Abstract

We report the utilization of the optical Kerr effect in multilayer dielectric coatings, previously discussed only theoretically. We present the design and realization of multilayer dielectric optical structures with layer-specific Kerr nonlinearities, which permit tailoring of the intensity-dependent effects. The modulation depth in reflectance reaches up to 6% for the demonstrated examples of dielectric nonlinear multilayer coatings. We show that the nonlinearity is based on the optical Kerr effect, with the recovery time faster than the laser pulse envelope of 1 ps. Due to high flexibility in design, the reported dielectric nonlinear multilayer coatings have the potential to open hitherto unprecedented possibilities in nonlinear optics and ultrafast laser applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental and numerical study of the nonlinear response of optical multilayers

Tatiana Amotchkina, Michael Trubetskov, and Vladimir Pervak
Opt. Express 25(11) 12675-12688 (2017)

Parametric analysis of damage probability: a tool to identify weak layers within multilayer coatings

Linas Smalakys, Gintarė Batavičiūtė, Egidijus Pupka, and Andrius Melninkaitis
Appl. Opt. 54(10) 2953-2962 (2015)

Theoretical study of multilayer coatingreflection taking into account third-order optical nonlinearities

Olaf Stenzel and Steffen Wilbrandt
Appl. Opt. 57(29) 8640-8647 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2007).
  2. M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
    [Crossref]
  3. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16(1), 42–44 (1991).
    [Crossref] [PubMed]
  4. O. Razskazovskaya, T. T. Luu, M. Trubetskov, E. Goulielmakis, and V. Pervak, “Nonlinear absorbance in dielectric multilayers,” Optica 2(9), 803–811 (2015).
    [Crossref]
  5. C. Rodríguez, S. Günster, D. Ristau, and W. Rudolph, “Frequency tripling mirror,” Opt. Express 23(24), 31594–31601 (2015).
    [Crossref] [PubMed]
  6. K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. K. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).
    [Crossref]
  7. W. Chen and D. L. Mills, “Optical response of nonlinear multilayer structures: Bilayers and superlattices,” Phys. Rev. B Condens. Matter 36(12), 6269–6278 (1987).
    [Crossref] [PubMed]
  8. E. Lidorikis, Q. Li, and C. M. Soukoulis, “Wave propagation in nonlinear multilayer structures,” Phys. Rev. B Condens. Matter 54(15), 10249–10252 (1996).
    [Crossref] [PubMed]
  9. L. Brzozowski and E. H. Sargent, “Optical signal processing using nonlinear distributed feedback structures,” IEEE J. Quantum Electron. 36(5), 550–555 (2000).
    [Crossref]
  10. P. K. Kwan and Y. Y. Lu, “Computing optical bistability in one-dimensional nonlinear structures,” Opt. Commun. 238(1–3), 169–175 (2004).
    [Crossref]
  11. N. Moshonas, G. K. Pagiatakis, P. Papagiannis, S. P. Savaidis, and N. A. Stathopoulos, “Simulation and properties of highly nonlinear multilayer optical structures using the transmission line method,” Proc. SPIE 9131, 913129 (2014).
    [Crossref]
  12. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
    [Crossref] [PubMed]
  13. V. Dimitrov and S. Sakka, “Linear and nonlinear optical properties of simple oxides. 2,” J. Appl. Phys. 79(3), 1741–1745 (1996).
    [Crossref]
  14. S. A. Akhmanov and S. Y. Nikitin, Physical Optics (Clarendon Press, Oxford, 1997).
  15. H. A. Macleod, “Basic Theory,” in Thin-Film Optical Filters, 4th ed. (CRC Press Taylor & Francis Group, 2010).
  16. A. Thelen, Design of Optical Interference Coatings (New York [etc.]: McGraw-Hill, 1989).
  17. A. V. Tikhonravov and M. K. Trubetskov, Optilayer software, http://www.optilayer.com .
  18. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
    [Crossref]
  19. W. Schneider, A. Ryabov, C. Lombosi, T. Metzger, Z. Major, J. A. Fülöp, and P. Baum, “800-fs, 330-μJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO3,” Opt. Lett. 39(23), 6604–6607 (2014).
    [Crossref] [PubMed]
