]

Ono, A.

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Surface plasmon-enhanced fluorescence cell imaging in deep-UV region,” Appl. Phys. Express 8(7), 072401 (2015).
[Crossref]

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Enhanced multicolor fluorescence in bioimaging using deep-ultraviolet surface plasmon resonance,” Appl. Phys. Lett. 104(22), 223703 (2014).
[Crossref]

A. Ono, M. Kikawada, R. Akimoto, W. Inami, and Y. Kawata, “Fluorescence enhancement with deep-ultraviolet surface plasmon excitation,” Opt. Express 21(15), 17447–17453 (2013).
[Crossref] [PubMed]

Oyama, M.

T. Lim, M. Oyama, K. Ikebukuro, and I. Karube, “Detection of atrazine based on the SPR determination of P450 mRNA levels in Saccharomyces cerevisiae,” Anal. Chem. 72(13), 2856–2860 (2000).
[Crossref] [PubMed]

Ozaki, Y.

T. Goto, A. Ikehata, Y. Morisawa, and Y. Ozaki, “Surface effect of alumina on the first electronic transition of liquid water studied by far-ultraviolet spectroscopy,” J. Phys. Chem. Lett. 6(6), 1022–1026 (2015).
[Crossref] [PubMed]

I. Tanabe and Y. Ozaki, “Consistent changes in electronic states and photocatalytic activities of metal (Au, Pd, Pt)-modified TiO2 studied by far-ultraviolet spectroscopy,” Chem. Commun. (Camb.) 50(17), 2117–2119 (2014).
[Crossref] [PubMed]

T. Goto, A. Ikehata, Y. Morisawa, and Y. Ozaki, “Electronic transitions of protonated and deprotonated amino acids in aqueous solution in the region 145-300 nm studied by attenuated total reflection far-ultraviolet spectroscopy,” J. Phys. Chem. A 117(12), 2517–2528 (2013).
[Crossref] [PubMed]

Y. Morisawa, S. Tachibana, M. Ehara, and Y. Ozaki, “Elucidating electronic transitions from σ orbitals of liquid n- and branched alkanes by far-ultraviolet spectroscopy and quantum chemical calculations,” J. Phys. Chem. A 116(48), 11957–11964 (2012).
[Crossref] [PubMed]

Y. Ozaki, Y. Morisawa, A. Ikehata, and N. Higashi, “Far-ultraviolet spectroscopy in the solid and liquid states: a review,” Appl. Spectrosc. 66(1), 1–25 (2012).
[Crossref]

A. Ikehata, M. Mitsuoka, Y. Morisawa, N. Kariyama, N. Higashi, and Y. Ozaki, “Effect of cations on absorption bands of first electronic transition of liquid water,” J. Phys. Chem. A 114(32), 8319–8322 (2010).
[Crossref] [PubMed]

A. Ikehata, N. Higashi, and Y. Ozaki, “Direct observation of the absorption bands of the first electronic transition in liquid H2O and D2O by attenuated total reflectance far-UV spectroscopy,” J. Chem. Phys. 129(23), 234510 (2008).
[Crossref] [PubMed]

Parrish, J. R.

J. R. Parrish and E. R. Blout, “Spectroscopic studies of random chain and -helical polypeptides in hexafluoroisopropanol,” Biopolymers 10(9), 1491–1512 (1971).
[Crossref] [PubMed]

Pettit, R. B.

R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized aluminum films,” Phys. Rev. B 11(8), 3116–3123 (1975).
[Crossref]

Plain, J.

Popp, J.

T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
[Crossref]

Proust, J.

Radjenovic, J.

M. Farré, E. Martínez, J. Ramón, A. Navarro, J. Radjenovic, E. Mauriz, L. Lechuga, M. P. Marco, and D. Barceló, “Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor,” Anal. Bioanal. Chem. 388(1), 207–214 (2007).
[Crossref] [PubMed]

Ramón, J.

M. Farré, E. Martínez, J. Ramón, A. Navarro, J. Radjenovic, E. Mauriz, L. Lechuga, M. P. Marco, and D. Barceló, “Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor,” Anal. Bioanal. Chem. 388(1), 207–214 (2007).
[Crossref] [PubMed]

Rava, R. P.

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]

Schmitt, M.

T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
[Crossref]

Shen, B.

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun. 286(5), 875–879 (2001).
[Crossref] [PubMed]

Shoyama, Y.

K. V. Gobi, H. Tanaka, Y. Shoyama, and N. Miura, “Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging,” Biosens. Bioelectron. 20(2), 350–357 (2004).
[Crossref] [PubMed]

Silcox, J.

R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized aluminum films,” Phys. Rev. B 11(8), 3116–3123 (1975).
[Crossref]

Soh, N.