  20. J. Bonse, S. Baudach, J. Kruger, W. Kautek, K. Starke, T. Gross, D. Ristau, W. Rudolph, J. Jasapara, and E. Welsch, “Femtosecond laser damage in dielectric coatings,” Proc. SPIE 4347, 24–34 (2001).
    [Crossref]
  21. A. M. Zukauskas and V. Sirutkaitis, “Nonlinear absorption of ultrashort pulses in HR dielectric mirrors,” Proc. SPIE 5991, 599111 (2005).
    [Crossref]
  22. M. Konuma, Plasma techniques for film deposition, Ph.D. thesis, Alpha Science, Harrow, UK (2005).
  23. S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 1039–1068 (1989).
    [Crossref]
  24. S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996).
    [Crossref]
  25. M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
    [Crossref]
  26. I. B. Angelov, A. von Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage in dispersive coatings,” Proc. SPIE 8190, 81900B (2011).
    [Crossref]
  27. M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys., A Mater. Sci. Process. 81(2), 317–324 (2005).
    [Crossref]
  28. J. Hsu, C. Fuentes-Hernandez, A. R. Ernst, and B. Kippelen, “Ultrafast nonlinear mirrors with broad spectral and angular bandwidths in the visible spectral range,” Opt. Express 21(3), 3573–3581 (2013).
    [Crossref] [PubMed]
  29. D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45(7), 1495–1501 (2006).
    [Crossref] [PubMed]
  30. W. H. Knox, N. M. Pearson, K. D. Li, and C. A. Hirlimann, “Interferometric measurements of femtosecond group delay in optical components,” Opt. Lett. 13(7), 574–576 (1988).
    [Crossref] [PubMed]
  31. T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
    [Crossref] [PubMed]
  32. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36(24), 4746–4748 (2011).
    [Crossref] [PubMed]
  33. I. B. Angelov, Development of high-damage threshold dispersive coatings, Ph.D. thesis, Ludwig-Maximilian University, Munich (2014).
  34. C. W. Luo, Y. T. Wang, F. W. Chen, H. C. Shih, and T. Kobayashi, “Eliminate coherence spike in reflection-type pump-probe measurements,” Opt. Express 17(14), 11321–11327 (2009).
    [Crossref] [PubMed]
  35. Z. Vardeny and J. Tauc, “Picosecond coherence coupling in the pump and probe technique,” Opt. Commun. 39(6), 396–400 (1981).
    [Crossref]
  36. B. S. Wherrett, A. L. Smirl, and T. F. Boggess, “Theory of degenerate four-wave mixing in picosecond excitation-probe experiments,” IEEE J. Quantum Electron. 19(4), 680–690 (1983).
    [Crossref]
  37. S. L. Palfrey and T. F. Heinz, “Coherent interactions in pump-probe absorption-measurements – the effect of phase gratings,” J. Opt. Soc. Am. B 2(4), 674–679 (1985).
    [Crossref]
  38. G. Cerullo, C. Manzoni, L. Lüer, and D. Polli, “Time-resolved methods in biophysics. 4. broadband pump-probe spectroscopy system with sub-20 fs temporal resolution for the study of energy transfer processes in photosynthesis,” Photochem. Photobiol. Sci. 6(2), 135–144 (2007).
    [Crossref] [PubMed]
  39. J. Franc, N. Morgado, R. Flaminio, R. Nawrodt, I. Martin, L. Cunningham, A. Cumming, S. Rowan, and J. Hough, “Mirror thermal noise in laser interferometer gravitational wave detectors operating at room and cryogenic temperature,” Tech. rep., General Relativity and Quantum Cosmology (2009).

2015 (2)

2014 (2)

N. Moshonas, G. K. Pagiatakis, P. Papagiannis, S. P. Savaidis, and N. A. Stathopoulos, “Simulation and properties of highly nonlinear multilayer optical structures using the transmission line method,” Proc. SPIE 9131, 913129 (2014).
[Crossref]

W. Schneider, A. Ryabov, C. Lombosi, T. Metzger, Z. Major, J. A. Fülöp, and P. Baum, “800-fs, 330-μJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO3,” Opt. Lett. 39(23), 6604–6607 (2014).
[Crossref] [PubMed]

2013 (1)

2011 (2)

I. B. Angelov, A. von Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage in dispersive coatings,” Proc. SPIE 8190, 81900B (2011).
[Crossref]

O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36(24), 4746–4748 (2011).
[Crossref] [PubMed]

2009 (2)

2007 (2)

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

G. Cerullo, C. Manzoni, L. Lüer, and D. Polli, “Time-resolved methods in biophysics. 4. broadband pump-probe spectroscopy system with sub-20 fs temporal resolution for the study of energy transfer processes in photosynthesis,” Photochem. Photobiol. Sci. 6(2), 135–144 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (3)

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys., A Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

A. M. Zukauskas and V. Sirutkaitis, “Nonlinear absorption of ultrashort pulses in HR dielectric mirrors,” Proc. SPIE 5991, 599111 (2005).
[Crossref]

2004 (2)

P. K. Kwan and Y. Y. Lu, “Computing optical bistability in one-dimensional nonlinear structures,” Opt. Commun. 238(1–3), 169–175 (2004).
[Crossref]

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. K. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).
[Crossref]

2001 (1)

J. Bonse, S. Baudach, J. Kruger, W. Kautek, K. Starke, T. Gross, D. Ristau, W. Rudolph, J. Jasapara, and E. Welsch, “Femtosecond laser damage in dielectric coatings,” Proc. SPIE 4347, 24–34 (2001).
[Crossref]

2000 (1)

L. Brzozowski and E. H. Sargent, “Optical signal processing using nonlinear distributed feedback structures,” IEEE J. Quantum Electron. 36(5), 550–555 (2000).
[Crossref]

1996 (3)

E. Lidorikis, Q. Li, and C. M. Soukoulis, “Wave propagation in nonlinear multilayer structures,” Phys. Rev. B Condens. Matter 54(15), 10249–10252 (1996).
[Crossref] [PubMed]

V. Dimitrov and S. Sakka, “Linear and nonlinear optical properties of simple oxides. 2,” J. Appl. Phys. 79(3), 1741–1745 (1996).
[Crossref]

S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996).
[Crossref]

1991 (1)

1989 (2)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[Crossref]

1988 (1)

1987 (1)

W. Chen and D. L. Mills, “Optical response of nonlinear multilayer structures: Bilayers and superlattices,” Phys. Rev. B Condens. Matter 36(12), 6269–6278 (1987).
[Crossref] [PubMed]

1985 (1)

1983 (1)

B. S. Wherrett, A. L. Smirl, and T. F. Boggess, “Theory of degenerate four-wave mixing in picosecond excitation-probe experiments,” IEEE J. Quantum Electron. 19(4), 680–690 (1983).
[Crossref]

1981 (1)

Z. Vardeny and J. Tauc, “Picosecond coherence coupling in the pump and probe technique,” Opt. Commun. 39(6), 396–400 (1981).
[Crossref]

1969 (1)

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[Crossref]

Adair, R.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

Amann, M. C.

Amotchkina, T. V.

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
[Crossref] [PubMed]

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. K. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).
[Crossref]

Angelov, I. B.

I. B. Angelov, A. von Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage in dispersive coatings,” Proc. SPIE 8190, 81900B (2011).
[Crossref]

Apolonski, A.

Baudach, S.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, K. Starke, T. Gross, D. Ristau, W. Rudolph, J. Jasapara, and E. Welsch, “Femtosecond laser damage in dielectric coatings,” Proc. SPIE 4347, 24–34 (2001).
[Crossref]

Baum, P.

Boehm, G.

Boggess, T. F.

B. S. Wherrett, A. L. Smirl, and T. F. Boggess, “Theory of degenerate four-wave mixing in picosecond excitation-probe experiments,” IEEE J. Quantum Electron. 19(4), 680–690 (1983).
[Crossref]

Bonse, J.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, K. Starke, T. Gross, D. Ristau, W. Rudolph, J. Jasapara, and E. Welsch, “Femtosecond laser damage in dielectric coatings,” Proc. SPIE 4347, 24–34 (2001).
[Crossref]

Braunlich, P.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[Crossref]

Brons, J.

Brzozowski, L.

L. Brzozowski and E. H. Sargent, “Optical signal processing using nonlinear distributed feedback structures,” IEEE J. Quantum Electron. 36(5), 550–555 (2000).
[Crossref]

Casper, R. T.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[Crossref]

Cerullo, G.

G. Cerullo, C. Manzoni, L. Lüer, and D. Polli, “Time-resolved methods in biophysics. 4. broadband pump-probe spectroscopy system with sub-20 fs temporal resolution for the study of energy transfer processes in photosynthesis,” Photochem. Photobiol. Sci. 6(2), 135–144 (2007).
[Crossref] [PubMed]

Chase, L. L.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

Chen, F. W.