Y. Li, M. Kobayashi, K. Furui, N. Soh, K. Nakano, and T. Imato, “Surface plasmon resonance immunosensor for histamine based on an indirect competitive immunoreaction,” Anal. Chim. Acta 576(1), 77–83 (2006).
[Crossref] [PubMed]

Song, D.

J. Wei, Y. Mu, D. Song, X. Fang, X. Liu, L. Bu, H. Zhang, G. Zhang, J. Ding, W. Wang, Q. Jin, and G. Luo, “A novel sandwich immunosensing method for measuring cardiac troponin I in sera,” Anal. Biochem. 321(2), 209–216 (2003).
[Crossref] [PubMed]

Spicer, W. E.

J. G. Endriz and W. E. Spicer, “Surface-plasmon-one-electron decay and its observation in photoemission,” Phys. Rev. Lett. 24(2), 64–68 (1970).
[Crossref]

Spiro, T. G.

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]

Sugimoto, N.

J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki, and N. Sugimoto, “SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles,” Anal. Chem. 77(13), 4282–4285 (2005).
[Crossref] [PubMed]

Tachibana, S.

Y. Morisawa, S. Tachibana, M. Ehara, and Y. Ozaki, “Elucidating electronic transitions from σ orbitals of liquid n- and branched alkanes by far-ultraviolet spectroscopy and quantum chemical calculations,” J. Phys. Chem. A 116(48), 11957–11964 (2012).
[Crossref] [PubMed]

Taguchi, A.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[Crossref]

Tamaki, K.

J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki, and N. Sugimoto, “SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles,” Anal. Chem. 77(13), 4282–4285 (2005).
[Crossref] [PubMed]

Tanabe, I.

I. Tanabe and Y. Ozaki, “Consistent changes in electronic states and photocatalytic activities of metal (Au, Pd, Pt)-modified TiO2 studied by far-ultraviolet spectroscopy,” Chem. Commun. (Camb.) 50(17), 2117–2119 (2014).
[Crossref] [PubMed]

Tanaka, H.

K. V. Gobi, H. Tanaka, Y. Shoyama, and N. Miura, “Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging,” Biosens. Bioelectron. 20(2), 350–357 (2004).
[Crossref] [PubMed]

Vincent, R.

R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized aluminum films,” Phys. Rev. B 11(8), 3116–3123 (1975).
[Crossref]

Wang, W.

J. Wei, Y. Mu, D. Song, X. Fang, X. Liu, L. Bu, H. Zhang, G. Zhang, J. Ding, W. Wang, Q. Jin, and G. Luo, “A novel sandwich immunosensing method for measuring cardiac troponin I in sera,” Anal. Biochem. 321(2), 209–216 (2003).
[Crossref] [PubMed]

Watanabe, Y.

Y. Watanabe, W. Inami, and Y. Kawata, “Deep-ultraviolet light excites surface plasmon for the enhancement of photoelectron emission,” J. Appl. Phys. 109(2), 023112 (2011).
[Crossref]

Wei, J.

J. Wei, Y. Mu, D. Song, X. Fang, X. Liu, L. Bu, H. Zhang, G. Zhang, J. Ding, W. Wang, Q. Jin, and G. Luo, “A novel sandwich immunosensing method for measuring cardiac troponin I in sera,” Anal. Biochem. 321(2), 209–216 (2003).
[Crossref] [PubMed]

Wlodarski, M.

M. Norek, M. Włodarski, and P. Matysik, “UV plasmonic-based sensing properties of aluminum nanoconcave arrays,” Curr. Appl. Phys. 14(11), 1514–1520 (2014).
[Crossref]

Wu, L. P.

L. P. Wu, Y. F. Li, C. Z. Huang, and Q. Zhang, “Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles,” Anal. Chem. 78(15), 5570–5577 (2006).
[Crossref] [PubMed]

Zhang, G.

J. Wei, Y. Mu, D. Song, X. Fang, X. Liu, L. Bu, H. Zhang, G. Zhang, J. Ding, W. Wang, Q. Jin, and G. Luo, “A novel sandwich immunosensing method for measuring cardiac troponin I in sera,” Anal. Biochem. 321(2), 209–216 (2003).
[Crossref] [PubMed]

Zhang, H.

J. Wei, Y. Mu, D. Song, X. Fang, X. Liu, L. Bu, H. Zhang, G. Zhang, J. Ding, W. Wang, Q. Jin, and G. Luo, “A novel sandwich immunosensing method for measuring cardiac troponin I in sera,” Anal. Biochem. 321(2), 209–216 (2003).
[Crossref] [PubMed]

Zhang, Q.