Chen, W.

W. Chen and D. L. Mills, “Optical response of nonlinear multilayer structures: Bilayers and superlattices,” Phys. Rev. B Condens. Matter 36(12), 6269–6278 (1987).
[Crossref] [PubMed]

Chirkin, A. S.

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. K. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).
[Crossref]

Clapp, B.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

D’Oliveira, P.

S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996).
[Crossref]

Dimitrov, V.

V. Dimitrov and S. Sakka, “Linear and nonlinear optical properties of simple oxides. 2,” J. Appl. Phys. 79(3), 1741–1745 (1996).
[Crossref]

Duguay, M. A.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[Crossref]

Ehlers, H.

Ernst, A. R.

Fuentes-Hernandez, C.

Fülöp, J. A.

Goulielmakis, E.

Grasse, C.

Gross, T.

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45(7), 1495–1501 (2006).
[Crossref] [PubMed]

J. Bonse, S. Baudach, J. Kruger, W. Kautek, K. Starke, T. Gross, D. Ristau, W. Rudolph, J. Jasapara, and E. Welsch, “Femtosecond laser damage in dielectric coatings,” Proc. SPIE 4347, 24–34 (2001).
[Crossref]

Grupe, D.

Guizard, S.

S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996).
[Crossref]

Günster, S.

Hansen, J. W.

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[Crossref]

Heinz, T. F.

Hirlimann, C. A.

Hsu, J.

Jasapara, J.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, K. Starke, T. Gross, D. Ristau, W. Rudolph, J. Jasapara, and E. Welsch, “Femtosecond laser damage in dielectric coatings,” Proc. SPIE 4347, 24–34 (2001).
[Crossref]

Jasapara, J. C.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

Jones, S. C.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[Crossref]

Kalashnikov, V. L.

Karsch, S.

I. B. Angelov, A. von Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage in dispersive coatings,” Proc. SPIE 8190, 81900B (2011).
[Crossref]

Kautek, W.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

J. Bonse, S. Baudach, J. Kruger, W. Kautek, K. Starke, T. Gross, D. Ristau, W. Rudolph, J. Jasapara, and E. Welsch, “Femtosecond laser damage in dielectric coatings,” Proc. SPIE 4347, 24–34 (2001).
[Crossref]

Kean, P. N.

Kelly, P.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[Crossref]

Kippelen, B.

Knox, W. H.

Kobayashi, T.

Krausz, F.

O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36(24), 4746–4748 (2011).
[Crossref] [PubMed]

I. B. Angelov, A. von Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage in dispersive coatings,” Proc. SPIE 8190, 81900B (2011).
[Crossref]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

Kruger, J.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

J. Bonse, S. Baudach, J. Kruger, W. Kautek, K. Starke, T. Gross, D. Ristau, W. Rudolph, J. Jasapara, and E. Welsch, “Femtosecond laser damage in dielectric coatings,” Proc. SPIE 4347, 24–34 (2001).
[Crossref]

Kwan, P. K.

P. K. Kwan and Y. Y. Lu, “Computing optical bistability in one-dimensional nonlinear structures,” Opt. Commun. 238(1–3), 169–175 (2004).
[Crossref]

Lappschies, M.

Li, K. D.

Li, Q.

E. Lidorikis, Q. Li, and C. M. Soukoulis, “Wave propagation in nonlinear multilayer structures,” Phys. Rev. B Condens. Matter 54(15), 10249–10252 (1996).
[Crossref] [PubMed]

Lidorikis, E.

E. Lidorikis, Q. Li, and C. M. Soukoulis, “Wave propagation in nonlinear multilayer structures,” Phys. Rev. B Condens. Matter 54(15), 10249–10252 (1996).
[Crossref] [PubMed]

Lombosi, C.

Lu, Y. Y.

P. K. Kwan and Y. Y. Lu, “Computing optical bistability in one-dimensional nonlinear structures,” Opt. Commun. 238(1–3), 169–175 (2004).
[Crossref]

Lüer, L.

G. Cerullo, C. Manzoni, L. Lüer, and D. Polli, “Time-resolved methods in biophysics. 4. broadband pump-probe spectroscopy system with sub-20 fs temporal resolution for the study of energy transfer processes in photosynthesis,” Photochem. Photobiol. Sci. 6(2), 135–144 (2007).
[Crossref] [PubMed]

Luo, C. W.

Luu, T. T.

Major, Z.

W. Schneider, A. Ryabov, C. Lombosi, T. Metzger, Z. Major, J. A. Fülöp, and P. Baum, “800-fs, 330-μJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO3,” Opt. Lett. 39(23), 6604–6607 (2014).
[Crossref] [PubMed]

I. B. Angelov, A. von Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage in dispersive coatings,” Proc. SPIE 8190, 81900B (2011).
[Crossref]

Manzoni, C.

G. Cerullo, C. Manzoni, L. Lüer, and D. Polli, “Time-resolved methods in biophysics. 4. broadband pump-probe spectroscopy system with sub-20 fs temporal resolution for the study of energy transfer processes in photosynthesis,” Photochem. Photobiol. Sci. 6(2), 135–144 (2007).
[Crossref] [PubMed]

Martin, P.

S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996).
[Crossref]

Martin, S.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

Mero, M.

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys., A Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

Metzger, T.

Meynadier, P.

S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996).
[Crossref]

Mills, D. L.

W. Chen and D. L. Mills, “Optical response of nonlinear multilayer structures: Bilayers and superlattices,” Phys. Rev. B Condens. Matter 36(12), 6269–6278 (1987).
[Crossref] [PubMed]

Moshonas, N.

N. Moshonas, G. K. Pagiatakis, P. Papagiannis, S. P. Savaidis, and N. A. Stathopoulos, “Simulation and properties of highly nonlinear multilayer optical structures using the transmission line method,” Proc. SPIE 9131, 913129 (2014).
[Crossref]

Naumov, S.

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

Pagiatakis, G. K.

N. Moshonas, G. K. Pagiatakis, P. Papagiannis, S. P. Savaidis, and N. A. Stathopoulos, “Simulation and properties of highly nonlinear multilayer optical structures using the transmission line method,” Proc. SPIE 9131, 913129 (2014).
[Crossref]

Palfrey, S. L.

Papagiannis, P.

N. Moshonas, G. K. Pagiatakis, P. Papagiannis, S. P. Savaidis, and N. A. Stathopoulos, “Simulation and properties of highly nonlinear multilayer optical structures using the transmission line method,” Proc. SPIE 9131, 913129 (2014).
[Crossref]

Payne, S. A.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

Pearson, N. M.

Pervak, V.

Petite, G.

S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996).
[Crossref]

Polli, D.

G. Cerullo, C. Manzoni, L. Lüer, and D. Polli, “Time-resolved methods in biophysics. 4. broadband pump-probe spectroscopy system with sub-20 fs temporal resolution for the study of energy transfer processes in photosynthesis,” Photochem. Photobiol. Sci. 6(2), 135–144 (2007).
[Crossref] [PubMed]

Pronin, O.

Razskazovskaya, O.

Ristau, D.

C. Rodríguez, S. Günster, D. Ristau, and W. Rudolph, “Frequency tripling mirror,” Opt. Express 23(24), 31594–31601 (2015).
[Crossref] [PubMed]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45(7), 1495–1501 (2006).
[Crossref] [PubMed]

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. K. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).
[Crossref]

J. Bonse, S. Baudach, J. Kruger, W. Kautek, K. Starke, T. Gross, D. Ristau, W. Rudolph, J. Jasapara, and E. Welsch, “Femtosecond laser damage in dielectric coatings,” Proc. SPIE 4347, 24–34 (2001).
[Crossref]

Rodríguez, C.

Rudolph, W.

C. Rodríguez, S. Günster, D. Ristau, and W. Rudolph, “Frequency tripling mirror,” Opt. Express 23(24), 31594–31601 (2015).
[Crossref] [PubMed]

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys., A Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

J. Bonse, S. Baudach, J. Kruger, W. Kautek, K. Starke, T. Gross, D. Ristau, W. Rudolph, J. Jasapara, and E. Welsch, “Femtosecond laser damage in dielectric coatings,” Proc. SPIE 4347, 24–34 (2001).
[Crossref]

Ryabov, A.

Sabbah, A. J.

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys., A Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

Sakka, S.

V. Dimitrov and S. Sakka, “Linear and nonlinear optical properties of simple oxides. 2,” J. Appl. Phys. 79(3), 1741–1745 (1996).
[Crossref]

Sargent, E. H.