L. P. Wu, Y. F. Li, C. Z. Huang, and Q. Zhang, “Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles,” Anal. Chem. 78(15), 5570–5577 (2006).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (2)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

M. Farré, E. Martínez, J. Ramón, A. Navarro, J. Radjenovic, E. Mauriz, L. Lechuga, M. P. Marco, and D. Barceló, “Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor,” Anal. Bioanal. Chem. 388(1), 207–214 (2007).
[Crossref] [PubMed]

Anal. Biochem. (1)

J. Wei, Y. Mu, D. Song, X. Fang, X. Liu, L. Bu, H. Zhang, G. Zhang, J. Ding, W. Wang, Q. Jin, and G. Luo, “A novel sandwich immunosensing method for measuring cardiac troponin I in sera,” Anal. Biochem. 321(2), 209–216 (2003).
[Crossref] [PubMed]

Anal. Chem. (3)

L. P. Wu, Y. F. Li, C. Z. Huang, and Q. Zhang, “Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles,” Anal. Chem. 78(15), 5570–5577 (2006).
[Crossref] [PubMed]

J. Matsui, K. Akamatsu, N. Hara, D. Miyoshi, H. Nawafune, K. Tamaki, and N. Sugimoto, “SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles,” Anal. Chem. 77(13), 4282–4285 (2005).
[Crossref] [PubMed]

T. Lim, M. Oyama, K. Ikebukuro, and I. Karube, “Detection of atrazine based on the SPR determination of P450 mRNA levels in Saccharomyces cerevisiae,” Anal. Chem. 72(13), 2856–2860 (2000).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

Y. Li, M. Kobayashi, K. Furui, N. Soh, K. Nakano, and T. Imato, “Surface plasmon resonance immunosensor for histamine based on an indirect competitive immunoreaction,” Anal. Chim. Acta 576(1), 77–83 (2006).
[Crossref] [PubMed]

Appl. Phys. Express (1)

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Surface plasmon-enhanced fluorescence cell imaging in deep-UV region,” Appl. Phys. Express 8(7), 072401 (2015).
[Crossref]

Appl. Phys. Lett. (1)

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Enhanced multicolor fluorescence in bioimaging using deep-ultraviolet surface plasmon resonance,” Appl. Phys. Lett. 104(22), 223703 (2014).
[Crossref]

Appl. Spectrosc. (1)

Biochem. Biophys. Res. Commun. (1)

J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic fluorescence from DNA can be enhanced by metallic particles,” Biochem. Biophys. Res. Commun. 286(5), 875–879 (2001).
[Crossref] [PubMed]

Biopolymers (1)

J. R. Parrish and E. R. Blout, “Spectroscopic studies of random chain and -helical polypeptides in hexafluoroisopropanol,” Biopolymers 10(9), 1491–1512 (1971).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

K. V. Gobi, H. Tanaka, Y. Shoyama, and N. Miura, “Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging,” Biosens. Bioelectron. 20(2), 350–357 (2004).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

I. Tanabe and Y. Ozaki, “Consistent changes in electronic states and photocatalytic activities of metal (Au, Pd, Pt)-modified TiO2 studied by far-ultraviolet spectroscopy,” Chem. Commun. (Camb.) 50(17), 2117–2119 (2014).
[Crossref] [PubMed]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Curr. Appl. Phys. (1)

M. Norek, M. Włodarski, and P. Matysik, “UV plasmonic-based sensing properties of aluminum nanoconcave arrays,” Curr. Appl. Phys. 14(11), 1514–1520 (2014).
[Crossref]

J. Am. Chem. Soc. (2)

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (2)

Y. Watanabe, W. Inami, and Y. Kawata, “Deep-ultraviolet light excites surface plasmon for the enhancement of photoelectron emission,” J. Appl. Phys. 109(2), 023112 (2011).
[Crossref]

P. E. Doherty and R. S. Davis, “Direct observation of the oxidation of aluminum single-crystal surfaces,” J. Appl. Phys. 34(3), 619–628 (1963).
[Crossref]

J. Chem. Phys. (1)

A. Ikehata, N. Higashi, and Y. Ozaki, “Direct observation of the absorption bands of the first electronic transition in liquid H2O and D2O by attenuated total reflectance far-UV spectroscopy,” J. Chem. Phys. 129(23), 234510 (2008).
[Crossref] [PubMed]

J. Opt. Soc. Am. (2)

I. H. Malitson and M. J. Dodge, “Refractive-index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62(11), 1405 (1972).