L. Brzozowski and E. H. Sargent, “Optical signal processing using nonlinear distributed feedback structures,” IEEE J. Quantum Electron. 36(5), 550–555 (2000).
[Crossref]

Savaidis, S. P.

N. Moshonas, G. K. Pagiatakis, P. Papagiannis, S. P. Savaidis, and N. A. Stathopoulos, “Simulation and properties of highly nonlinear multilayer optical structures using the transmission line method,” Proc. SPIE 9131, 913129 (2014).
[Crossref]

Schneider, W.

Shen, X. A.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[Crossref]

Shih, H. C.

Sibbett, W.

Sirutkaitis, V.

A. M. Zukauskas and V. Sirutkaitis, “Nonlinear absorption of ultrashort pulses in HR dielectric mirrors,” Proc. SPIE 5991, 599111 (2005).
[Crossref]

Smirl, A. L.

B. S. Wherrett, A. L. Smirl, and T. F. Boggess, “Theory of degenerate four-wave mixing in picosecond excitation-probe experiments,” IEEE J. Quantum Electron. 19(4), 680–690 (1983).
[Crossref]

Soukoulis, C. M.

E. Lidorikis, Q. Li, and C. M. Soukoulis, “Wave propagation in nonlinear multilayer structures,” Phys. Rev. B Condens. Matter 54(15), 10249–10252 (1996).
[Crossref] [PubMed]

Spence, D. E.

Starke, K.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. K. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).
[Crossref]

J. Bonse, S. Baudach, J. Kruger, W. Kautek, K. Starke, T. Gross, D. Ristau, W. Rudolph, J. Jasapara, and E. Welsch, “Femtosecond laser damage in dielectric coatings,” Proc. SPIE 4347, 24–34 (2001).
[Crossref]

Stathopoulos, N. A.

N. Moshonas, G. K. Pagiatakis, P. Papagiannis, S. P. Savaidis, and N. A. Stathopoulos, “Simulation and properties of highly nonlinear multilayer optical structures using the transmission line method,” Proc. SPIE 9131, 913129 (2014).
[Crossref]

Tauc, J.

Z. Vardeny and J. Tauc, “Picosecond coherence coupling in the pump and probe technique,” Opt. Commun. 39(6), 396–400 (1981).
[Crossref]

Tikhonravov, A. A.

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. K. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).
[Crossref]

Tikhonravov, A. V.

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
[Crossref] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

Trubetskov, M.

Trubetskov, M. K.

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
[Crossref] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. K. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).
[Crossref]

Trushin, S. A.

I. B. Angelov, A. von Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage in dispersive coatings,” Proc. SPIE 8190, 81900B (2011).
[Crossref]

Vardeny, Z.

Z. Vardeny and J. Tauc, “Picosecond coherence coupling in the pump and probe technique,” Opt. Commun. 39(6), 396–400 (1981).
[Crossref]

von Conta, A.

I. B. Angelov, A. von Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage in dispersive coatings,” Proc. SPIE 8190, 81900B (2011).
[Crossref]

Wang, Y. T.

Welling, H.

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. K. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).
[Crossref]

Welsch, E.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, K. Starke, T. Gross, D. Ristau, W. Rudolph, J. Jasapara, and E. Welsch, “Femtosecond laser damage in dielectric coatings,” Proc. SPIE 4347, 24–34 (2001).
[Crossref]

Wherrett, B. S.

B. S. Wherrett, A. L. Smirl, and T. F. Boggess, “Theory of degenerate four-wave mixing in picosecond excitation-probe experiments,” IEEE J. Quantum Electron. 19(4), 680–690 (1983).
[Crossref]

Zeller, J.

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys., A Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

Zukauskas, A. M.

A. M. Zukauskas and V. Sirutkaitis, “Nonlinear absorption of ultrashort pulses in HR dielectric mirrors,” Proc. SPIE 5991, 599111 (2005).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

Appl. Phys. Lett. (1)

M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15(6), 192–194 (1969).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys., A Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

IEEE J. Quantum Electron. (2)

B. S. Wherrett, A. L. Smirl, and T. F. Boggess, “Theory of degenerate four-wave mixing in picosecond excitation-probe experiments,” IEEE J. Quantum Electron. 19(4), 680–690 (1983).
[Crossref]

L. Brzozowski and E. H. Sargent, “Optical signal processing using nonlinear distributed feedback structures,” IEEE J. Quantum Electron. 36(5), 550–555 (2000).
[Crossref]

J. Appl. Phys. (1)

V. Dimitrov and S. Sakka, “Linear and nonlinear optical properties of simple oxides. 2,” J. Appl. Phys. 79(3), 1741–1745 (1996).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. Condens. Matter 8(9), 1281–1290 (1996).
[Crossref]

Opt. Commun. (2)

P. K. Kwan and Y. Y. Lu, “Computing optical bistability in one-dimensional nonlinear structures,” Opt. Commun. 238(1–3), 169–175 (2004).
[Crossref]

Z. Vardeny and J. Tauc, “Picosecond coherence coupling in the pump and probe technique,” Opt. Commun. 39(6), 396–400 (1981).
[Crossref]

Opt. Eng. (2)

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Optica (1)

Photochem. Photobiol. Sci. (1)

G. Cerullo, C. Manzoni, L. Lüer, and D. Polli, “Time-resolved methods in biophysics. 4. broadband pump-probe spectroscopy system with sub-20 fs temporal resolution for the study of energy transfer processes in photosynthesis,” Photochem. Photobiol. Sci. 6(2), 135–144 (2007).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter (3)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter 39(5), 3337–3350 (1989).
[Crossref] [PubMed]

W. Chen and D. L. Mills, “Optical response of nonlinear multilayer structures: Bilayers and superlattices,” Phys. Rev. B Condens. Matter 36(12), 6269–6278 (1987).
[Crossref] [PubMed]

E. Lidorikis, Q. Li, and C. M. Soukoulis, “Wave propagation in nonlinear multilayer structures,” Phys. Rev. B Condens. Matter 54(15), 10249–10252 (1996).
[Crossref] [PubMed]

Proc. SPIE (5)

N. Moshonas, G. K. Pagiatakis, P. Papagiannis, S. P. Savaidis, and N. A. Stathopoulos, “Simulation and properties of highly nonlinear multilayer optical structures using the transmission line method,” Proc. SPIE 9131, 913129 (2014).
[Crossref]

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. K. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004).
[Crossref]

J. Bonse, S. Baudach, J. Kruger, W. Kautek, K. Starke, T. Gross, D. Ristau, W. Rudolph, J. Jasapara, and E. Welsch, “Femtosecond laser damage in dielectric coatings,” Proc. SPIE 4347, 24–34 (2001).
[Crossref]

A. M. Zukauskas and V. Sirutkaitis, “Nonlinear absorption of ultrashort pulses in HR dielectric mirrors,” Proc. SPIE 5991, 599111 (2005).
[Crossref]

I. B. Angelov, A. von Conta, S. A. Trushin, Z. Major, S. Karsch, F. Krausz, and V. Pervak, “Investigation of the laser-induced damage in dispersive coatings,” Proc. SPIE 8190, 81900B (2011).
[Crossref]

Other (8)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2007).

J. Franc, N. Morgado, R. Flaminio, R. Nawrodt, I. Martin, L. Cunningham, A. Cumming, S. Rowan, and J. Hough, “Mirror thermal noise in laser interferometer gravitational wave detectors operating at room and cryogenic temperature,” Tech. rep., General Relativity and Quantum Cosmology (2009).

I. B. Angelov, Development of high-damage threshold dispersive coatings, Ph.D. thesis, Ludwig-Maximilian University, Munich (2014).