H. J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” J. Opt. Soc. Am. 65(6), 742–744 (1975).
[Crossref]

J. Phys. Chem. A (3)

A. Ikehata, M. Mitsuoka, Y. Morisawa, N. Kariyama, N. Higashi, and Y. Ozaki, “Effect of cations on absorption bands of first electronic transition of liquid water,” J. Phys. Chem. A 114(32), 8319–8322 (2010).
[Crossref] [PubMed]

Y. Morisawa, S. Tachibana, M. Ehara, and Y. Ozaki, “Elucidating electronic transitions from σ orbitals of liquid n- and branched alkanes by far-ultraviolet spectroscopy and quantum chemical calculations,” J. Phys. Chem. A 116(48), 11957–11964 (2012).
[Crossref] [PubMed]

T. Goto, A. Ikehata, Y. Morisawa, and Y. Ozaki, “Electronic transitions of protonated and deprotonated amino acids in aqueous solution in the region 145-300 nm studied by attenuated total reflection far-ultraviolet spectroscopy,” J. Phys. Chem. A 117(12), 2517–2528 (2013).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

T. Goto, A. Ikehata, Y. Morisawa, and Y. Ozaki, “Surface effect of alumina on the first electronic transition of liquid water studied by far-ultraviolet spectroscopy,” J. Phys. Chem. Lett. 6(6), 1022–1026 (2015).
[Crossref] [PubMed]

J. Raman Spectrosc. (2)

T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
[Crossref]

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. B (2)

R. B. Pettit, J. Silcox, and R. Vincent, “Measurement of surface-plasmon dispersion in oxidized aluminum films,” Phys. Rev. B 11(8), 3116–3123 (1975).
[Crossref]

T. A. Callcott and E. T. Arakawa, “Volume and surface photoemission processes from plasmon resonance fields,” Phys. Rev. B 11(8), 2750–2758 (1975).
[Crossref]

Phys. Rev. Lett. (1)

J. G. Endriz and W. E. Spicer, “Surface-plasmon-one-electron decay and its observation in photoemission,” Phys. Rev. Lett. 24(2), 64–68 (1970).
[Crossref]

Surf. Sci. (1)

C. T. Kirk and E. E. Huber., “The oxidation of aluminum films in low-pressure oxygen atmospheres,” Surf. Sci. 9(2), 217–245 (1968).
[Crossref]

Other (7)

M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. Petersson, “Gaussian 09, revision B. 01,” Gaussian Inc., Wallingford, CT (2010).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

J. Homola and M. Piliarik, Surface Plasmon Resonance (SPR) Sensors (Springer, 2006).

Y. Ozaki and S. Kawata, Far-and Deep-ultraviolet Spectroscopy (Springer, 2015).

E. D. Palik, Handbook of optical constants of solids (Academic press, 1991).

C. Kittel, Introduction to solid state physics (Wiley, 2005).

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. Macdonald, V. Mahajan, and E. Van Stryland, Handbook of optics, Volume II: Design, fabrication and testing, sources and detectors, radiometry and photometry (McGraw-Hill, Inc., 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Outline schematic of the spectrometer system. The optics and sample sections are separated by a quartz prism, and the environment around the sample can be readily controlled.

Fig. 2
Fig. 2

Incident angle dependence of reflectance with p-polarized (red line) and s-polarized (blue line) excitations at a laser wavelength of 266 nm.

Fig. 3
Fig. 3

(a) Wavelength dependence of reflectance for the Al film on a quartz prism in air; (b) experimental and (c) simulated dependence of reflectance on incident angle and wavelength; and (d) (blue) experimental and (black) simulated dispersions in relation to air on the Al film. For (c), the simulation was modeled using Fresnel equations based on Al 19 nm/Al2O3 4 nm on a quartz prism.

Fig. 4
Fig. 4

(a) Reflectance spectra of the Al film on which HFIP was deposited (b) experimental and (c) simulated dependence of reflectance on incident angle and wavelength, and (d) (red) experimental and (black) simulated dispersion relations with HFIP on the Al film. (The simulation model is the same as Fig. 3(c)).

Fig. 5
Fig. 5

(a) Experimentally obtained incident angle dependence of reflectance at 266 nm wavelength with air (red) and HFIP (blue) on the Al film. (b) Calculated incident angle dependence of reflectance at 633 nm wavelength with air (red) and HFIP(blue) on the Au film. (The simulation model is an Au film with a thickness of 50 nm on a quartz prism)

Fig. 6
Fig. 6

Calculated incident angle dependence of (a) Au film at 633 nm wavelength, (b) Al film at 266 nm wavelength, and (c) Al film at 180 nm wavelength with varying surrounding refractive indices from 1.0 to 2.0. (d) Calculated shift of the SPR angle depending on the refractive index. (e) A model of the simulations.

Fig. 7
Fig. 7

Measured (color dots) and calculated (black lines) incident angle dependence of reflectance at 185, 225, 266, and 300 nm wavelengths with air (blue dots) and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) (red dots) on the Al film. Simulation models are (a) Al 23 nm/Al2O3 0 nm, (b) Al 21 nm/Al2O3 2 nm, (c) Al 19 nm/Al2O3 4 nm, and (d) Al 17 nm/Al2O3 6 nm on a quartz prism.

Tables (1)

Tables Icon

Table 1 Refractive index values of quartz, Al, Al2O3, and HFIP used in the simulations based on the Fresnel equations.

Metrics