M. Konuma, Plasma techniques for film deposition, Ph.D. thesis, Alpha Science, Harrow, UK (2005).

S. A. Akhmanov and S. Y. Nikitin, Physical Optics (Clarendon Press, Oxford, 1997).

H. A. Macleod, “Basic Theory,” in Thin-Film Optical Filters, 4th ed. (CRC Press Taylor & Francis Group, 2010).

A. Thelen, Design of Optical Interference Coatings (New York [etc.]: McGraw-Hill, 1989).

A. V. Tikhonravov and M. K. Trubetskov, Optilayer software, http://www.optilayer.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 The optical Kerr effect illustration: (a) NMC design F502 over a wide wavelength range; (b) NMC design F502 in the vicinity of 1030 nm: Reflectance at the edge increases from Ri at low intensities to Rf at higher intensities.
Fig. 2
Fig. 2 Schematic of the setup for investigating the pre-damage behavior of the samples. Yb:YAG thin-disk regenerative amplifier: 1030 nm central wavelength, 50 kHz repletion rate, 1 ps pulse duration.
Fig. 3
Fig. 3 Intensity-dependent change of reflectance, transmittance, relative temperature and total losses of NMC F502 for Ri/Ti of 50/50 (a) and 80/20 (b). The error bars represent standard deviations.
Fig. 4
Fig. 4 Intensity-dependent change of reflectance, transmittance, relative temperature and total losses of NMC F504 for Ri/Ti of 50/50 (a) and 80/20 (b). The error bars represent standard deviations.
Fig. 5
Fig. 5 Estimation of the “pure” nonlinear effect for NMC F502: Estimated nonlinear ΔRnl (yellow diamonds) is obtained as a result of subtraction of the temperature-induced ΔRtemp (red triangles) from the measured ΔRtot (a, c: violet diamonds) without chopper and ΔRch (b, d: blue diamonds) with chopper for two cases of Ri/Ti of 50/50 (upper panels a and b) and 80/20 (lower panels c and d). The error bars represent standard deviations. Parabola fits (solid black curves) serve as a guidance to the eye.
Fig. 6
Fig. 6 Estimation of the “pure” nonlinear effect for NMC F504: Estimated nonlinear ΔRnl (yellow circles) is obtained as a result of subtraction of the temperature-induced ΔRtemp (red triangles) from the measured ΔRtot (a, c: green circles) without chopper and ΔRch (b, d: blue circles) with chopper for two cases of Ri/Ti of 50/50 (upper panels a and b) and 80/20 (lower panels c and d). The error bars represent standard deviations. Parabola fits (solid black curves) serve as a guidance to the eye.
Fig. 7
Fig. 7 Normalized time response of NMC F502, hit by a 1-ps pulse at zero time delay for two cases of Ri/Ti of 50/50 (upper panels a and b) and 80/20 (lower panels c and d). Left panels a and c illustrate the long time behavior, whereas right panels b and d illustrate the short time behavior. Solid black curves are Gaussian fitted ACF.
Fig. 8
Fig. 8 Normalized time response of NMC F504, hit by a 1-ps pulse at zero time delay for two cases of Ri/Ti of 50/50 (upper panels a and b) and 80/20 (lower panels c and d). Left panels a and c illustrate the long time behavior, whereas right panels b and d illustrate the short time behavior. Solid black curves are Gaussian fitted ACF.
Fig. 9
Fig. 9 Limiting performance of NMC F504: Dependence of transmitted power on the peak intensity for different Ri/Ti values enumerated by the legend.
Fig. 10
Fig. 10 Comparison of the designed and measured data for NMC F504: (a) The designed reflectance (blue curve) and the measured data (red curve) at AOI = 0°; (b) The designed group delay dispersion (blue curve) and the measurement performed with a white-light interferometer (red circles) for p-polarized light at AOI = 20°.
Fig. 11
Fig. 11 Schematic of a degenerate pump-probe setup. BS, beam splitter; AF, attenuating filter.
Fig. 12
Fig. 12 Reflectance spectra of NMC F502 (a) and NMC F504 (b): Spectra shift to longer wavelengths with increasing temperature. Black circles positioned at dashed lines set for two cases of Ri/Ti of 50/50 and 80/20 show the increase of reflectance due to the temperature rise.
Fig. 13
Fig. 13 Comparison of the temperature influence for NMCs F502 and F504 for two cases of Ri/Ti of 50/50 (a) and 80/20 (b) based on experimental (violet diamonds and green circles, accordingly) and theoretical estimations (black diamonds and circles, accordingly). Solid black lines are linear fits of both experimental and theoretical estimations.

Tables (1)

Tables Icon

Table 1 Thermo-mechanical and optical parameters for the layer materials at room temperaturea

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n= n 0 + n 2 I.
R i =R( d 1 ,, d m ; n H , n L ;λ;ϑ),
R f (I)= R i +ΔR(I),
Δ R nl =Δ R tot Δ R temp tot  or Δ R nl =Δ R ch Δ R temp ch ,
I p = ( π 2 ) 3 2 P f rep τ p w 2 ,
Δ R temp =R( d 1 (1+ α 1 ΔTemp),, d m (1+ α m ΔTemp); n H + β H ΔTemp, n L + β L ΔTemp;λ;ϑ) R i ,

Metrics